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Abstract. The main result of this paper is the classification of the real
irreducible representations of compact Lie groups with vanishing homogeneity
rank.

1. Introduction

Let a compact Lie group G act smoothly on a smooth manifold M . The codi-
mension of the principal orbits in M is called the cohomogeneity cohom(G, M) of
the action. Püttmann, starting from an inequality for the dimension of the fixed
point set of a maximal torus in G due to Bredon ([1], p. 194), introduced in [14]
the homogeneity rank of (G, M) as the integer

homrk(G, M) = rk G− rk Gprinc − cohom(G, M)

= rk G− rk Gprinc + (dim G− dim Gprinc)− dim M,

where Gprinc is a principal isotropy subgroup of the action and, for a compact Lie
group K , rk K denotes its rank, namely the dimension of a maximal torus. We
will see in the next section that orbit-equivalent actions have the same homogeneity
rank.

This invariant, although not with this name, had already been considered
by Huckleberry and Wurzbacher who proved that a Hamiltonian action of a com-
pact Lie group on a symplectic manifold has vanishing homogeneity rank if and
only if the principal orbits are coisotropic with respect to the invariant symplectic
form (see [7], Theorem 3, p. 267 for this result and other characterizations of this
property). If ρ : G → U(V ) is a complex representation where V is a complex
vector space endowed with an invariant symplectic structure, then the G-action is
automatically Hamiltonian, and it has vanishing homogeneity rank if and only if
every principal orbit is coisotropic; this condition can be proved to be equivalent
to the fact that a Borel subgroup of the complexified group Gc has an open orbit
in V , and also to the fact that the naturally induced representation of G on the
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ring of regular functions C [V ] splits into the sum of mutually inequivalent irre-
ducible representations (see e.g. [11], p. 199). Complex representations with these
equivalent properties are called coisotropic or multiplicity-free; Kac [8] classified
the irreducible multiplicity-free representations and, later, Benson and Ratcliff [2]
and, independently, Leahy [12] classified the reducible ones.

In this paper, we consider the case of an irreducible representation
ρ : G → O(V ) of a compact Lie group G on a real vector space V with van-
ishing homogeneity rank. Since representations admitting an invariant complex
structure have null homogeneity rank if and only if they are multiplicity-free, we
will deal only with irreducible representations of real type, also called absolutely
irreducible, namely those which admit no invariant complex structure. Our main
result is the following theorem.

Theorem 1.1. An absolutely irreducible representation ρ of a compact con-
nected Lie group G has vanishing homogeneity rank if and only if it is either
orbit-equivalent to the isotropy representation of an irreducible non-Hermitian sym-
metric space of inner type or it is one of the following representations:

G ρ d c
Sp(1)× Sp(n), n ≥ 2 S3(C2)⊗H C2n 8n 3

SO(4)× Spin(7) R4 ⊗R8 32 5
Sp(1)× Spin(11) C2 ⊗H C32 64 6

where Spin(7) acts on R8 via the real spin representation, Spin(11) acts on C32

via the complex spin representation, d denotes the dimension of the representation
space and c denotes its cohomogeneity.

2. Preliminaries

Let (G, V ) be an absolutely irreducible representation of a compact Lie group G
on a real vector space V . It is shown in Corollary 1.2 in [14] that the homogeneity
rank of a linear representation is non positive. In this regard, the representations
with vanishing homogeneity rank are precisely those with maximal homogeneity
rank. The following monotonicity property that is stated on p. 375 in [14] and is
valid for smooth actions on smooth manifolds will be the basis of the method of
our classification. Since there is no proof in [14], we include one for the sake of
completeness.

Proposition 2.1. Let (G, M) be a smooth action. If G′ be a closed subgroup
of G, then homrk(G′, M) ≤ homrk(G, M) .

Proof. We first prove the statement in the case in which M is G-homogeneous,
i. e. we prove that given a homogeneous space M = G/H , where G is a compact
Lie group and H is a closed subgroup, for every closed subgroup G′ of G we have

homrk(G′, G/H) ≤ rk G− rk H.

We prove this by induction on the dimension of the manifold, the initial case
dim M = 1 being clear. Fix the point o = [H] ∈ G/H , a maximal torus TH of H ,



Gorodski and Podestà 65

and a maximal torus T of G containing TH . Since conjugation of G′ by elements
of G does not affect the homogeneity rank, we can assume that a maximal torus
T ′ of G′ sits inside T . Then we have

rk G′ − rk G′
o ≤ dim T ′ − dim(T ′ ∩G′

o) = dim T ′ · o ≤ dim T · o,

where G′
o denotes the isotropy subgroup of G′ at o . Therefore

rk G′ − rk G′
o ≤ rk G− rk H.

We now consider the slice representation of G′
o on the normal space W to the orbit

G′ · o ; we can assume that the dimension k of W is at least 2, since otherwise
G′

o contains a principal isotropy subgroup of (G, G/H) as a subgroup of finite
index and the claim follows immediately. Denote by S the unit sphere in W with
respect to a G′

o -invariant inner product in W and apply the induction hypothesis.
Since G′

o is a closed subgroup of SO(k) , we have

homrk(G′
o, S) = rk G′

o − rk G′
princ − cohom(G′, M) + 1

≤ homrk(SO(k), S) =
1 + (−1)k

2
,

where G′
princ denotes a principal isotropy subgroup of G′ on M . It then follows

that

homrk(G′, M) ≤ rk G′ − rk G′
o +

−1 + (−1)k

2
≤ rk G− rk H,

and our claim is proved.

In the general case, we fix a G-regular point p ∈ M and observe that a point
q ∈ G·p is principal for the G′ -action on G·p if and only if it is principal for the G′ -
action in M ; this means that cohom(G′, M) = cohom(G, M) + cohom(G′, G · p) .
We know from the previous case that

homrk(G′, G · p) ≤ homrk(G, G · p) ,

and now our claim follows by subtracting cohom(G, M) from both members of
the above inequality.

Corollary 2.2. Let (G, V ) be a representation of a compact Lie group G on
a real vector space V . If (G, V ) is not of vanishing homogeneity rank, then the
action of a closed subgroup of G on V is never of vanishing homogeneity rank.

The preceding corollary indicates a strategy to classify representations with
vanishing homogeneity rank. First we observe that the standard representation of
SO(n) on Rn is of vanishing homogeneity rank if and only if n is even. Then we
need to decide which of the maximal subgroups of SO(n) , where n is even, act
absolutely irreducibly on Rn with vanishing homogeneity rank. For each example
that we encounter, we examine which of its maximal subgroups still act absolutely
irreducibly on Rn with vanishing homogeneity rank, and so on. The process will
eventually yield all the closed subgroups of SO(n) that act absolutely irreducibly
on Rn with vanishing homogeneity rank. The effectiveness of this strategy is
elucidated by the following well known result of Dynkin [3].
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Theorem 2.3. (Dynkin) 1. Let G be a maximal connected subgroup of SO(n) .
Then G is conjugate in O(n) to one of the following:

(a) SO(k) × SO(n− k) , where 1 ≤ k ≤ n− 1;

(b) ρ(SO(p) × SO(q)), where pq = n and 3 ≤ p ≤ q , and ρ is the real
tensor product of the vector representations;

(c) U(k) , where 2k = n;

(d) ρ(Sp(p) × Sp(q)), where 4pq = n 6= 4, and ρ is the quaternionic
tensor product of the vector representations;

(e) ρ(G1), where G1 is simple and ρ is a real form of a complex irreducible
representation of degree n of real type.

2. Let G be a maximal connected subgroup of SU(n) . Then G is conjugate to
one of the following:

(a) SO(n) ;

(b) Sp(k) , where 2k = n;

(c) S(U(k) × U(n− k)), where 1 ≤ k ≤ n− 1;

(d) ρ(SU(p) × SU(q)), where pq = n and p ≥ 3 and q ≥ 2, and ρ is the
complex tensor product of the vector representations;

(e) ρ(G1), where G1 is simple and ρ is a complex irreducible representation
of degree n of complex type.

3. Let G be a maximal connected subgroup of Sp(n) . Then G is conjugate to
one of the following:

(a) U(n) ;

(b) Sp(k) × Sp(n− k) , where 1 ≤ k ≤ n− 1;

(c) ρ(SO(p) × Sp(q)), where pq = n and p ≥ 3 and q ≥ 1, and ρ is the
real tensor product of the vector representations;

(d) ρ(G1), where G1 is simple and ρ is a complex irreducible representation
of degree 2n of quaternionic type.

Recall that a symmetric space of compact type X = L/G is said to be of
inner type if rk L = rk G ; otherwise, X is said to be of outer type (compare
Theorem 8.6.7 on p. 255 in [15]). Moreover, the isotropy representation of X
is absolutely irreducible if and only if X is irreducible and non-Hermitian. The
following lemma implies that the isotropy representations of symmetric spaces of
semisimple type that have vanishing homogeneity rank are precisely those coming
from symmetric spaces of inner type.

Lemma 2.4. Let (G, V ) be the isotropy representation of a symmetric space of
compact type X = L/G. Then homrk(G, V ) = 0 if and only if rk G = rk L.
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Proof. Let l = g + V be the Cartan decomposition of X with respect to the
involution, where l and g respectively denote the Lie algebras of L and G . Let
a ⊂ V be a maximal Abelian subspace. By the structural theory of symmetric
spaces, it is known that the dimension of a is equal to the cohomogeneity of
(G, V ), and that the centralizer m of a in g is the Lie algebra of a principal
isotropy subgroup of (G, V ). It follows that homrk(G, V ) = rk g− rk m−dim a .
Let t be a Cartan subalgebra of m . Then it is easily seen that t + a is a
Cartan subalgebra of l . Now rk m = dim t , rk l = dim t + dim a , and hence
homrk(G, V ) = rk g − rk l = rk G− rk L which proves our thesis.

We will also use Theorem 1.3 of [14] which, for convenience of the reader,
we restate here.

Theorem 2.5. (Püttmann) Let (G, M) be an isometric action of the compact
Lie group G on a Riemannian manifold M . Then, for any x ∈ M , we have

dim νx(G · x)Gx ≤ cohom(G, M) − (rk Gx − rk Gprinc),

where νx(G · x) denotes the normal space to the orbit G · x at x, νx(G · x)Gx

denotes the fixed point subspace of Gx in νx(G · x), and Gprinc is a principal
isotropy subgroup of (G, M).

The following proposition implies that orbit-equivalent actions have the
same homogemeity rank.

Proposition 2.6. Let (G, M) be a smooth action. If G′ is a closed sub-
group of G, and G and G′ have the same orbits in M , then homrk(G′, M) =
homrk(G, M) .

Proof. It is clearly enough to prove that if G′ and G act transitively on
the same manifold M , then homrk(G′, M) = homrk(G, M) . If we represent
M = G/H = G′/H ′ for suitable closed subgroups H ⊂ G and H ′ ⊂ G′ , then we
claim that

rk G− rk H = rk G′ − rk H ′.

This follows from the fact that, given a homogeneous space M = G/H with
G compact, the number χπ(M) := rk H − rk G is a homotopy invariant of M
(see [13], p. 207)

Finally, we state the following direct consequences of the definition of ho-
mogeneity rank, which we shall repeatedly use in our arguments.

Remark 2.7. Let (G, M) be a smooth action of a compact Lie group G on a
smooth manifold M . Then:

(a) If homrk(G, M) = 0, then dim M ≤ dim G + rk G.

(b) If G′ is a connected closed subgroup of G having the same homogeneity rank,
then rk G′ ≥ rk G − rk Gprinc . Moreover if Gprinc is finite, then G = G′

(indeed, G and G′ are orbit-equivalent both with finite principal isotropy,
hence G and G′ have the same Lie algebra).
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3. The classification

In this section, we apply the strategy discussed in the previous section to classify
absolutely irreducible representations with vanishing homogeneity rank. It is
enough to consider orthogonal representations of even degree 2n . According
to Theorem 2.3, the maximal connected subgroups of SO(2n) acting absolutely
irreducibly on V = R2n are: ρ(SO(p) × SO(q)), where pq = 2n and 3 ≤ p ≤ q ,
and ρ is the real tensor product of the vector representations; ρ(Sp(p) × Sp(q)),
where 4pq = 2n 6= 4, and ρ is the quaternionic tensor product of the vector
representations; and ρ(G1), where G1 is simple and ρ is a real form of a complex
irreducible representation of degree 2n of real type.

3.1. The case of ρ(SO(p) × SO(q)) and its maximal subgroups.

Here pq = 2n and 3 ≤ p ≤ q . We have that ρ is the isotropy represen-
tation of the symmetric space SO(p + q)/SO(p) × SO(q) , and rk SO(p + q) =
rk SO(p)+rk SO(q) because not both of p , q are odd. It follows from Lemma 2.4
that this is an example.

Next we must investigate maximal connected subgroups G of ρ(SO(p) ×
SO(q)). We shall consider separately three cases which cover all the possibilities.

3.1.1. G = ρ(G1), where G1 = K × SO(q) , and K ⊂ SO(p) is a maximal
connected subgroup.

Set Ĝ1 = SO(p) × SO(q) , Ĝ = ρ(Ĝ1). There is a Ĝ1 -regular point x ∈ V
whose connected principal isotropy subgroup is given by Ĝ1x = SO(q − p) ⊂
SO(q) . The isotropy subgroup of G1 at x is the intersection Ĝ1x ∩ G1 , and its
connected component is SO(q − p) . If G has vanishing homogeneity rank on V ,
then Theorem 2.5 applied to x gives

dim νx(Gx)Gx ≤ cohom(G, V )− (rk Gx − rk Gprinc) = rk G− rk Gx

= rk K + rk SO(q)− rk SO(q − p) = rk K + rk SO(p),

where we have used that not both of p , q are odd. Note that dim νx(Ĝx) = p and
dim νx(Gx) = p + dim SO(p) − dim K . It is clear that

νx(Gx)Gx ⊃ νx(Ĝx),

since νx(Gx) ⊃ νx(Ĝx), Gx ⊂ Ĝx and x is Ĝ-regular. It follows that

dim νx(Gx)Gx ≥ p.

Combining with the above we get that

rk K + rk SO(p) ≥ p ≥ 2rk SO(p) ,

and therefore
rk K = rk SO(p) .

By the classification of maximal subgroups of maximal rank of SO(p) , (see, for
example, section 8.10 in [15]), since K is irreducible and of real type on Rp , we
must have K = SO(p) .

3.1.2. G = ρ(G1), where G1 = SO(p) ×K , and K ⊂ SO(q) is a maximal
connected subgroup.

According to Theorem 2.3, we need to consider three cases.
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(a) K = µ(K1), where K1 is simple and µ is an absolutely irreducible
representation of degree q . Of course we need only to consider representations
µ such that µ(K1) is a proper subgroup of SO(q) .

We may assume p < q . Remark 2.7(a) gives that p2 < pq ≤ p(p−1)
2

+
[

p
2

]
+r ,

where r = dim K1 + rk K1 , and [x] denotes the greatest integer contained not
exceeding x . This implies that

p2 < 2r, (1)

and that

p2 − 2qp + 2r ≥ 0. (2)

Equation (2) and p ≥ 3 then imply that

q ≤ r

3
+

3

2
. (3)

Let s be the minimal degree of an absolutely irreducible representation of K and
such that its image is not the full SO(s) . Then

s >
r

3
+

3

2
(4)

is a sufficient condition for (G, V ) not to be of vanishing homogeneity rank. We
next run through the possibilities for K1 .

• K1 = SU(m) , where m ≥ 2. Here r = m2 + m − 2. If m = 2, then
s = 5, and (4) holds. If m ≥ 3, then s = m2 − 1 (realized by the adjoint
representation), and (4) holds.

• K1 = Sp(m) , where m ≥ 2. Here r = 2m2 + 2m . If m = 2, then
s = 10 (realized by the adjoint representation) and (3) holds. If m ≥ 3 then
s = 2m2−m−1 (realized by the second fundamental representation) and (3)
holds.

• K1 = Spin(m) , where m ≥ 7. Here r = m(m−1)
2

+
[

m
2

]
. All irreducible

representations of real type violate (3), except possibly the (half-)spin rep-
resentations of B4k−1 , B4k , D4k . These have respectively q = 24k−1 , 24k ,
24k−1 . Condition (3) is respectively

3 · 24k ≤ 64k2 − 16k + 9, 3 · 24k+1 ≤ 64k2 + 16k + 9,

3 · 24k ≤ 64k2 + 9.

The only cases that survive are B3 and D4 . In the case of B3 we have q = 8
and r = 24. Then (1) implies that p = 3, 4, 5, 6. Next we use (2) to get rid
of p = 5, 6. We end up with p = 3 and p = 4, and this gives the admissible
cases (SO(3) × Spin(7) , R3⊗R8) and (SO(4) × Spin(7) , R4⊗R8), but
note that the first one of these is orbit-equivalent to (SO(3) × SO(8) , R3⊗
R8). In the case of D4 , we have that µ(Spin(8)) = SO(8) , and we rule
this out.



70 Gorodski and Podestà

• K1 is an exceptional group. Here (4) holds in each case, so there are no
examples, see the table below.

K1 r s
G2 16 7
F4 56 26
E6 84 78
E7 140 133
E8 256 248

(b) K = µ(SO(k) × SO(l)), where 3 ≤ k ≤ l and q = kl , and µ is
the real tensor product of the vector representations. Here r = k2+l2

2
+[

k

2

]
− k

2
+

[
l

2

]
− l

2︸ ︷︷ ︸
=θ

. Note that −1 ≤ θ ≤ 0. Then (3) is k2+l2−6kl+2θ+9 ≥ 0.

Set m = l − k ≥ 0. Then m2 − 4km− 4k2 + 9 + 2θ ≥ 0. This implies that

2k +
√

8k2 − 9− 2θ ≤ m. (5)

If pk ≤ l , since the action of SO(p) × µ(SO(k) × SO(l)) ⊂ SO(p) × SO(q)
on Rp ⊗ Rq is the same thing as the action of µ′(SO(p) × SO(k)) × SO(l) ⊂
SO(pk) × SO(l) on Rpk ⊗ R l , where µ′ is the real tensor product of the vector
representations, this case has already been considered in section 3.1.1. So now we
assume that

pk > l. (6)

Note that q >
√

2r . This implies via (2) that 3 ≤ p ≤ q −
√

q2 − 2r . Combining

this with (6) we have l < kq − k
√

q2 − 2r and then l2(1 − 2k2) + 2k2r > 0.

Substituting the value of r we get k ≤ l < k
√

k2+2θ
k2−1

. We deduce that θ = 0 and

0 ≤ m < k

(
k√

k2 − 1
− 1

)
. (7)

Now (5) and (7) combined imply that 3k +
√

8k2 − 9 < k2
√

k2−1
, which is impossible

for k ≥ 3.

(c) K = µ(Sp(k) × Sp(l)), where q = 4kl 6= 4, and µ is the quaternionic
tensor product of the vector representations. We postpone this case to
section 3.4.

3.1.3. G = {(x, σ(x)) : x ∈ SO(p)}, where p = q and σ is an automorphism
of SO(p) .

Here Remark 2.7(a) immediately implies that (G, V ) cannot have vanishing
homogeneity rank.

3.2. The case of ρ(Sp(p) × Sp(q)) and its maximal subgroups.

Here 4pq = 2n 6= 4 and p ≤ q . We have that ρ is the isotropy represen-
tation of the symmetric space Sp(p + q)/Sp(p) × Sp(q) , and rk Sp(p + q) =
rk Sp(p) + rk Sp(q) . It follows from Lemma 2.4 that this is an example.
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Next we must investigate maximal connected subgroups G of ρ(Sp(p) ×
Sp(q)). We shall consider three cases separately which cover all the possibilities.

3.2.1. G = ρ(G1), where G1 = K × Sp(q) , and K ⊂ Sp(p) is a maximal
connected subgroup.

Set Ĝ1 = Sp(p) × Sp(q) . There is a Ĝ1 -regular point x ∈ V whose
principal isotropy subgroup is given by Ĝ1x = Sp(1)p× Sp(q − p) . Let O be the
orbit of Ĝ1 through x . A point y ∈ O is G1 -regular in O if and only if it is G1 -
regular in V ; moreover the isotropy subgroup G1y is given by the intersection of

G1 with a suitable conjugate of Ĝ1x in Ĝ1 . This means that a principal isotropy
subgroup of G1 contains a subgroup isomorphic to Sp(q − p) . If (G, V ) has
vanishing homogeneity rank, it then follows that

dim V = 4pq ≤ dim K + rk K + 2q2 + 2q − (2(q − p)2 + 2(q − p)),

hence

2p2 − 2p ≤ dim K + rk K. (8)

According to Theorem 2.3, there are two cases to be considered. But if K is of
the form µ(SO(k) × Sp(l)), where µ is the real tensor product of the vector
representations, we refer to section 3.4. So we can assume that K is of the form
µ(K1), where K1 is simple and µ is a complex irreducible representation of degree
2p of quaternionic type. Let s be half the minimal degree of a complex irreducible
representation of quaternionic type of K1 and such that its image is not the full
Sp(s) . The list of the values of s for each compact simple group K1 is given by
the following table (groups not appearing in the table do not admit quaternionic
representations):

K1 s

SU(4a + 2), a ≥ 1 1
2

(
4a+2
2a+1

)
Spin(8a + 3), a ≥ 1 24a

Spin(8a + 4), a ≥ 1 24a

Spin(8a + 5), a ≥ 1 24a+1

Sp(a), a ≥ 3 a
3
(2a2 − 3a− 2)

Sp(2) 8
Sp(1) 2
E7 28

It is now easy to see that (8) implies K1 = Sp(1) and p = 2, and then the only
admissible case is G1 = Sp(1)× Sp(q) , where Sp(1) ⊂ Sp(2) via the irreducible
representation of degree 4.

3.2.2. G = ρ(G1), where G1 = Sp(p) × K , and K ⊂ Sp(q) is a maximal
connected subgroup.

According to Theorem 2.3, we need to consider two cases.

(a) K = µ(K1), where K1 is simple and µ is a complex irreducible
representation of degree 2q of quaternionic type. We may assume p < q .
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Remark 2.7(a) gives that 4p2 < 4pq ≤ 2p2 + 2p + r , where r = dim K1 + rk K1

(note that r ≥ 4). This implies that

p <
1 +

√
1 + 2r

2
and 2p2 + 2p(1− 2q) + r ≥ 0.

¿From this we get that

q ≤ r

4
+ 1, (9)

and
if q ≥ 1+

√
1+2r
2

, then p ≤ q − 1
2
− 1

2

√
(2q − 1)2 − 2r . (10)

Running through the compact simple groups K1 that admit quaternionic repre-
sentations (see table in section 3.2.1) and using (9) and (10), we get the following
admissible cases: K1 = Sp(1) , p = 1, q = 2; K1 = Sp(3) , p = 1, q = 7;
K1 = Spin(11) , p = 1, q = 16; K1 = Spin(12) , p = 1, q = 16; K1 = SU(6) ,
p = 1, q = 10; K1 = E7 , p = 1, q = 28. All cases but that of K1 = Spin(11)
come from isotropy representations of symmetric spaces.

(b) K = µ(SO(k)× Sp(l)), where q = kl , and µ is the real tensor product
of the vector representations. We postpone this case to section 3.4.

3.2.3. G = {(x, σ(x)) : x ∈ Sp(p)}, where p = q and σ is an automorphism
of Sp(p) .

Here Remark 2.7(a) immediately implies that (G, V ) can have vanishing
homogeneity rank only if p = 1, so this case is out.

3.3. The case of ρ(G1).

Here G1 is a compact simple Lie group and ρ is an absolutely irreducible
representation of G1 of degree 2n . Remark 2.7(a) says that 2n ≤ dim G1 + rk G1 .
In particular, this implies that 2 dim G1 ≥ 2n − 2, so we can use Lemma 2.6
in [10] to deduce that (G, V ) is orbit equivalent to the isotropy representation of
a symmetric space.

3.4. The case of ρ(SO(m) × Sp(p) × Sp(q)), where ρ is the real and
quaternionic tensor products of the vector representations.

Here 2n = 4mpq , m ≥ 3 and p ≤ q . By direct computation or using
Theorem 1.1 in [6], we see that:

(i) if m ≥ 4pq+2, then the connected principal isotropy is given by SO(m− 4pq) ;

(ii) if q ≥ mp+1, then the connected principal isotropy is given by Sp(q −mp) ;

(iii) in all other cases the connected principal isotropy is trivial.

In case (i) the condition of vanishing homogeneity rank reads

4p2q2 = p2 + q2 + p + q ≤ 2p2 + 2q2,

and this implies p = q = 1. In case (ii) we have

4p2(1−m2) + 4p(1 + m) + m2 −m + 2
[m

2

]
= 0.
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If m = 2l , then we have p2(1− 4l2) + p(1 + 2l) + l2 = 0, which implies that 1 + 2l
divides l2 , impossible. If m = 2l + 1, then we have (4p2 − 1)l = 2p , which is
impossible. In case (iii), we have the equation

8mpq = m2 −m + 2
[m

2

]
+ 4p2 + 4p + 4q2 + 4q.

If m = 2l , this reads

l2 − 4pql + p2 + q2 + p + q = 0, (11)

subject to the constraints

q

2p
≤ l ≤ 2pq, p ≤ q, l ≥ 2,

while if m = 2l + 1, we have

l2 − (4pq − 1)l + p2 + q2 − 2pq + p + q = 0, (12)

subject to the constraints

q

2p
− 1

2
≤ l ≤ 2pq, p ≤ q, l ≥ 1.

Consider first equation (11). It can be solved in l to yield l = 2pq ±
√

∆,
where ∆ = 4p2q2 − p2 − q2 − p− q . If l = 2pq +

√
∆, using the fact that l ≤ 2pq

we have ∆ = 0 and then l = 2pq ≤ p + q , which gives p = q = 1, and then l = 2,
m = 4. If l = 2pq −

√
∆, then q

2p
≤ l implies that

q2(4p2 − 1)− 4p2q − 4p2(p2 + p) ≤ 0,

and therefore

p ≤ q ≤
2p2 + 2p

√
p(4p3 + 4p2 − 1)

4p2 − 1
< p + 2.

It then follows that we only need to consider the possibilities q = p and q = p+1.
If q = p , then we have

2 ≤ l = 2p2 −
√

4p4 − 2p2 − 2p ≤ 2,

so that l = 2, p = q = 1. If q = p + 1, then

2 ≤ l = 2p2 + 2p−
√

4p4 + 8p3 + 2p2 − 4p− 2 < 2,

which is impossible.

Next we consider equation (12). Here it is useful to note that Remark 2.7(b)
applied to G = SO(m) × Sp(p) × Sp(q) viewed as a subgroup of SO(m) ×
SO(4pq) gives the extra condition[m

2

]
≤ p + q.

Reasoning as above, we get that p = q = 1 and m = 3, 5.
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3.5. The examples and their subgroups.

In this section we show that all candidates G ⊂ SO(2n) found in the
previous sections are actually examples of groups acting absolutely irreducibly
on V = R2n with vanishing homogeneity rank, and these groups do not admit
subgroups with the same property. This will complete the proof of Theorem 1.1.

We first examine the representations that are not orbit-equivalent to isotropy
representations of non-Hermitian symmetric spaces of inner type. We have three
candidates:

1. G = Sp(1) × Sp(q) (q ≥ 2) acting on V = S3(C2)⊗H C2q ∼= R8q ;

2. G = SO(4) × Spin(7) acting on V = R4 ⊗ R8 ∼= R32 , where Spin(7)
acts on R8 via the real spin representation;

3. G = Sp(1) × Spin(11) acting on V = C2 ⊗H C32 ∼= R64 , where Spin(11)
acts on C32 via the complex spin representation.

We now show that in each case the representation has vanishing homogeneity
rank. Indeed, in case 1 we have that a connected principal isotropy is given
by Sp(q − 2) (see [5], Proposition 7.12), therefore the cohomogeneity is three
and the homogeneity rank vanishes. In case 2, a connected isotropy subgroup
is trivial. This can be seen by selecting a pure tensor v ⊗ w with v ∈ R4

and w ∈ R8 and computing the connected isotropy, which is SO(3) × G2 ;
then the slice representation is given by R ⊕ R3 ⊗ R7 ; starting again with this
new representation, we eventually come up with a trivial isotropy. Therefore the
cohomogeneity is five and the homogeneity rank vanishes. In case 3, we also have
trivial connected principal isotropy and vanishing homogeneity rank. Indeed, if
v ∈ C32 is a highest weight vector for the spin representation of Spin(11) , then
the subgroup H ⊂ Spin(11) defined by H = {g ∈ Spin(11) : g · v ∈ C∗ · v} is
given by U(5) . Now if p : Sp(1) × Spin(11) → Spin(11) is the projection, then

p((Sp(1) × Spin(11))v) = {g ∈ Spin(11) : g · v ∈ Sp(1) · v} ⊃ H.

Since H is maximal in Spin(11) , we get that (Sp(1) × Spin(11))v is given by
T1 · SU(5) , where T1 sits diagonally in the product of a suitable maximal torus
in Sp(1) and the center of H . ¿From this we see that the slice representation at
v is given by R ⊕C5⊕Λ2C5 and the connected principal isotropy is trivial. The
cohomogeneity is six and the homogeneity rank vanishes.

We now examine subgroups of the previous examples. In case 1, a maximal
subgroup of G leaving no complex structure on V invariant is of the form G′ =
Sp(1) × K , where K ⊂ Sp(q) is maximal. Since Sp(2) × K does not have
vanishing homogeneity rank on V by the results of section 3.2.2, and G′ ⊂
Sp(2) ×K , we have that G′ does not have vanishing homogeneity rank on V . In
cases 2 and 3, G admits no proper subgroups acting with vanishing homogeneity
rank because the connected principal isotropy is trivial and then we may apply
Remark 2.7(b).

We finally consider the representations (G, V ) that are orbit-equivalent to
isotropy representations of non-Hermitian symmetric spaces of inner type, and we
classify the subgroups G′ ⊂ G which still act absolutely irreducibly on V with
vanishing homogeneity rank. In the following table we list the representations ρ
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which need to be examined; we denote by c the cohomogeneity of ρ , by d the
dimension of V , and by [[W ]] a real form of the G-module W .

Case G ρ c d dim Gprinc

1 Sp(1) · SU(6) C2 ⊗H Λ3C6 4 40 2
2 Sp(1) · Spin(12) C2 ⊗H (half-spin) 4 64 9
3 Sp(1) · E7 C2 ⊗H C56 4 112 28
4 Sp(1) · Sp(3) C2 ⊗H C14 4 28 0
5 SO(4) S3(C2)⊗H C2 2 8 0
6 Spin(16) half-spin 8 128 0
7 SU(8) [[Λ4C8]] 7 70 0
8 SO(3)× Spin(7) R3 ⊗R8 3 24 3
9 Spin(7) spin 1 8 14
10 Spin(9) spin 1 16 21

Cases 4 through 7 can be dealt with using Remark 2.7(b). We consider
case 1. If G′ is a maximal subgroup of G , we may assume that G′ is of the form
G′ = Sp(1) · G′′ , where G′′ is maximal in SU(6) , since G′ does not leave any
complex structure invariant. Now Remark 2.7(a) implies that dim G′′ + rk G′′ ≥
36, and rk G′′ ≤ 5 implies dim G′′ ≥ 31, so that dim SU(6)/G′′ ≤ 4. If G′′

is a proper subgroup of SU(6) , then the left action of SU(6) on SU(6)/G′′ is
almost effective because SU(6) is simple. Therefore dim SU(6) is less than the
dimension of the isometry group of SU(6)/G′′ , which is at most 10, but this is a
contradiction. Hence G′′ = SU(6) .

In case 2, again we can assume that G′ is of the form G′ = Sp(1) · G′′ ,
where G′′ is maximal in Spin(12) . We have dim G′′ + rk G′′ ≥ 60; since G′

is supposed to act absolutely irreducibly on V , its rank is not maximal by a
theorem of Dynkin (see Theorem 7.1, p. 158 in [4]), and therefore dim G′′ ≥ 55 =
dim Spin(11) . It is known that a subgroup of Spin(n) of dimension greater or
equal to dim Spin(n− 1) is conjugate to the standard Spin(n− 1) ⊂ Spin(n)
if n 6= 4, 8 (see e.g. [9], p. 49). So, G′ = Sp(1) · Spin(11) , which is indeed an
example with trivial connected principal isotropy by the discussion above.

In case 3, using the same argument as in case 2, we see that G′ = Sp(1) ·G′′ ,
where G′′ is maximal in E7 and dim G′′ ≥ 102. Now a maximal subgroup of
maximal rank of E7 has dimension at most 79 (see, for example, section 8.10
in [15]), whereas one sees by direct enumeration that an arbitrary compact Lie
group of rank at most 6 has dimension at most 78. This shows that there is no
such proper subgroup.

In case 8, a maximal subgroup G′ acting absolutely irreducibly on V must
be of the form G′ = SO(3) × K , where K ⊂ Spin(7) is maximal; arguing
as above, we see that dim K ≥ 18, so that dim(Spin(7)/K) ≤ 3 and this is
impossible, because Spin(7) is simple.

In case 9, let K ⊂ Spin(7) be a maximal subgroup acting absolutely
irreducibly on R8 . Since K cannot have maximal rank as above, and using
Theorem 2.3, we see that K must be simple of rank at most two and it must
admit an irreducible representation of degree 7 and of real type. Moreover, by
Remark 2.7(a), we have dim K ≥ 6, hence rk K = 2, and a direct inspection
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of all such simple groups shows that none of them but G2 admits an irreducible
representation of degree 7. But G2 does not admit an irreducible representation
of degree 8.

In case 10, we consider a maximal subgroup K of Spin(9) acting absolutely
irreducibly on R16 . This means that rk K ≤ 3 and dim K ≥ 13. Looking at the
list of all maximal subgroups of Spin(9) , we see that we can suppose K to be
simple and to act irreducibly on R9 , via the embedding K ⊂ Spin(9) . Therefore
K must be one of G2 , SU(4) , Spin(7) or Sp(3) , but we immediately see that
none of these groups admits an irreducible representation of degree 9 and of real
type.

This finishes the proof of Theorem 1.1.
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