Lengths of Involutions in Coxeter Groups

Sarah B. Perkins and Peter J. Rowley

Communicated by K.-H. Neeb

Abstract

Let t be an involution in a Coxeter group W. We determine the minimal and maximal (in the case of finite W) length of an involution in the conjugacy class of t. Mathematics Subject Classification 20F55.

Let W be a finitely generated Coxeter group whose distinguished set - the set of fundamental reflections - is R. The length $l(w)$ of a non-trivial element w in W is defined to be

$$
l(w)=\min \left\{l \in \mathbb{N}: w=r_{1} r_{2} \cdots r_{l} \text { some } r_{i} \in R\right\}
$$

and $l(1)=0$. Suppose t is an involution in W, and let $C=t^{W}$ be the conjugacy class of t in W. The aim of this short paper is to determine the minimal and maximal (in which case W is assumed finite) length of an involution in C.

Associated to any Coxeter group W is the root system Φ, which is the disjoint union of its positive and negative roots (denoted Φ^{+}and Φ^{-}respectively). The fundamental reflections $r \in R$ are in one-to-one correspondence with the fundamental roots $\alpha_{r}, r \in R$ and W acts faithfully on Φ (see [1]). For $w \in W$, define $N(w):=\left\{\alpha \in \Phi^{+}: w \cdot \alpha \in \Phi^{-}\right\}, I(w):=\left\{\alpha \in \Phi^{+}: w \cdot \alpha=-\alpha\right\}$ and $\operatorname{Fix}(w):=\left\{\alpha \in \Phi^{+}: w \cdot \alpha=\alpha\right\}$. It is well known that for each $w \in W$, $l(w)=|N(w)|$. For $J \subseteq R$, write W_{J} for the (Coxeter) group generated by J, Φ_{J} for its root system and, when it is finite, w_{J} for the unique longest element of W_{J}. Our main result is given in

Theorem 1.1. Suppose t is an involution in W, and put $C=t^{W}$. We have
(i) $\min _{s \in C}\{l(s)\}=|I(t)|$ and if x is of minimal length in C, then $x=w_{J}$ for some $J \subseteq R$.
(ii) If W is finite, then $\max _{s \in C}\{l(s)\}=\left|\Phi^{+}\right|-|\operatorname{Fix}(t)|$ and for y of maximal length in $C, y=w_{K} w_{R}$ for some $K \subseteq R$.

Put another way, Theorem 1.1 is saying that the maximum and minimum length in a conjugacy class of involutions may be obtained by examining the action on Φ
of any one involution in that class. We remark that part (i) appears as Theorem A (a) in [3]. We include a (shorter, and different) proof here to emphasise the similarity between parts (i) and (ii).

Proof. Let t be an involution and $C=t^{W}$. Note that for any $t^{\prime} \in C$, $\left|I\left(t^{\prime}\right)\right|=|I(t)|$ and $\left|\operatorname{Fix}\left(t^{\prime}\right)\right|=|\operatorname{Fix}(t)|$, because $t \cdot \alpha= \pm \alpha$ if and only if $t^{g} \cdot(g \cdot \alpha)= \pm(g \cdot \alpha)$, for each $g \in W$. It is clear from this that the length of any involution in C is at least $|I(t)|$ and at most $\left|\Phi^{+}\right|-|\operatorname{Fix}(t)|$. Let $r \in R$ with $\alpha_{r} \notin N(t)$, and suppose $\alpha_{r} \notin \operatorname{Fix}(t)$. It is well known that for any $w \in W$, $r \in R, l(w r)>l(w)$ if and only if $w \cdot \alpha_{r} \in \Phi^{+}$. We have $t \cdot \alpha_{r} \in \Phi^{+} \backslash\left\{\alpha_{r}\right\}$, so $r t \cdot \alpha_{r} \in \Phi^{+}$. Therefore $l(r t r)>l(r t)$. Now $r t=(t r)^{-1}$, hence $l(r t)=l(t r)>l(t)$, since $\alpha_{r} \notin N(t)$. Thus $l(r t r)>l(t)$. Suppose now that $\alpha_{r} \in N(t)$ with $\alpha_{r} \notin I(t)$. We have $l(r t r)<l(r t)$ because $r t \cdot \alpha_{r} \in \Phi^{-}$, and $l(r t)=l(t r)<l(r)$ because $\alpha_{r} \in N(t)$. Thus $l(r t r)<l(t)$.

We have shown that if $\alpha_{r} \notin N(t)$, then either $l(r t r)>l(t)$ or $\alpha_{r} \in \operatorname{Fix}(t)$, and that if $\alpha_{r} \in N(t)$, then either $l(r t r)<l(t)$ or $\alpha_{r} \in I(t)$. Thus for each x of minimal length in C, there exists $J \subseteq R$ with $\alpha_{r} \in I(x)$ for each $r \in J$ and $\alpha_{r} \notin N(x)$ when $r \notin J$. Let $r \in J$. Then $w_{J} x \cdot \alpha_{r}=-w_{J} \cdot \alpha_{r} \in \Phi^{+}$. If $r \notin J$ then $w_{J} x \cdot \alpha_{r} \in \Phi^{+}$unless $x \cdot \alpha_{r} \in \Phi_{J}^{+}$. But this would imply that $x^{2} \cdot \alpha_{r}=-x \cdot \alpha_{r} \neq \alpha_{r}$, which is impossible. Thus $N\left(w_{J} x\right)=\emptyset$ and hence $x=w_{J}$. Now $N(x)=\Phi_{J}^{+}=I(x)$ and so x has length $|I(t)|$ in C, which is minimal.

Similarly, when W is finite, for y of maximal length in C there exists $K \subseteq R$ with $\alpha_{r} \in \operatorname{Fix}(y)$ whenever $r \in K$, and $\alpha_{r} \in N(y)$ for $r \notin K$. We claim that $\operatorname{Fix}(y)=\Phi_{K}^{+}$. Certainly $\Phi_{K}^{+} \subseteq \operatorname{Fix}(y)$. For the reverse inclusion, let $\alpha=\sum_{r \in R} \lambda_{r} \alpha_{r} \in \operatorname{Fix}(y)$ (where each $\lambda_{r} \geq 0$). Now $y \cdot \alpha_{r} \in \Phi^{-}$for all $r \in R \backslash K$, so $\sum_{r \in R \backslash K} \lambda_{r} y \cdot \alpha_{r}$ is a negative linear combination of roots, say $-\sum_{r \in R} \mu_{r} \alpha_{r}$ for some $\mu_{r} \geq 0$. We have $\sum_{r \in R} \lambda_{r} \alpha_{r}=\alpha=y \cdot \alpha=\sum_{r \in K}\left(\lambda_{r}-\mu_{r}\right) \alpha_{r}-\sum_{r \in R \backslash K} \mu_{r} \alpha_{r}$. For $r \in R \backslash K$ then, we see that $\lambda_{r}=-\mu_{r}$. Hence $\lambda_{r}=\mu_{r}=0$. Therefore $\alpha \in \Phi_{K}^{+}$ and so $\operatorname{Fix}(y) \subseteq \Phi_{K}^{+}$.

Now for $r \in K, w_{K} y \cdot \alpha_{r}=w_{K} \cdot \alpha_{r} \in \Phi^{-}$. If $r \notin K, w_{K} y \cdot \alpha_{r} \in \Phi^{+}$ only when $y \cdot \alpha_{r} \in \Phi_{K}^{-}$, which is impossible. Consequently $N\left(w_{K} y\right)=\Phi^{+}$, that is $y=w_{K} w_{R}$ and $l(y)=|N(y)|=\left|\Phi^{+}\right|-\left|\Phi_{K}^{+}\right|=\left|\Phi^{+}\right|-|\operatorname{Fix}(y)|$ and this is the maximum possible length of an involution in C.

We remark that it is necessary, as Proposition 1.3 shows, to assume, when W is irreducible, that W is finite in order for $\max _{s \in C}\{l(s)\}$ to be defined. We require the following lemma, which follows from the fact that the geometric representation of W is irreducible and faithful (see [1]).

Lemma 1.2. ([2], Lemma 2.3) Let W be an irreducible Coxeter group and let $\alpha \in \Phi$. Then W acts faithfully on the orbit $W \cdot \alpha$.

Proposition 1.3. Suppose W is an infinite irreducible Coxeter group. Then each conjugacy class of involutions in W contains elements of arbitrarily large length.

Proof. Let t be an involution of W. Then, by Theorem 1.1, $I(t)$ is non-empty, so there exists $\alpha \in \Phi^{+}$with $t \cdot \alpha=-\alpha$. Let $\beta \in W \cdot \alpha$. Then $\beta=w \cdot \alpha$ for
some $w \in W$. Now $t^{w} \cdot \beta=w t w^{-1} \cdot(w \cdot \alpha)=-\beta$, whence $\beta \in N\left(t^{w}\right)$. Thus $W \cdot \alpha \subseteq \cup_{w \in W} N\left(t^{w}\right)$. Each element t^{w} has finite length, but $W \cdot \alpha$ is infinite, by Lemma 1.2, hence the conjugacy class of t must be infinite. Consequently, since there can only be finitely many elements of a given length in W, the conjugacy class of t must contain elements of arbitrarily large length.

References

[1] J. E. Humphreys, "Reflection Groups and Coxeter Groups," Cambridge Studies in Advanced Mathematics 29, 1990.
[2] Perkins, S. B., and P. J. Rowley, Bad Upward Elements in Infinite Coxeter Groups, Manchester Centre for Pure Mathematics Preprint, 2000/6.
[3] Richardson, R. W., Conjugacy classes of involutions in Coxeter groups, Bull. Austral. Math. Soc. 30 (1982), 1-15.

[^0]Received June 30, 2002
and in final form October 13, 2003

[^0]: S. B. Perkins and P. J. Rowley

 Department of Mathematics, UMIST, PO Box 88,
 Manchester M60 1QD
 United Kingdom
 Sarah.Perkins@umist.ac.uk

