Lengths of Involutions in Coxeter Groups

Sarah B. Perkins and Peter J. Rowley

Communicated by K.-H. Neeb

Abstract. Let t be an involution in a Coxeter group W. We determine the minimal and maximal (in the case of finite W) length of an involution in the conjugacy class of t.

Mathematics Subject Classification 20F55.

Let W be a finitely generated Coxeter group whose distinguished set – the set of fundamental reflections – is R. The length l(w) of a non-trivial element w in W is defined to be

$$l(w) = \min\{l \in \mathbb{N} : w = r_1 r_2 \cdots r_l \text{ some } r_i \in R\}$$

and l(1) = 0. Suppose t is an involution in W, and let $C = t^W$ be the conjugacy class of t in W. The aim of this short paper is to determine the minimal and maximal (in which case W is assumed finite) length of an involution in C.

Associated to any Coxeter group W is the root system Φ , which is the disjoint union of its positive and negative roots (denoted Φ^+ and Φ^- respectively). The fundamental reflections $r \in R$ are in one-to-one correspondence with the fundamental roots $\alpha_r, r \in R$ and W acts faithfully on Φ (see [1]). For $w \in W$, define $N(w) := \{\alpha \in \Phi^+ : w \cdot \alpha \in \Phi^-\}, I(w) := \{\alpha \in \Phi^+ : w \cdot \alpha = -\alpha\}$ and $\operatorname{Fix}(w) := \{\alpha \in \Phi^+ : w \cdot \alpha = \alpha\}$. It is well known that for each $w \in W$, l(w) = |N(w)|. For $J \subseteq R$, write W_J for the (Coxeter) group generated by J, Φ_J for its root system and, when it is finite, w_J for the unique longest element of W_J . Our main result is given in

Theorem 1.1. Suppose t is an involution in W, and put $C = t^W$. We have

- (i) $\min_{s \in C} \{l(s)\} = |I(t)|$ and if x is of minimal length in C, then $x = w_J$ for some $J \subseteq R$.
- (ii) If W is finite, then $\max_{s \in C} \{l(s)\} = |\Phi^+| |\operatorname{Fix}(t)|$ and for y of maximal length in C, $y = w_K w_R$ for some $K \subseteq R$.

Put another way, Theorem 1.1 is saying that the maximum and minimum length in a conjugacy class of involutions may be obtained by examining the action on Φ

ISSN 0949–5932 / \$2.50 © Heldermann Verlag

of any one involution in that class. We remark that part (i) appears as Theorem A (a) in [3]. We include a (shorter, and different) proof here to emphasise the similarity between parts (i) and (ii).

Proof. Let t be an involution and $C = t^W$. Note that for any $t' \in C$, |I(t')| = |I(t)| and $|\operatorname{Fix}(t')| = |\operatorname{Fix}(t)|$, because $t \cdot \alpha = \pm \alpha$ if and only if $t^g \cdot (g \cdot \alpha) = \pm (g \cdot \alpha)$, for each $g \in W$. It is clear from this that the length of any involution in C is at least |I(t)| and at most $|\Phi^+| - |\operatorname{Fix}(t)|$. Let $r \in R$ with $\alpha_r \notin N(t)$, and suppose $\alpha_r \notin \operatorname{Fix}(t)$. It is well known that for any $w \in W$, $r \in R$, l(wr) > l(w) if and only if $w \cdot \alpha_r \in \Phi^+$. We have $t \cdot \alpha_r \in \Phi^+ \setminus \{\alpha_r\}$, so $rt \cdot \alpha_r \in \Phi^+$. Therefore l(rtr) > l(rt). Now $rt = (tr)^{-1}$, hence l(rt) > l(t), since $\alpha_r \notin N(t)$. Thus l(rtr) > l(t). Suppose now that $\alpha_r \in N(t)$ with $\alpha_r \notin I(t)$. We have l(rtr) < l(rt) because $rt \cdot \alpha_r \in \Phi^-$, and l(rt) = l(tr) < l(r) because $\alpha_r \in N(t)$. Thus l(rtr) < l(t).

We have shown that if $\alpha_r \notin N(t)$, then either l(rtr) > l(t) or $\alpha_r \in \text{Fix}(t)$, and that if $\alpha_r \in N(t)$, then either l(rtr) < l(t) or $\alpha_r \in I(t)$. Thus for each x of minimal length in C, there exists $J \subseteq R$ with $\alpha_r \in I(x)$ for each $r \in J$ and $\alpha_r \notin N(x)$ when $r \notin J$. Let $r \in J$. Then $w_J x \cdot \alpha_r = -w_J \cdot \alpha_r \in \Phi^+$. If $r \notin J$ then $w_J x \cdot \alpha_r \in \Phi^+$ unless $x \cdot \alpha_r \in \Phi_J^+$. But this would imply that $x^2 \cdot \alpha_r = -x \cdot \alpha_r \neq \alpha_r$, which is impossible. Thus $N(w_J x) = \emptyset$ and hence $x = w_J$. Now $N(x) = \Phi_J^+ = I(x)$ and so x has length |I(t)| in C, which is minimal.

Similarly, when W is finite, for y of maximal length in C there exists $K \subseteq R$ with $\alpha_r \in \operatorname{Fix}(y)$ whenever $r \in K$, and $\alpha_r \in N(y)$ for $r \notin K$. We claim that $\operatorname{Fix}(y) = \Phi_K^+$. Certainly $\Phi_K^+ \subseteq \operatorname{Fix}(y)$. For the reverse inclusion, let $\alpha = \sum_{r \in R} \lambda_r \alpha_r \in \operatorname{Fix}(y)$ (where each $\lambda_r \geq 0$). Now $y \cdot \alpha_r \in \Phi^-$ for all $r \in R \setminus K$, so $\sum_{r \in R \setminus K} \lambda_r y \cdot \alpha_r$ is a negative linear combination of roots, say $-\sum_{r \in R} \mu_r \alpha_r$ for some $\mu_r \geq 0$. We have $\sum_{r \in R} \lambda_r \alpha_r = \alpha = y \cdot \alpha = \sum_{r \in K} (\lambda_r - \mu_r) \alpha_r - \sum_{r \in R \setminus K} \mu_r \alpha_r$. For $r \in R \setminus K$ then, we see that $\lambda_r = -\mu_r$. Hence $\lambda_r = \mu_r = 0$. Therefore $\alpha \in \Phi_K^+$ and so $\operatorname{Fix}(y) \subseteq \Phi_K^+$.

Now for $r \in K$, $w_K y \cdot \alpha_r = w_K \cdot \alpha_r \in \Phi^-$. If $r \notin K$, $w_K y \cdot \alpha_r \in \Phi^+$ only when $y \cdot \alpha_r \in \Phi_K^-$, which is impossible. Consequently $N(w_K y) = \Phi^+$, that is $y = w_K w_R$ and $l(y) = |N(y)| = |\Phi^+| - |\Phi_K^+| = |\Phi^+| - |\operatorname{Fix}(y)|$ and this is the maximum possible length of an involution in C.

We remark that it is necessary, as Proposition 1.3 shows, to assume, when W is irreducible, that W is finite in order for $\max_{s \in C} \{l(s)\}$ to be defined. We require the following lemma, which follows from the fact that the geometric representation of W is irreducible and faithful (see [1]).

Lemma 1.2. ([2], Lemma 2.3) Let W be an irreducible Coxeter group and let $\alpha \in \Phi$. Then W acts faithfully on the orbit $W \cdot \alpha$.

Proposition 1.3. Suppose W is an infinite irreducible Coxeter group. Then each conjugacy class of involutions in W contains elements of arbitrarily large length.

Proof. Let t be an involution of W. Then, by Theorem 1.1, I(t) is non-empty, so there exists $\alpha \in \Phi^+$ with $t \cdot \alpha = -\alpha$. Let $\beta \in W \cdot \alpha$. Then $\beta = w \cdot \alpha$ for

some $w \in W$. Now $t^w \cdot \beta = wtw^{-1} \cdot (w \cdot \alpha) = -\beta$, whence $\beta \in N(t^w)$. Thus $W \cdot \alpha \subseteq \bigcup_{w \in W} N(t^w)$. Each element t^w has finite length, but $W \cdot \alpha$ is infinite, by Lemma 1.2, hence the conjugacy class of t must be infinite. Consequently, since there can only be finitely many elements of a given length in W, the conjugacy class of t must contain elements of arbitrarily large length.

References

- [1] J. E. Humphreys, "Reflection Groups and Coxeter Groups," Cambridge Studies in Advanced Mathematics **29**, 1990.
- [2] Perkins, S. B., and P. J. Rowley, *Bad Upward Elements in Infinite Coxeter Groups*, Manchester Centre for Pure Mathematics Preprint, 2000/6.
- [3] Richardson, R. W., Conjugacy classes of involutions in Coxeter groups, Bull. Austral. Math. Soc. **30** (1982), 1–15.

S. B. Perkins and P. J. Rowley Department of Mathematics, UMIST, PO Box 88, Manchester M60 1QD United Kingdom Sarah.Perkins@umist.ac.uk

Received June 30, 2002 and in final form October 13, 2003