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Abstract. Let t be an involution in a Coxeter group W . We determine the
minimal and maximal (in the case of finite W ) length of an involution in the
conjugacy class of t .
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Let W be a finitely generated Coxeter group whose distinguished set – the set of
fundamental reflections – is R . The length l(w) of a non-trivial element w in W
is defined to be

l(w) = min{l ∈ N : w = r1r2 · · · rl some ri ∈ R}

and l(1) = 0. Suppose t is an involution in W , and let C = tW be the conjugacy
class of t in W . The aim of this short paper is to determine the minimal and
maximal (in which case W is assumed finite) length of an involution in C .

Associated to any Coxeter group W is the root system Φ, which is the
disjoint union of its positive and negative roots (denoted Φ+ and Φ− respectively).
The fundamental reflections r ∈ R are in one-to-one correspondence with the
fundamental roots αr, r ∈ R and W acts faithfully on Φ (see [1]). For w ∈ W ,
define N(w) := {α ∈ Φ+ : w · α ∈ Φ−} , I(w) := {α ∈ Φ+ : w · α = −α}
and Fix(w) := {α ∈ Φ+ : w · α = α} . It is well known that for each w ∈ W ,
l(w) = |N(w)| . For J ⊆ R , write WJ for the (Coxeter) group generated by J ,
ΦJ for its root system and, when it is finite, wJ for the unique longest element of
WJ . Our main result is given in

Theorem 1.1. Suppose t is an involution in W , and put C = tW . We have

(i) mins∈C{l(s)} = |I(t)| and if x is of minimal length in C , then x = wJ for
some J ⊆ R .

(ii) If W is finite, then maxs∈C{l(s)} = |Φ+| − |Fix(t)| and for y of maximal
length in C , y = wKwR for some K ⊆ R .

Put another way, Theorem 1.1 is saying that the maximum and minimum length
in a conjugacy class of involutions may be obtained by examining the action on Φ
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of any one involution in that class. We remark that part (i) appears as Theorem
A (a) in [3]. We include a (shorter, and different) proof here to emphasise the
similarity between parts (i) and (ii).

Proof. Let t be an involution and C = tW . Note that for any t′ ∈ C ,
|I(t′)| = |I(t)| and |Fix(t′)| = |Fix(t)| , because t · α = ±α if and only if
tg · (g · α) = ±(g · α), for each g ∈ W . It is clear from this that the length
of any involution in C is at least |I(t)| and at most |Φ+| − |Fix(t)| . Let r ∈ R
with αr /∈ N(t), and suppose αr /∈ Fix(t). It is well known that for any w ∈ W ,
r ∈ R , l(wr) > l(w) if and only if w · αr ∈ Φ+ . We have t · αr ∈ Φ+ \ {αr} , so
rt ·αr ∈ Φ+ . Therefore l(rtr) > l(rt). Now rt = (tr)−1 , hence l(rt) = l(tr) > l(t),
since αr /∈ N(t). Thus l(rtr) > l(t). Suppose now that αr ∈ N(t) with αr /∈ I(t).
We have l(rtr) < l(rt) because rt · αr ∈ Φ− , and l(rt) = l(tr) < l(r) because
αr ∈ N(t). Thus l(rtr) < l(t).

We have shown that if αr /∈ N(t), then either l(rtr) > l(t) or αr ∈ Fix(t),
and that if αr ∈ N(t), then either l(rtr) < l(t) or αr ∈ I(t). Thus for each
x of minimal length in C , there exists J ⊆ R with αr ∈ I(x) for each r ∈ J
and αr /∈ N(x) when r /∈ J . Let r ∈ J . Then wJx · αr = −wJ · αr ∈ Φ+ .
If r /∈ J then wJx · αr ∈ Φ+ unless x · αr ∈ Φ+

J . But this would imply that
x2 ·αr = −x ·αr 6= αr , which is impossible. Thus N(wJx) = Ø and hence x = wJ .
Now N(x) = Φ+

J = I(x) and so x has length |I(t)| in C , which is minimal.

Similarly, when W is finite, for y of maximal length in C there exists
K ⊆ R with αr ∈ Fix(y) whenever r ∈ K , and αr ∈ N(y) for r /∈ K . We
claim that Fix(y) = Φ+

K . Certainly Φ+
K ⊆ Fix(y). For the reverse inclusion, let

α =
∑

r∈R λrαr ∈ Fix(y) (where each λr ≥ 0). Now y ·αr ∈ Φ− for all r ∈ R \K ,
so

∑
r∈R\K λry ·αr is a negative linear combination of roots, say −

∑
r∈R µrαr for

some µr ≥ 0. We have
∑

r∈R λrαr = α = y ·α =
∑

r∈K(λr−µr)αr−
∑

r∈R\K µrαr .

For r ∈ R\K then, we see that λr = −µr . Hence λr = µr = 0. Therefore α ∈ Φ+
K

and so Fix(y) ⊆ Φ+
K .

Now for r ∈ K , wKy · αr = wK · αr ∈ Φ− . If r /∈ K , wKy · αr ∈ Φ+

only when y · αr ∈ Φ−
K , which is impossible. Consequently N(wKy) = Φ+ , that

is y = wKwR and l(y) = |N(y)| = |Φ+| − |Φ+
K | = |Φ+| − |Fix(y)| and this is the

maximum possible length of an involution in C .

We remark that it is necessary, as Proposition 1.3 shows, to assume, when W is
irreducible, that W is finite in order for maxs∈C{l(s)} to be defined. We require
the following lemma, which follows from the fact that the geometric representation
of W is irreducible and faithful (see [1]).

Lemma 1.2. ([2], Lemma 2.3) Let W be an irreducible Coxeter group and let
α ∈ Φ. Then W acts faithfully on the orbit W · α.

Proposition 1.3. Suppose W is an infinite irreducible Coxeter group. Then
each conjugacy class of involutions in W contains elements of arbitrarily large
length.

Proof. Let t be an involution of W . Then, by Theorem 1.1, I(t) is non-empty,
so there exists α ∈ Φ+ with t · α = −α . Let β ∈ W · α . Then β = w · α for
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some w ∈ W . Now tw · β = wtw−1 · (w · α) = −β , whence β ∈ N(tw). Thus
W · α ⊆ ∪w∈W N(tw). Each element tw has finite length, but W · α is infinite, by
Lemma 1.2, hence the conjugacy class of t must be infinite. Consequently, since
there can only be finitely many elements of a given length in W , the conjugacy
class of t must contain elements of arbitrarily large length.
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