Weil Representations of $\operatorname{SL} *(2, A)$ for a Locally Profinite Ring A with Involution

Roberto Johnson and José Pantoja *

Communicated by D. Poguntke

Abstract

We construct, via a complex G-bundle space, a Weil representation for the group $G=S L_{*}(2, \mathbf{A})$, where $(\mathbf{A}, *)$ is a locally profinite ring with involution. The construction is obtained using maximal isotropic lattices and Heisenberg groups.

1. Preliminaries.

Let $(\mathbf{A}, *)$ be a locally profinite ring with involution, i.e. a unitary locally compact and totally disconnected ring with an involutive anti-automorphism $a \longrightarrow$ $a^{*}, a \in \mathbf{A}$. Let $Z_{s}(\mathbf{A})$ be the subring of central symmetric elements of \mathbf{A}.

We define the group $G L_{*}(2, \mathbf{A})$ of matrices $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with a, b, c, d $\in \mathbf{A}$, such that:

1. $a b^{*}=b a^{*}, \quad c d^{*}=d c^{*}$
2. $a^{*} c=c^{*} a, \quad b^{*} d=d^{*} b$
3. $a d^{*}-b c^{*}=a^{*} d-c^{*} b$ is an invertible central symmetric element of \mathbf{A}, i.e. an element of $Z_{s}(\mathbf{A})^{\times}$.

We set $\operatorname{det}_{*}(g)=a d^{*}-b c^{*}=a^{*} d-c^{*} b$; then

$$
g^{-1}=\left[\operatorname{det}_{*}(g)\right]^{-1}\left(\begin{array}{cc}
d^{*} & -b^{*} \\
-c^{*} & a^{*}
\end{array}\right)
$$

We observe that the function $\operatorname{det}_{*}: G L_{*}(2, \mathbf{A}) \longrightarrow Z_{s}(\mathbf{A})^{\times}$is an epimorphism so that $G=S L_{*}(2, \mathbf{A})=\operatorname{Ker}^{\operatorname{det}_{*}}$ is a normal subgroup of $G L_{*}(2, \mathbf{A})$.

[^0]In what follows we will assume that $Z_{s}(\mathbf{A})=\mathbf{F}$ is a p-adic field. We denote by $O_{\mathbf{F}}$ the ring of integers of $\mathbf{F}, P_{\mathbf{F}}$ is the maximal ideal of $O_{\mathbf{F}}, \varpi$ is a generator of $P_{\mathbf{F}}$ and $k_{\mathbf{F}}$ is the residual field of \mathbf{F} which has q elements.

Some such rings are: $\mathbf{A}=M_{n}(\mathbf{F}), \mathbf{F}$ a p-adic field, with $*$ the transposition; $\mathbf{A}=\mathbf{K}$ a separable quadratic extension of \mathbf{F}, \mathbf{F} as above with $*$ the non trivial Galois element; $\mathbf{A}=\bigwedge^{0} V \oplus \bigwedge^{1} V \oplus \bigwedge^{2} V$ where V is a two dimensional vector space over a p-adic field \mathbf{F} with basis $\left(e_{1}, e_{2}\right)$ and $*$ is given by the basis transposition $\left(e_{1}, e_{2}\right)$ to $\left(e_{2}, e_{1}\right)$.

2. General Setting

Let H be a locally profinite group and Γ a subgroup of $\operatorname{Aut}(H)$. Let (π, V) be an irreducible smooth (complex) representation of H such that $\pi^{\gamma} \simeq \pi$ ($\pi^{\gamma}=\pi \circ \gamma$) for every γ in Γ.

If $\gamma \in \Gamma$ then there exists $T_{\gamma} \in \operatorname{Aut}_{\mathbf{C}}(V)$ such that $T_{\gamma} \pi(x)=\pi \gamma(x) T_{\gamma}$ for every $x \in H$.

Set G be the semidirect product of Γ and H. For (γ, h) in G we define $\widetilde{\pi}(\gamma, h)$ in $\operatorname{Aut}_{\mathbf{C}}(V)$ by

$$
\widetilde{\pi}(\gamma, h)=T_{\gamma} \pi(h) .
$$

Proposition 2.1. The endomorphism $\widetilde{\pi}$, defined above, is a projective extension of π to G.
Proof. We want to prove that $T_{\gamma \delta}^{-1} T_{\gamma} T_{\delta}$ is a scalar.
Since $T_{\gamma} T_{\delta} \pi(x)=T_{\gamma} \pi(\delta(x)) T_{\delta}=\pi(\gamma \delta(x)) T_{\gamma} T_{\delta}$ and $T_{\gamma \delta} \pi(x)=\pi(\gamma \delta(x)) T_{\gamma \delta}$ then

$$
T_{\gamma \delta}^{-1} T_{\gamma} T_{\delta} \pi(x)=\pi(x) T_{\gamma \delta}^{-1} T_{\gamma} T_{\delta}
$$

It follows, by Schur's Lemma, that $T_{\gamma \delta}^{-1} T_{\gamma} T_{\delta}=\sigma(\gamma, \delta) i d_{V}$, for a cocycle σ.
We compute now $\widetilde{\pi}(\gamma, h) \widetilde{\pi}(\delta, k)$. We have

$$
\begin{gathered}
\widetilde{\pi}(\gamma, h) \widetilde{\pi}(\delta, k)=\sigma(\gamma, \delta) T_{\gamma \delta} \pi\left(\delta^{-1}(h)\right) \pi(k) . \\
\text { Since } \widetilde{\pi}((\gamma, h)(\delta, k))=\widetilde{\pi}\left(\gamma \delta, \delta^{-1}(h) k\right)=T_{\gamma \delta} \pi\left(\delta^{-1}(h) k\right) \text { we get } \\
\widetilde{\pi}(\gamma, h) \widetilde{\pi}(\delta, k)=\sigma(\gamma, \delta) \widetilde{\pi}((\gamma, h)(\delta, k)) .
\end{gathered}
$$

Therefore $\widetilde{\pi}$ is a projective representation of G with cocycle σ.
We recall now the definition of compact induction, c-Ind, as we will use it: Let L be a an open subgroup of H, compact modulo the centre of H, and let (ρ, W) be a smooth representation of L. Let V denote the space of compactly supported modulo the centre of H functions $f: H \rightarrow W$ with the property $f(l h)=\rho(l) f(h), l \in L, h \in H$. The group acts on this space by right translation of functions; the implied representation is smooth. We will assume now that $(\pi, V)=c-\operatorname{Ind}_{L}^{H} \rho$, where L is an open, compact modulo the centre, subgroup of H and ρ is a one dimensional representation of L.

We assume also that $\rho^{\gamma}=\rho$ on $L^{\gamma} \cap L$, where $L^{\gamma}=\gamma(L)$ and $\rho^{\gamma}(y)=$ $\rho\left(\gamma^{-1}(y)\right)$ with $y \in L^{\gamma}$. We can define, similarly,

$$
\left(\pi_{\gamma}, V_{\gamma}\right)=c-\operatorname{Ind}_{L^{\gamma}}^{H} \rho^{\gamma} .
$$

Let S_{γ} be a non zero intertwining operator from (π, V) to $\left(\pi_{\gamma^{-1}}, V_{\gamma^{-1}}\right)$. So S_{γ} is an isomorphism between π and $\pi_{\gamma^{-1}}$ when π (and then $\pi_{\gamma^{-1}}$) is irreducible. Then $S_{\gamma} \pi(x)=\pi_{\gamma^{-1}}(x) S_{\gamma}$.

We define now $I_{\gamma}: V_{\gamma^{-1}} \longrightarrow V$ by $\left(I_{\gamma}(f)\right)(x)=f\left(\gamma^{-1}(x)\right)$. The operator I_{γ} is well defined and intertwining, in fact, $I_{\gamma}(f(l x))=\rho(l) f(x)$ and $I_{\gamma} \pi_{\gamma^{-1}}(x)=\pi(\gamma(x)) I_{\gamma}$. On the other hand, we have that $I_{\gamma} S_{\gamma}: V \longrightarrow V$ is an intertwining operator since $I_{\gamma} S_{\gamma} \pi(x)=\pi(\gamma(x)) I_{\gamma} S_{\gamma}$. Let us define $T_{\gamma}=I_{\gamma} S_{\gamma}$. We want to compute the cocycle σ. In order to do this we look first at I_{γ} on V_{δ}, Since $\gamma^{-1}(h) \in \delta(L)$ implies that $h \in \gamma \delta(L)$, we have $\left(I_{\gamma} f\right)(h x)=f\left(\gamma^{-1}(h) \gamma^{-1}(x)\right)$.
We can define $I_{\gamma, \delta}: V_{\gamma^{-1} \delta} \longrightarrow V_{\delta}$ by $\left(I_{\gamma, \delta} f\right)(x)=f\left(\gamma^{-1} x\right)$, and $S_{\delta, \gamma}: V_{\gamma^{-1}} \longrightarrow$ $V_{\gamma^{-1} \delta^{-1}}$ by $S_{\delta, \gamma}=I_{\gamma, \delta-1}^{-1} S_{\delta} I_{\gamma, 1}$ a computation shows that $S_{\delta, \gamma}$ is an intertwining map.

Since the operators $S_{\delta, \gamma} \circ S_{\gamma}: V \longrightarrow V_{\gamma^{-1} \delta^{-1}}$ and $S_{\delta \gamma}: V \longrightarrow V_{\gamma^{-1} \delta^{-1}}$ are both intertwining, the irreductibility of V implies that they differ on a scalar i.e. $S_{\delta, \gamma} \circ S_{\gamma}=k S_{\delta \gamma}$.

Lemma 2.2. The intertwining operators defined above satisfy the equation $I_{\delta} \circ$ $I_{\gamma, \delta^{-1}}=I_{\delta \gamma}$.
Proof. Straightforward.

We finally show that $k=\sigma(\delta, \gamma)$: Since $S_{\delta, \gamma} \circ S_{\gamma}=k S_{\delta \gamma}$ we have $I_{\gamma, \delta^{-1}}^{-1} S_{\delta} I_{\gamma} S_{\gamma}=k S_{\delta \gamma}$. So $S_{\delta} I_{\gamma} S_{\gamma}=k I_{\gamma, \delta^{-1}} S_{\delta \gamma}$ and then $I_{\delta} S_{\delta} I_{\gamma} S_{\gamma}=k I_{\delta} I_{\gamma \delta^{-1}} S_{\delta \gamma}$. Using Lemma 2.2 we get $I_{\delta} S_{\delta} I_{\gamma} S_{\gamma}=k I_{\delta \gamma} S_{\delta \gamma}$ i.e. $T_{\delta} T_{\gamma}=k T_{\delta \gamma}$.

3. Heisenberg Construction

Given a \mathbf{F} - vector space W we can define $H=\mathbf{F} \oplus W$ which has a structure of group with respect to

$$
(a, w) \cdot\left(a^{\prime}, w^{\prime}\right)=\left(a+a^{\prime}+B\left(w, w^{\prime}\right), w+w^{\prime}\right)
$$

where $B: W \times W \longrightarrow \mathbf{F}$ is a non-degenerate alternating form.
If M is any subgroup of W we write $\widetilde{M}=\mathbf{F} \oplus M$, which is a subgroup of H. Definition 3.1. Let M be an any subset of W. We define $M^{*}=\{w \in W \mid$ $\left.B(m, w) \in O_{\mathbf{F}} \forall m \in M\right\}$ and $M^{\perp}=\{w \in W \mid B(m, w)=0 \forall m \in M\}$.

Observation 3.2.

a) If M is a \mathbf{F}-subspace of W, then $M^{*}=M^{\perp}$. In fact, the inclusion $M^{\perp} \subset M^{*}$ is obvious. On the other hand, since $\alpha B(m, w)=B(\alpha m, w)$ we have that $w \in M^{*}$ implies that $\alpha B(m, w) \in O_{\mathbf{F}} \forall m \in M \forall \alpha \in \mathbf{F}$, so $B(m, w)=0$.
b) Another fact that we will use later, is the following

$$
\left[(a, w),\left(a^{\prime}, w^{\prime}\right)\right]=\left(2 B\left(w, w^{\prime}\right), 0\right)
$$

Let \mathfrak{L} be a maximal isotropic lattice i.e. \mathfrak{L} is compact and open and $\mathfrak{L}^{*}=\mathfrak{L}$. Set $\widetilde{\mathfrak{L}}=\mathbf{F} \oplus \mathfrak{L}$ and let ψ be a character of \mathbf{F} of conductor $O_{\mathbf{F}}$. Define $\psi_{\mathfrak{L}}$ on $\widetilde{\mathfrak{L}}$ by $\psi_{\mathfrak{L}}(a, l)=\psi(a)$ for $a \in \mathbf{F}$.
Proposition 3.3. With the above notation and assuming that $2 \in O_{\mathbf{F}}^{\times}$we have:
a) $\psi_{\mathcal{L}}$ is a character of $\widetilde{\mathfrak{L}}$.
b) If we define $\operatorname{Int}_{H}\left(\psi_{\mathfrak{L}}\right)=\left\{h \in H \mid \operatorname{Hom}_{\tilde{\mathfrak{Z}}^{2} \tilde{\mathfrak{L}}^{h}}\left(\psi_{\mathfrak{L}}, \psi_{\mathfrak{L}}^{h}\right) \neq 0\right\}$, where $\widetilde{\mathfrak{L}}^{h}=h \widetilde{\mathfrak{L}} h^{-1}$
and $\psi_{\mathfrak{L}}^{h}(x)=\psi_{\mathfrak{L}}\left(h^{-1} x h\right)$ for any $x \in \widetilde{\mathfrak{L}}^{h}$, then $\operatorname{Int}_{H}\left(\psi_{\mathfrak{L}}\right)$ is equal to $\widetilde{\mathfrak{L}}$.
Proof. a) $\psi_{\mathfrak{L}}\left((a, w)\left(a^{\prime}, w^{\prime}\right)\right)=\psi_{\mathfrak{L}}\left(a+a^{\prime}+B\left(w, w^{\prime}\right), w+w^{\prime}\right)$, since \mathfrak{L} is a maximal isotropic lattice, $B\left(w, w^{\prime}\right) \in O_{\mathbf{F}}$. Then $\psi_{\mathfrak{L}}\left((a, w)\left(a^{\prime}, w^{\prime}\right)\right)=\psi(a) \psi\left(a^{\prime}\right)=$ $\psi_{\mathfrak{L}}(a, w) \psi_{\mathfrak{L}}\left(a^{\prime}, w^{\prime}\right)$.
b) If $(a, w) \in H$ Since $(-a,-w)(\alpha, y)(a, w)=(\alpha+2 B(y, w), y)$ and $\widetilde{\mathfrak{L}} \triangleleft H$, we have $\psi_{\mathfrak{L}}^{(a, w)}=\psi_{\mathfrak{L}}$ on $\widetilde{\mathfrak{L}} \cap(-a,-w) \widetilde{\mathfrak{L}}(a, w)=\widetilde{\mathfrak{L}}$ if and only if $2 B(y, w) \in O_{\mathbf{F}}$ $\forall y \in \mathfrak{L}$ if and only if $B(y, w) \in O_{\mathbf{F}} \forall y \in \mathfrak{L}$ (given that $2 \in O_{\mathbf{F}}^{\times}$) and this is the case if and only if $w \in \mathfrak{L}$.

Now let $\Pi_{\mathfrak{L}}=c-\operatorname{Ind}_{\tilde{\mathfrak{L}}}^{\underset{\sim}{H}} \psi_{\mathfrak{L}}$ be the compact induction of the character $\psi_{\mathfrak{L}}$ from $\widetilde{\mathfrak{L}}$ to H as defined in Section 2.

Proposition 3.4. The representation $\Pi_{\mathfrak{L}}$ defined above is an irreducible admissible supercuspidal representation of H.
Proof. The representation $\Pi_{\mathfrak{L}}$ is the Heisenberg representation realized in the lattice model (see [5], Chapter 2). Stone-von Neumann theorem implies that $\Pi_{\mathfrak{L}}$ is a smooth irreducible (thus admissible) representation. Then, using theorem 1 of [2], we get that it is supercuspidal.

Now let Γ be the subgroup of $\operatorname{Aut}(H)$ of all automorphism $\gamma: H \longrightarrow H$ such that $\gamma_{\mid \mathbf{F}}=i d_{\mathbf{F}}$ and $\gamma_{\mid W}$ is a symplectic linear automorphism. The subgroup Γ acts transitively over the set Θ of all maximal isotropic lattices in W, by $\mathfrak{L}^{\gamma}=\gamma(\mathfrak{L})(\gamma \in \Gamma$ and $\mathfrak{L} \in \Theta)$. Furthermore $\psi_{\mathfrak{L}}^{\gamma}=\psi_{\mathfrak{L}}$ on $\mathfrak{L}^{\gamma} \cap \mathfrak{L}$ where $\psi_{\mathfrak{L}}^{\gamma}(y)=\psi_{\mathfrak{L}}\left(\gamma^{-1}(y)\right), \forall y \in \mathfrak{L}^{\gamma}$.

On the other hand, by Proposition 3.4, $\left(\Pi_{\mathfrak{L}}, V_{\mathfrak{L}}\right)=c-\operatorname{Ind}_{\tilde{\mathfrak{L}}}^{H} \psi_{\mathfrak{L}}$ is an irreducible admissible supercuspidal representation of H, where $V_{\mathfrak{L}}=\{f: H \rightarrow$ $\mathbf{C} \mid f(l x)=\psi_{\mathfrak{L}}(l) f(x), \forall l \in \mathfrak{L}, \forall x \in H, f$ compactly supported modulo the centre of $H\}$. So, we can define $\left(\Pi_{\mathfrak{L}^{\gamma}}, V_{\mathfrak{L}^{\gamma}}\right)=c-\operatorname{Ind}_{\mathfrak{\mathfrak { L } ^ { \gamma }}}^{H} \psi_{\mathfrak{L}}^{\gamma}$, where $V_{\mathfrak{L}^{\gamma}}=\{f: H \rightarrow$ $\left.\mathbf{C} \mid f(l x)=\psi_{\mathfrak{L}}^{\gamma}(l) f(x), \forall l \in \mathfrak{L}^{\gamma}\right\}$ and now the general set-up of Section 2 applies.

Define the function $\tau_{\gamma}: H \rightarrow \mathbf{C}$ by

$$
\tau_{\gamma}(x y)=\left\{\begin{array}{rr}
\psi_{\mathfrak{L}}^{\gamma}(x) \psi_{\mathfrak{L}}(y) & \text { if } \\
0 \in \widetilde{\mathfrak{L}^{\gamma}}, y \in \widetilde{\mathfrak{L}} \\
0 & \text { otherwise }
\end{array}\right.
$$

Note that τ_{γ} is well defined since $\psi_{\mathfrak{L}}^{\gamma}=\psi_{\mathfrak{L}}$ on $\widetilde{\mathfrak{L}^{\gamma}} \cap \widetilde{\mathfrak{L}}$. For any f in the space of $\Pi_{\mathfrak{L}}$ we can define $\Upsilon_{\gamma}(f): H \longrightarrow \mathbf{C}$ by

$$
\Upsilon_{\gamma}(f)(x)=\int_{H / \mathbf{F}} \tau_{\gamma}(y) f\left(y^{-1} x\right) d y
$$

for an appropriate Haar measure on $W=H / \mathbf{F}$. We can observe that $\Upsilon_{\gamma}: V_{\mathfrak{L}} \longrightarrow$ $V_{\mathfrak{L}^{-1}}$ is a non zero intertwining operator and since $\Pi_{\mathfrak{L}}$ is irreducible (and also $\Pi_{\mathfrak{L}^{-1}}$), we have that Υ_{γ} is an isomorphism.

We define now $I_{\gamma}: V_{\mathcal{L}^{-1}} \longrightarrow V_{\mathfrak{L}}$ by $\left(I_{\gamma} f\right)(x)=f\left(\gamma^{-1}(x)\right)$ and so we have, as in section 2 , that $T_{\gamma}=I_{\gamma} \Upsilon_{\gamma}$ is an intertwining of $V_{\mathfrak{L}}$ which verify

$$
T_{\delta} \circ T_{\gamma}=\sigma(\delta, \gamma) T_{\delta \gamma}
$$

4. Lagrangians

Let S be a left \mathbf{A}-module whose \mathbf{F}-dimension is n. We note that S is a right \mathbf{A} - module with $s a=a^{*} s, a \in \mathbf{A}, s \in S$.

Let $b: S \times S \longrightarrow \mathbf{F}$ be a non degenerate bilinear symmetric form such that

$$
b\left(x_{1} a, x_{2}\right)=b\left(x_{1}, a x_{2}\right) \quad\left(a \in \mathbf{A} ; x_{1}, x_{2} \in S\right)
$$

We set now $W=S \oplus S$ and define $B: W \times W \longrightarrow \mathbf{F}$ by $B(x, y)=b\left(x_{1}, y_{2}\right)-$ $b\left(y_{1}, x_{2}\right)$ for $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ in W. Observe that B is a non degenerate alternating form and we can define $M^{\perp}=\{w \in W \mid B(w, m)=0, \forall m \in M\}$ for any $O_{\mathbf{F}}$-submodule M of W. The following properties are straightforward.

If either M is an \mathbf{F}-subspace or if M is a compact open $O_{\mathbf{F}}$-submodule of W (an $O_{\mathbf{F}}$ - lattice in W) then $\left(M^{\perp}\right)^{\perp}=M$.

If M, N are any $O_{\mathbf{F}}-$ submodules which satisfy $\left(M^{\perp}\right)^{\perp}=M$ and $\left(N^{\perp}\right)^{\perp}=$ N then $(M \cap N)^{\perp}=M^{\perp}+N^{\perp}$.

We call an $O_{\mathbf{F}}$-submodule M of W isotropic if M is an $O_{\mathbf{F}}$ - submodule of M^{\perp}. We say that M is maximal isotropic if $M=M^{\perp}$

Fixing an additive (continuous) character ψ of \mathbf{F} of conductor $O_{\mathbf{F}}$, we can define the function $\chi: W \times W \longrightarrow \mathbf{T}$, where \mathbf{T} is the group of complex numbers of module one, by

$$
\chi(x, y)=(\psi \circ B)(x, y) \quad((x, y) \in W \times W)
$$

which is a symplectic bicharacter.
Definition 4.1. Let M be a subset of W. The orthogonal component M^{*} of M is the set of $y \in W$ such that $\chi(x, y)=1$, for every $x \in M$.

Observation 4.2. In the case where M is a \mathbf{F}-subspace of W we have that M^{*} is also a \mathbf{F}-subspace of W and $M^{\perp}=M^{*}$.

Definition 4.3. Let L be a \mathbf{F}-subspace of W such that $L^{\perp}=L . L$ is called a Lagrangian subspace of W.

Observation 4.4. If M is an \mathbf{F}-subspace of W then M is maximal isotropic if and only if M is Lagrangian.

Lemma 4.5. Let W and χ be as above. Let L and L^{\prime} be two Lagrangian subspaces of W. Then there exists a symplectic basis $\left\{w_{1}, w_{2}, \ldots, w_{n}, w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{n}^{\prime}\right\}$ of W, i.e.

1. $\chi\left(w_{j}, w_{j}^{\prime}\right) \neq 1, \quad j=1, \ldots, n$
2. $\chi\left(w_{i}, w_{j}\right)=\chi\left(w_{i}^{\prime}, w_{j}^{\prime}\right)=1$ for every i, j.
3. $\chi\left(w_{i}, w_{j}^{\prime}\right)=1$ for every $i \neq j$
such that:

$$
\begin{aligned}
L & =\mathbf{F} w_{1} \oplus \mathbf{F} w_{2} \oplus \cdots \oplus \mathbf{F} w_{k} \oplus \mathbf{F} w_{k+1} \oplus \cdots \oplus \mathbf{F} w_{n} \\
L^{\prime} & =\mathbf{F} w_{1}^{\prime} \oplus \mathbf{F} w_{2}^{\prime} \oplus \cdots \oplus \mathbf{F} w_{k}^{\prime} \oplus \mathbf{F} w_{k+1} \oplus \cdots \oplus \mathbf{F} w_{n}
\end{aligned}
$$

Proof. See Lemma 1.4.6. in [4].
Corollary 4.6. Given a Lagrangian L, there exists a Lagrangian L^{\prime} such that $W=L \oplus L^{\prime}$.
Proof. If $L=\left\langle w_{1}, w_{2}, \ldots, w_{n}\right\rangle$, then L is a proper subspace of $\left\langle w_{2}, \ldots, w_{n}\right\rangle^{\perp}$. We consider an element $v_{1} \in\left\langle w_{2}, \ldots, w_{n}\right\rangle^{\perp}-L$. Then $\chi\left(w_{1}, v_{1}\right) \neq 1$. Now we can pick an element $v_{2} \in\left\langle w_{1}, w_{3}, w_{4}, \ldots, w_{n}, v_{1}\right\rangle^{\perp}-\left\langle w_{1}, w_{2}, w_{3}, \ldots, w_{n}, v_{1}\right\rangle^{\perp}$, and so $\chi\left(w_{2}, v_{2}\right) \neq 1$. By induction we have $\left\{w_{1}, v_{1}\right\},\left\{w_{2}, v_{2}\right\}, \ldots,\left\{w_{n}, v_{n}\right\}$ such that $\chi\left(w_{i}, v_{i}\right) \neq 1, i=1, \ldots, n ; \chi\left(w_{i}, w_{j}\right)=\chi\left(v_{i}, v_{j}\right)=1$ for every i, j and $\chi\left(w_{i}, v_{j}\right)=1$ for every $i \neq j$. Hence $L^{\prime}=\left\langle v_{1}, v_{2}, \ldots, v_{n}\right\rangle$ is such that $W=L \oplus L^{\prime}$.

Corollary 4.7. There exists a maximal isotropic $O_{\mathbf{F}}-$ lattice \mathfrak{L} in W.
Let L be a Lagrangian in W and define ψ_{L} on $\widetilde{L}=\mathbf{F} \oplus \widetilde{\mathfrak{L}}^{L}$ as above. Let $\Pi_{L}=c-\operatorname{Ind}_{\widetilde{L}}^{H} \psi_{L}$ and consider the group $H=\mathbf{F} \oplus W$. Let $\widetilde{\mathfrak{L}}=\mathbf{F} \oplus \mathfrak{L}, \mathfrak{L}$ a maximal isotropic $O_{\mathbf{F}}$ - lattice in W.

Now we can define the function $\rho: H \longrightarrow \mathbf{C}$ by

$$
\rho(z)=\left\{\begin{array}{rll}
\psi_{L}(x) \psi_{\mathfrak{L}}(y) & \text { if } & z=x \cdot y, x \in \widetilde{L}, y \in \widetilde{\mathfrak{L}} \\
0 & \text { if } & z \notin \widetilde{L} \widetilde{\mathfrak{L}}=\mathbf{F} \oplus(L+\mathfrak{L})
\end{array}\right.
$$

Note that ρ is well defined since $\psi_{L}=\psi_{\mathfrak{L}}$ on $\widetilde{L} \cap \widetilde{\mathfrak{L}}$ and $\widetilde{L} \cap \widetilde{\mathfrak{L}}=\mathbf{F} \oplus(L \cap \mathfrak{L})$.
For any f in the space of $\Pi_{\mathfrak{L}}$ we can define $S(f): H \longrightarrow \mathbf{C}$ by

$$
S(f)(x)=\int_{H / \mathbf{F}} \rho(y) f\left(y^{-1} x\right) d y
$$

Given an $O_{\mathbf{F}}$ - lattice \mathfrak{M} submodule of \mathfrak{L}, we define the function

$$
\rho_{\mathfrak{M}}(z)=\left\{\begin{array}{rll}
\psi_{L}(x) \psi_{\mathfrak{N}}(y) & \text { if } & z=x \cdot y, x \in \widetilde{L}, y \in \widetilde{\mathfrak{M}} \\
0 & \text { if } & z \notin \widetilde{L} \widetilde{M}=\mathbf{F} \oplus(L+\mathfrak{M}) .
\end{array}\right.
$$

Proposition 4.8. The map S defined above is an H-isomorphism from $\Pi_{\mathfrak{L}}$ to Π_{L}
Proof. Let f_{0} be the function, in the space of $\Pi_{\mathfrak{L}}$, defined by

$$
f_{0}(z)=\left\{\begin{aligned}
\psi_{\mathfrak{L}}(z) & \text { if } \quad z \in \widetilde{\mathfrak{L}} \\
0 & \text { otherwise }
\end{aligned}\right.
$$

and

$$
f_{\mathfrak{M}}(z)=\left\{\begin{array}{rrr}
\psi_{\mathfrak{M}}(z) & \text { if } & z \in \widetilde{\mathfrak{M}} \\
0 & \text { otherwise }
\end{array}\right.
$$

A computation shows $S\left(f_{0}\right)=\rho$ and $S\left(f_{\mathfrak{M}}\right)=\rho_{\mathfrak{M}}$.
Since S is different from 0 and $\Pi_{\mathfrak{L}}$ is irreducible, S is injective.
We will prove now that S is onto. To this end we prove that the space of Π_{L} is equal to $\left\langle\left\{\rho_{\mathfrak{M}} \mid \mathfrak{M} \subset \mathfrak{L}\right\}\right\rangle$. First, $S\left(f_{\mathfrak{M}}\right)=\rho_{\mathfrak{M}}$ so $\left\langle\left\{\rho_{\mathfrak{M}} \mid \mathfrak{M} \subset \mathfrak{L}\right\}\right\rangle \subset \Pi_{L}$. On the other hand any f in Π_{L} has support compact modulo $\widetilde{\mathfrak{L}}$ and it is locally constant. From this, it can be seen that any function f is a linear combination of $\rho_{\mathfrak{M}}$ for different lattices $\mathfrak{M} \subset \mathfrak{L}$. Hence we can conclude that S is an isomorphism.

Define now $T: \Pi_{L} \longrightarrow \Pi_{\mathfrak{L}}$ by

$$
T(f)(x)=\int_{H / \mathbf{F}} \theta(y) f\left(y^{-1} x\right) d y
$$

where θ is given by

$$
\theta(z)=\left\{\begin{array}{rlr}
\psi_{\mathfrak{L}}(x) \psi_{L}(y) & \text { if } & z=x \cdot y, x \in \mathfrak{L}, y \in L \\
0 & \text { if } & z \notin \mathfrak{L} L
\end{array}\right.
$$

We have that $T \neq 0$ and by Schur's Lemma [1] [3], $T S=c I$, so $T S\left(f_{0}\right)=c f_{0}$ which implies $c=1$, and finally

$$
T S=I_{\Pi_{\mathfrak{L}}}
$$

5. Connections over $S L_{*}(2, A)$.

The group $G=S L_{*}(2, \mathbf{A})$ acts naturally by matrix multiplication on W by fixing the bicharacter χ,

$$
\chi(g x, g y)=\chi(x, y) \quad(x, y \in W)
$$

We define a complex G-bundle space $\mathfrak{F}=(\mathfrak{E}, p, \Gamma, \tau)$ by:

1. $\Gamma=\{L \mid L$ a Lagrangian of $W\}$
2. Fix a Haar measure $d w$ on W and $d w_{L}$ on a Lagrangian L such that $d \overline{w_{L}}$ is the unique Haar measure on W / L which verify that $d w=d \overline{w_{L}} d w_{L}$.

For each Lagrangian L we consider the set \mathfrak{E}_{L} of all functions $f: W \longrightarrow \mathbf{C}$ which are locally constant, compactly supported modulo L, and such that $f(w+l)=\chi(w, l) f(w)$ for every $w \in W$ and $l \in L$.
We set

$$
\mathfrak{E}=\bigcup_{L \in \mathfrak{b}} \mathfrak{E}_{L}
$$

and we define an inner product on each \mathfrak{E}_{L} by

$$
\langle f, h\rangle=\int_{W / L} f(w) \overline{h(w)} d w_{L} \quad\left(f, h \in \mathfrak{E}_{L}\right)
$$

3. Let $p: \mathfrak{E} \longrightarrow \Gamma$ be the canonical projection which sends each f of \mathfrak{E}_{L} to L.
4. The group G acts on \mathfrak{E} and Γ by

$$
\left[\tau_{g}(f)\right](w)=f\left(g^{-1} w\right) \quad(f \in \mathfrak{E}, g \in G, w \in W)
$$

and by

$$
\tau_{g}(L)=g L \quad(L \in \mathfrak{d}, g \in G)
$$

respectively.

Lemma 5.1. Let L be a Lagrangian subspace of W. Let M be an $O_{\mathbf{F}}$ - lattice of W. We set

$$
g_{M}(w)=\left\{\begin{array}{rr}
\overline{\chi(x, c)} & \text { if } w=x+c \in L+M \\
0 & \text { otherwise }
\end{array}\right.
$$

Then, the set $\left\{g_{M} \mid M\right.$ be an $O_{\mathbf{F}}$-lattice of $\left.L\right\}$ span \mathfrak{E}_{L} as a \mathbf{C}-vector space.
Proof. For each f in \mathfrak{E}_{L} we can pick an $O_{\mathbf{F}}$ - lattice M such that $\operatorname{Supp}(f)=$ $L+M$. We use that f is locally constant and M is compact, to write f as linear combination of $g_{M^{\prime}}$ as above.

Let L and L^{\prime} be Lagrangians included in a fixed maximal $O_{\mathbf{F}}$-lattice \mathfrak{L} in W. As we have seen, there are two isomorphisms, namely $S_{L}: \Pi_{\mathfrak{L}} \longrightarrow \Pi_{L}$ and $S_{L^{\prime}}: \Pi_{\mathfrak{L}} \longrightarrow \Pi_{L^{\prime}}$ with $T_{L}: \Pi_{L} \longrightarrow \Pi_{\mathfrak{L}}$ and $T_{L^{\prime}}: \Pi_{L^{\prime}} \longrightarrow \Pi_{\mathfrak{L}}$ as the respective inverses.

We now define isomorphisms $\widetilde{\gamma}_{L^{\prime}, L}: \Pi_{L} \longrightarrow \Pi_{L^{\prime}}$, by

$$
\tilde{\gamma}_{L^{\prime}, L}=S_{L^{\prime}} \circ T_{L}
$$

Let $\Lambda^{L}: \Pi_{L} \longrightarrow \mathfrak{E}_{L}$ be defined by $\Lambda^{L}(f)(w)=f(0, w)$, for $f \in \Pi_{L}$ and $w \in W$, and let, $\Omega^{L}: \mathfrak{E}_{L} \longrightarrow \Pi_{L}$ be defined by $\Omega^{L}(f)(a, w)=\psi(a) f(w)$, for $f \in \mathfrak{E}_{L}$ and $(a, w) \in \widetilde{L}$. A computation shows that Λ^{L} and Ω^{L} are inverse to each other and both are intertwining operators.

We can define now isomorphisms (which we will call connections) $\gamma_{L, L^{\prime}}$: $\mathfrak{E}_{L} \rightarrow \mathfrak{E}_{L^{\prime}}$ by $\gamma_{L, L^{\prime}}=\Lambda^{L^{\prime}} \circ \widetilde{\gamma}_{L, L^{\prime}} \circ \Omega^{L}$.

Then the diagram

is commutative.
We obtain
Theorem 5.2. The set $\Gamma=\left\{\gamma_{L^{\prime}, L} \mid L^{\prime}, L \in \mathfrak{d}\right\}$ is a family of G-equivariant connections over the fiber bundle \mathfrak{F} which verifies, for $L, L^{\prime}, L^{\prime \prime} \in \mathfrak{b} ; f, f^{\prime} \in \mathfrak{E}_{L}$; $h \in \mathfrak{E}_{L^{\prime}} g \in G$ the following properties:

1. $\gamma_{L, L^{\prime}} \circ \gamma_{L^{\prime}, L}=\gamma_{L, L}=i d_{\mathfrak{E}_{L}}$
2. $\left\langle\gamma_{L^{\prime}, L}(f), h\right\rangle=\left\langle f, \gamma_{L, L^{\prime}}(h)\right\rangle$
3. $\left\langle\gamma_{L^{\prime}, L}(f), \gamma_{L^{\prime}, L}\left(f^{\prime}\right)\right\rangle=\left\langle f, f^{\prime}\right\rangle$
4. $\gamma_{L, L^{\prime \prime}} \circ \gamma_{L^{\prime \prime}, L^{\prime}} \circ \gamma_{L^{\prime}, L}=S_{W}\left(L ; L^{\prime}, L^{\prime \prime}\right) i d_{\mathfrak{E}_{L}}$
5. where $S_{W}\left(L ; L^{\prime}, L^{\prime \prime}\right)$ is a constant.
6. $\tau_{g} \circ \gamma_{L^{\prime}, L}=\gamma_{g L^{\prime}, g L} \circ \tau_{g}$

Note that $S_{W}\left(L ; L^{\prime}, L^{\prime \prime}\right)$ is the analogous of the Maslov index in [4] and this theorem is comparable with theorem 1.4 in [6].

References

[1] Bernstein, J., and A. Zelevinsky, Representations of the group $G L(n, F)$ where F is a non-Arquimidian local field, Russian Math. Surveys 31 (1976), 168.
[2] Bushnell, C. J., Induced representations of locally profinite groups, J. Alg. 134, (1990), 104-114.
[3] Cartier, P., Representations of p-adic groups, Aut. Forms, Representations, and L-functions, "Proc. of Sym. in Pure Math." vol 33, Amer. Math. Soc, 1997.
[4] Lion, G., et M. Vergne, The Weil Representation, Maslov index and Theta Series, Prog. Math., 6, Birkhäuser-Verlag, (1980).
[5] Moeglin, C., M.-F. Vignéras, and J.-L. Waldspurger, Correspondances de Howe sur un corps p-adique, Lecture Notes in Math. 1291, SpringerVerlag, Berlin, (1987).
[6] Perrin, P., Représentations de Schrödinger, Indice de Maslov et groupe métaplectique, "Non Conm. Harmonic Analysis and Lie Groups," SpringerVerlag, Berlin, (1981).

Roberto Johnson
Universidad Católica de Valparaíso Chile
rjohnson@ucv.cl

José Pantoja

Universidad Católica de Valparaíso Chile
jpantoja@ucv.cl

[^0]: * Both authors have been partially supported by FONDECYT grant 1990029, PICS (CNRS-CONICYT) and Universidad Católica de Valparaíso

