Weil Representations of SL*(2,A) for a Locally Profinite Ring A with Involution

Roberto Johnson and José Pantoja *

Communicated by D. Poguntke

Abstract. We construct, via a complex G-bundle space, a Weil representation for the group $G = SL_*(2, \mathbf{A})$, where $(\mathbf{A}, *)$ is a locally profinite ring with involution. The construction is obtained using maximal isotropic lattices and Heisenberg groups.

1. Preliminaries.

Let $(\mathbf{A}, *)$ be a locally profinite ring with involution, i.e. a unitary locally compact and totally disconnected ring with an involutive anti-automorphism $a \longrightarrow a^*$, $a \in \mathbf{A}$. Let $Z_s(\mathbf{A})$ be the subring of central symmetric elements of \mathbf{A} .

We define the group $GL_*(2, \mathbf{A})$ of matrices $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in \mathbf{A}$, such that:

- 1. $ab^* = ba^*$, $cd^* = dc^*$
- 2. $a^*c = c^*a$, $b^*d = d^*b$
- 3. $ad^* bc^* = a^*d c^*b$ is an invertible central symmetric element of \mathbf{A} , i.e. an element of $Z_s(\mathbf{A})^{\times}$.

We set $det_*(g) = ad^* - bc^* = a^*d - c^*b$; then

$$g^{-1} = [\det_*(g)]^{-1} \begin{pmatrix} d^* & -b^* \\ -c^* & a^* \end{pmatrix}$$

We observe that the function $\det_* : GL_*(2, \mathbf{A}) \longrightarrow Z_s(\mathbf{A})^{\times}$ is an epimorphism so that $G = SL_*(2, \mathbf{A}) = \text{Ker det}_*$ is a normal subgroup of $GL_*(2, \mathbf{A})$.

ISSN 0949–5932 / \$2.50 © Heldermann Verlag

^{*} Both authors have been partially supported by FONDECYT grant 1990029, PICS (CNRS-CONICYT) and Universidad Católica de Valparaíso

In what follows we will assume that $Z_s(\mathbf{A}) = \mathbf{F}$ is a *p*-adic field. We denote by $O_{\mathbf{F}}$ the ring of integers of \mathbf{F} , $P_{\mathbf{F}}$ is the maximal ideal of $O_{\mathbf{F}}$, ϖ is a generator of $P_{\mathbf{F}}$ and $k_{\mathbf{F}}$ is the residual field of \mathbf{F} which has q elements.

Some such rings are: $\mathbf{A} = M_n(\mathbf{F})$, \mathbf{F} a *p*-adic field, with * the transposition; $\mathbf{A} = \mathbf{K}$ a separable quadratic extension of \mathbf{F} , \mathbf{F} as above with * the non trivial Galois element; $\mathbf{A} = \bigwedge^0 V \oplus \bigwedge^1 V \oplus \bigwedge^2 V$ where V is a two dimensional vector space over a *p*-adic field \mathbf{F} with basis (e_1, e_2) and * is given by the basis transposition (e_1, e_2) to (e_2, e_1) .

2. General Setting

Let *H* be a locally profinite group and Γ a subgroup of Aut(*H*). Let (π, V) be an irreducible smooth (complex) representation of *H* such that $\pi^{\gamma} \simeq \pi$ $(\pi^{\gamma} = \pi \circ \gamma)$ for every γ in Γ .

If $\gamma \in \Gamma$ then there exists $T_{\gamma} \in \operatorname{Aut}_{\mathbf{C}}(V)$ such that $T_{\gamma}\pi(x) = \pi\gamma(x)T_{\gamma}$ for every $x \in H$.

Set G be the semidirect product of Γ and H. For (γ, h) in G we define $\widetilde{\pi}(\gamma, h)$ in $\operatorname{Aut}_{\mathbf{C}}(V)$ by

$$\widetilde{\pi}(\gamma, h) = T_{\gamma}\pi(h).$$

Proposition 2.1. The endomorphism $\tilde{\pi}$, defined above, is a projective extension of π to G.

Proof. We want to prove that $T_{\gamma\delta}^{-1}T_{\gamma}T_{\delta}$ is a scalar.

Since $T_{\gamma}T_{\delta}\pi(x) = T_{\gamma}\pi(\delta(x))T_{\delta} = \pi(\gamma\delta(x))T_{\gamma}T_{\delta}$ and $T_{\gamma\delta}\pi(x) = \pi(\gamma\delta(x))T_{\gamma\delta}$ then

$$T_{\gamma\delta}^{-1}T_{\gamma}T_{\delta}\pi(x) = \pi(x)T_{\gamma\delta}^{-1}T_{\gamma}T_{\delta}$$

It follows, by Schur's Lemma, that $T_{\gamma\delta}^{-1}T_{\gamma}T_{\delta} = \sigma(\gamma,\delta)id_V$, for a cocycle σ .

We compute now $\widetilde{\pi}(\gamma, h)\widetilde{\pi}(\delta, k)$. We have $\widetilde{\pi}(\gamma, h)\widetilde{\pi}(\delta, k) = \sigma(\gamma, \delta)T_{\gamma\delta}\pi(\delta^{-1}(h))\pi(k)$. Since $\widetilde{\pi}((\gamma, h)(\delta, k)) = \widetilde{\pi}(\gamma\delta, \delta^{-1}(h)k) = T_{\gamma\delta}\pi(\delta^{-1}(h)k)$ we get

$$\pi(\gamma, h)\pi(\delta, k) = \sigma(\gamma, \delta)\pi((\gamma, h)(\delta, k)).$$

Therefore $\tilde{\pi}$ is a projective representation of G with cocycle σ .

We recall now the definition of compact induction, c-Ind, as we will use it: Let L be a an open subgroup of H, compact modulo the centre of H, and let (ρ, W) be a smooth representation of L. Let V denote the space of compactly supported modulo the centre of H functions $f : H \to W$ with the property $f(lh) = \rho(l)f(h), l \in L, h \in H$. The group acts on this space by right translation of functions; the implied representation is smooth. We will assume now that $(\pi, V) = c - \operatorname{Ind}_L^H \rho$, where L is an open, compact modulo the centre, subgroup of H and ρ is a one dimensional representation of L.

We assume also that $\rho^{\gamma} = \rho$ on $L^{\gamma} \cap L$, where $L^{\gamma} = \gamma(L)$ and $\rho^{\gamma}(y) = \rho(\gamma^{-1}(y))$ with $y \in L^{\gamma}$. We can define, similarly,

$$(\pi_{\gamma}, V_{\gamma}) = c - \operatorname{Ind}_{L^{\gamma}}^{H} \rho^{\gamma}.$$

Let S_{γ} be a non zero intertwining operator from (π, V) to $(\pi_{\gamma^{-1}}, V_{\gamma^{-1}})$. So S_{γ} is an isomorphism between π and $\pi_{\gamma^{-1}}$ when π (and then $\pi_{\gamma^{-1}}$) is irreducible. Then $S_{\gamma}\pi(x) = \pi_{\gamma^{-1}}(x)S_{\gamma}$. We define now $I_{\gamma}: V_{\gamma^{-1}} \longrightarrow V$ by $(I_{\gamma}(f))(x) = f(\gamma^{-1}(x))$. The operator I_{γ} is well defined and intertwining, in fact, $I_{\gamma}(f(lx)) = \rho(l)f(x)$ and $I_{\gamma}\pi_{\gamma^{-1}}(x) = \pi(\gamma(x))I_{\gamma}$. On the other hand, we have that $I_{\gamma}S_{\gamma}: V \longrightarrow V$ is an intertwining operator since $I_{\gamma}S_{\gamma}\pi(x) = \pi(\gamma(x))I_{\gamma}S_{\gamma}$. Let us define $T_{\gamma} = I_{\gamma}S_{\gamma}$. We want to compute the cocycle σ . In order to do this we look first at I_{γ} on V_{δ} , Since $\gamma^{-1}(h) \in \delta(L)$ implies that $h \in \gamma\delta(L)$, we have $(I_{\gamma}f)(hx) = f(\gamma^{-1}(h)\gamma^{-1}(x))$. We can define $I_{\gamma,\delta}: V_{\gamma^{-1}\delta} \longrightarrow V_{\delta}$ by $(I_{\gamma,\delta}f)(x) = f(\gamma^{-1}x)$, and $S_{\delta,\gamma}: V_{\gamma^{-1}} \longrightarrow V_{\gamma^{-1}\delta^{-1}}$ by $S_{\delta,\gamma} = I_{\gamma,\delta^{-1}}^{-1}S_{\delta}I_{\gamma,1}$ a computation shows that $S_{\delta,\gamma}$ is an intertwining

 $V_{\gamma^{-1}\delta^{-1}}$ by $S_{\delta,\gamma} = I_{\gamma,\delta^{-1}}^{-1} S_{\delta} I_{\gamma,1}$ a computation shows that $S_{\delta,\gamma}$ is an intertwining map.

Since the operators $S_{\delta,\gamma} \circ S_{\gamma} : V \longrightarrow V_{\gamma^{-1}\delta^{-1}}$ and $S_{\delta\gamma} : V \longrightarrow V_{\gamma^{-1}\delta^{-1}}$ are both intertwining, the irreductibility of V implies that they differ on a scalar i.e. $S_{\delta,\gamma} \circ S_{\gamma} = kS_{\delta\gamma}$.

Lemma 2.2. The intertwining operators defined above satisfy the equation $I_{\delta} \circ I_{\gamma,\delta^{-1}} = I_{\delta\gamma}$. **Proof.** Straightforward.

We finally show that $k = \sigma(\delta, \gamma)$: Since $S_{\delta,\gamma} \circ S_{\gamma} = kS_{\delta\gamma}$ we have $I_{\gamma,\delta^{-1}}^{-1}S_{\delta}I_{\gamma}S_{\gamma} = kS_{\delta\gamma}$. So $S_{\delta}I_{\gamma}S_{\gamma} = kI_{\gamma,\delta^{-1}}S_{\delta\gamma}$ and then $I_{\delta}S_{\delta}I_{\gamma}S_{\gamma} = kI_{\delta}I_{\gamma\delta^{-1}}S_{\delta\gamma}$. Using Lemma 2.2 we get $I_{\delta}S_{\delta}I_{\gamma}S_{\gamma} = kI_{\delta\gamma}S_{\delta\gamma}$ i.e. $T_{\delta}T_{\gamma} = kT_{\delta\gamma}$.

3. Heisenberg Construction

Given a \mathbf{F} -vector space W we can define $H = \mathbf{F} \oplus W$ which has a structure of group with respect to

$$(a, w) \cdot (a', w') = (a + a' + B(w, w'), w + w')$$

where $B: W \times W \longrightarrow \mathbf{F}$ is a non-degenerate alternating form. If M is any subgroup of W we write $\widetilde{M} = \mathbf{F} \oplus M$, which is a subgroup of H. **Definition 3.1.** Let M be an any subset of W. We define $M^* = \{w \in W \mid B(m, w) \in O_{\mathbf{F}} \forall m \in M\}$ and $M^{\perp} = \{w \in W \mid B(m, w) = 0 \forall m \in M\}$.

Observation 3.2.

a) If M is a \mathbf{F} -subspace of W, then $M^* = M^{\perp}$. In fact, the inclusion $M^{\perp} \subset M^*$ is obvious. On the other hand, since $\alpha B(m, w) = B(\alpha m, w)$ we have that $w \in M^*$ implies that $\alpha B(m, w) \in O_{\mathbf{F}} \ \forall m \in M \ \forall \alpha \in \mathbf{F}$, so B(m, w) = 0. b) Another fact that we will use later, is the following

$$[(a, w), (a', w')] = (2B(w, w'), 0).$$

Let \mathfrak{L} be a maximal isotropic lattice i.e. \mathfrak{L} is compact and open and $\mathfrak{L}^* = \mathfrak{L}$. Set $\widetilde{\mathfrak{L}} = \mathbf{F} \oplus \mathfrak{L}$ and let ψ be a character of \mathbf{F} of conductor $O_{\mathbf{F}}$. Define $\psi_{\mathfrak{L}}$ on $\widetilde{\mathfrak{L}}$ by $\psi_{\mathfrak{L}}(a, l) = \psi(a)$ for $a \in \mathbf{F}$.

Proposition 3.3. With the above notation and assuming that $2 \in O_{\mathbf{F}}^{\times}$ we have: a) $\psi_{\mathfrak{L}}$ is a character of $\widetilde{\mathfrak{L}}$.

b) If we define $\operatorname{Int}_{H}(\psi_{\mathfrak{L}}) = \{h \in H \mid \operatorname{Hom}_{\widetilde{\mathfrak{L}} \cap \widetilde{\mathfrak{L}}^{h}} (\psi_{\mathfrak{L}}, \psi^{h}_{\mathfrak{L}}) \neq 0\}, \text{ where } \widetilde{\mathfrak{L}}^{h} = h \widetilde{\mathfrak{L}} h^{-1}$

and $\psi_{\mathfrak{L}}^{h}(x) = \psi_{\mathfrak{L}}(h^{-1}xh)$ for any $x \in \widetilde{\mathfrak{L}}^{h}$, then $\operatorname{Int}_{H}(\psi_{\mathfrak{L}})$ is equal to $\widetilde{\mathfrak{L}}$. **Proof.** a) $\psi_{\mathfrak{L}}((a,w)(a',w')) = \psi_{\mathfrak{L}}(a+a'+B(w,w'),w+w')$, since \mathfrak{L} is a maximal isotropic lattice, $B(w,w') \in O_{\mathbf{F}}$. Then $\psi_{\mathfrak{L}}((a,w)(a',w')) = \psi(a)\psi(a') = \psi_{\mathfrak{L}}(a,w)\psi_{\mathfrak{L}}(a',w')$. b) If $(a,w) \in H$ Since $(-a,-w)(\alpha,y)(a,w) = (\alpha+2B(y,w),y)$ and $\widetilde{\mathfrak{L}} \triangleleft H$, we have $\psi_{\mathfrak{L}}^{(a,w)} = \psi_{\mathfrak{L}}$ on $\widetilde{\mathfrak{L}} \cap (-a-w)\widetilde{\mathfrak{L}}(a,w) = \widetilde{\mathfrak{L}}$ if and only if $2B(y,w) \in O_{\mathbf{F}}$.

we have $\psi_{\mathfrak{L}}^{(a,w)} = \psi_{\mathfrak{L}}$ on $\widetilde{\mathfrak{L}} \cap (-a, -w)\widetilde{\mathfrak{L}}(a, w) = \widetilde{\mathfrak{L}}$ if and only if $2B(y, w) \in O_{\mathbf{F}}$ $\forall y \in \mathfrak{L}$ if and only if $B(y, w) \in O_{\mathbf{F}}$ $\forall y \in \mathfrak{L}$ (given that $2 \in O_{\mathbf{F}}^{\times}$) and this is the case if and only if $w \in \mathfrak{L}$.

Now let $\Pi_{\mathfrak{L}} = c - \operatorname{Ind}_{\widetilde{\mathfrak{L}}}^{H} \psi_{\mathfrak{L}}$ be the compact induction of the character $\psi_{\mathfrak{L}}$ from $\widetilde{\mathfrak{L}}$ to H as defined in Section 2.

Proposition 3.4. The representation $\Pi_{\mathfrak{L}}$ defined above is an irreducible admissible supercuspidal representation of H.

Proof. The representation $\Pi_{\mathfrak{L}}$ is the Heisenberg representation realized in the lattice model (see [5], Chapter 2). Stone-von Neumann theorem implies that $\Pi_{\mathfrak{L}}$ is a smooth irreducible (thus admissible) representation. Then, using theorem 1 of [2], we get that it is supercuspidal.

Now let Γ be the subgroup of Aut(H) of all automorphism $\gamma : H \longrightarrow H$ such that $\gamma_{|\mathbf{F}} = id_{\mathbf{F}}$ and $\gamma_{|W}$ is a symplectic linear automorphism. The subgroup Γ acts transitively over the set Θ of all maximal isotropic lattices in W, by $\mathfrak{L}^{\gamma} = \gamma(\mathfrak{L}) \ (\gamma \in \Gamma \text{ and } \mathfrak{L} \in \Theta)$. Furthermore $\psi_{\mathfrak{L}}^{\gamma} = \psi_{\mathfrak{L}}$ on $\mathfrak{L}^{\gamma} \cap \mathfrak{L}$ where $\psi_{\mathfrak{L}}^{\gamma}(y) = \psi_{\mathfrak{L}}(\gamma^{-1}(y)), \ \forall y \in \mathfrak{L}^{\gamma}$.

On the other hand, by Proposition 3.4 , $(\Pi_{\mathfrak{L}}, V_{\mathfrak{L}}) = c - \operatorname{Ind}_{\mathfrak{L}}^{H} \psi_{\mathfrak{L}}$ is an irreducible admissible supercuspidal representation of H, where $V_{\mathfrak{L}} = \{f : H \to \mathbf{C} \mid f(lx) = \psi_{\mathfrak{L}}(l)f(x), \forall l \in \mathfrak{L}, \forall x \in H, f \text{ compactly supported modulo the centre of } H\}$. So, we can define $(\Pi_{\mathfrak{L}^{\gamma}}, V_{\mathfrak{L}^{\gamma}}) = c - \operatorname{Ind}_{\mathfrak{L}^{\gamma}}^{H} \psi_{\mathfrak{L}}^{\gamma}$, where $V_{\mathfrak{L}^{\gamma}} = \{f : H \to \mathbf{C} \mid f(lx) = \psi_{\mathfrak{L}}^{\gamma}(l)f(x), \forall l \in \mathfrak{L}^{\gamma}\}$ and now the general set-up of Section 2 applies.

Define the function $\tau_{\gamma}: H \to \mathbf{C}$ by

$$\tau_{\gamma}(xy) = \begin{cases} \psi_{\mathfrak{L}}^{\gamma}(x)\psi_{\mathfrak{L}}(y) & \text{if } x \in \widetilde{\mathfrak{L}}^{\gamma}, y \in \widetilde{\mathfrak{L}} \\ 0 & \text{otherwise} \end{cases}$$

Note that τ_{γ} is well defined since $\psi_{\mathfrak{L}}^{\gamma} = \psi_{\mathfrak{L}}$ on $\widetilde{\mathfrak{L}}^{\gamma} \cap \widetilde{\mathfrak{L}}$. For any f in the space of $\Pi_{\mathfrak{L}}$ we can define $\Upsilon_{\gamma}(f) : H \longrightarrow \mathbb{C}$ by

$$\Upsilon_{\gamma}(f)(x) = \int_{H/\mathbf{F}} \tau_{\gamma}(y) f(y^{-1}x) dy$$

for an appropriate Haar measure on $W = H/\mathbf{F}$. We can observe that $\Upsilon_{\gamma} : V_{\mathfrak{L}} \longrightarrow V_{\mathfrak{L}^{\gamma^{-1}}}$ is a non zero intertwining operator and since $\Pi_{\mathfrak{L}}$ is irreducible (and also $\Pi_{\mathfrak{L}^{\gamma^{-1}}}$), we have that Υ_{γ} is an isomorphism.

We define now $I_{\gamma}: V_{\mathfrak{L}^{\gamma^{-1}}} \longrightarrow V_{\mathfrak{L}}$ by $(I_{\gamma}f)(x) = f(\gamma^{-1}(x))$ and so we have, as in section 2, that $T_{\gamma} = I_{\gamma}\Upsilon_{\gamma}$ is an intertwining of $V_{\mathfrak{L}}$ which verify

$$T_{\delta} \circ T_{\gamma} = \sigma(\delta, \gamma) T_{\delta\gamma}.$$

4. Lagrangians

Let S be a left **A**- module whose **F**-dimension is n. We note that S is a right **A**- module with $sa = a^*s$, $a \in \mathbf{A}$, $s \in S$.

Let $b: S \times S \longrightarrow \mathbf{F}$ be a non degenerate bilinear symmetric form such that

$$b(x_1a, x_2) = b(x_1, ax_2)$$
 $(a \in \mathbf{A}; x_1, x_2 \in S).$

We set now $W = S \oplus S$ and define $B : W \times W \longrightarrow \mathbf{F}$ by $B(x, y) = b(x_1, y_2) - b(y_1, x_2)$ for $x = (x_1, x_2)$ and $y = (y_1, y_2)$ in W. Observe that B is a non degenerate alternating form and we can define $M^{\perp} = \{w \in W \mid B(w, m) = 0, \forall m \in M\}$ for any $O_{\mathbf{F}}$ -submodule M of W. The following properties are straightforward.

If either M is an \mathbf{F} -subspace or if M is a compact open $O_{\mathbf{F}}$ -submodule of W (an $O_{\mathbf{F}}$ -lattice in W) then $(M^{\perp})^{\perp} = M$.

If M, N are any $O_{\mathbf{F}}$ -submodules which satisfy $(M^{\perp})^{\perp} = M$ and $(N^{\perp})^{\perp} = N$ then $(M \cap N)^{\perp} = M^{\perp} + N^{\perp}$.

We call an $O_{\mathbf{F}}$ -submodule M of W isotropic if M is an $O_{\mathbf{F}}$ -submodule of M^{\perp} . We say that M is maximal isotropic if $M = M^{\perp}$

Fixing an additive (continuous) character ψ of **F** of conductor $O_{\mathbf{F}}$, we can define the function $\chi: W \times W \longrightarrow \mathbf{T}$, where **T** is the group of complex numbers of module one, by

$$\chi(x,y) = (\psi \circ B)(x,y) \qquad ((x,y) \in W \times W).$$

which is a symplectic bicharacter.

Definition 4.1. Let M be a subset of W. The orthogonal component M^* of M is the set of $y \in W$ such that $\chi(x, y) = 1$, for every $x \in M$.

Observation 4.2. In the case where M is a \mathbf{F} -subspace of W we have that M^* is also a \mathbf{F} -subspace of W and $M^{\perp} = M^*$.

Definition 4.3. Let L be a \mathbf{F} -subspace of W such that $L^{\perp} = L$. L is called a Lagrangian subspace of W.

Observation 4.4. If M is an \mathbf{F} -subspace of W then M is maximal isotropic if and only if M is Lagrangian.

Lemma 4.5. Let W and χ be as above. Let L and L' be two Lagrangian subspaces of W. Then there exists a symplectic basis $\{w_1, w_2, \ldots, w_n, w'_1, w'_2, \ldots, w'_n\}$ of W, i.e.

- 1. $\chi(w_j, w'_j) \neq 1, \quad j = 1, \dots, n$
- 2. $\chi(w_i, w_j) = \chi(w'_i, w'_j) = 1$ for every *i*, *j*.
- 3. $\chi(w_i, w'_i) = 1$ for every $i \neq j$

such that:

$$L = \mathbf{F}w_1 \oplus \mathbf{F}w_2 \oplus \cdots \oplus \mathbf{F}w_k \oplus \mathbf{F}w_{k+1} \oplus \cdots \oplus \mathbf{F}w_n$$
$$L' = \mathbf{F}w_1' \oplus \mathbf{F}w_2' \oplus \cdots \oplus \mathbf{F}w_k' \oplus \mathbf{F}w_{k+1} \oplus \cdots \oplus \mathbf{F}w_n$$

Proof. See Lemma 1.4.6. in [4].

Corollary 4.6. Given a Lagrangian L, there exists a Lagrangian L' such that $W = L \oplus L'$.

Proof. If $L = \langle w_1, w_2, \ldots, w_n \rangle$, then L is a proper subspace of $\langle w_2, \ldots, w_n \rangle^{\perp}$. We consider an element $v_1 \in \langle w_2, \ldots, w_n \rangle^{\perp} - L$. Then $\chi(w_1, v_1) \neq 1$. Now we can pick an element $v_2 \in \langle w_1, w_3, w_4, \ldots, w_n, v_1 \rangle^{\perp} - \langle w_1, w_2, w_3, \ldots, w_n, v_1 \rangle^{\perp}$, and so $\chi(w_2, v_2) \neq 1$. By induction we have $\{w_1, v_1\}, \{w_2, v_2\}, \ldots, \{w_n, v_n\}$ such that $\chi(w_i, v_i) \neq 1$, $i = 1, \ldots, n; \ \chi(w_i, w_j) = \chi(v_i, v_j) = 1$ for every $i \neq j$. Hence $L' = \langle v_1, v_2, \ldots, v_n \rangle$ is such that $W = L \oplus L'$.

Corollary 4.7. There exists a maximal isotropic $O_{\mathbf{F}}$ -lattice \mathfrak{L} in W.

Let L be a Lagrangian in W and define ψ_L on $\widetilde{L} = \mathbf{F} \oplus L$ as above. Let $\Pi_L = c - \operatorname{Ind}_{\widetilde{L}}^H \psi_L$ and consider the group $H = \mathbf{F} \oplus W$. Let $\widetilde{\mathfrak{L}} = \mathbf{F} \oplus \mathfrak{L}$, \mathfrak{L} a maximal isotropic $O_{\mathbf{F}}$ -lattice in W.

Now we can define the function $\rho: H \longrightarrow \mathbf{C}$ by

$$\rho(z) = \begin{cases} \psi_L(x)\psi_{\mathfrak{L}}(y) & \text{if } z = x \cdot y, \ x \in \widetilde{L}, y \in \widetilde{\mathfrak{L}} \\ 0 & \text{if } z \notin \widetilde{L}\widetilde{\mathfrak{L}} = \mathbf{F} \oplus (L + \mathfrak{L}) \end{cases}$$

Note that ρ is well defined since $\psi_L = \psi_{\mathfrak{L}}$ on $\widetilde{L} \cap \widetilde{\mathfrak{L}}$ and $\widetilde{L} \cap \widetilde{\mathfrak{L}} = \mathbf{F} \oplus (L \cap \mathfrak{L})$.

For any f in the space of $\Pi_{\mathfrak{L}}$ we can define $S(f): H \longrightarrow \mathbf{C}$ by

$$S(f)(x) = \int_{H/\mathbf{F}} \rho(y) f(y^{-1}x) dy$$

Given an $O_{\mathbf{F}}$ -lattice \mathfrak{M} submodule of \mathfrak{L} , we define the function

$$\rho_{\mathfrak{M}}(z) = \begin{cases} \psi_L(x)\psi_{\mathfrak{L}}(y) & \text{if } z = x \cdot y, \ x \in \widetilde{L}, y \in \widetilde{\mathfrak{M}} \\ 0 & \text{if } z \notin \widetilde{L}\widetilde{\mathfrak{M}} = \mathbf{F} \oplus (L + \mathfrak{M}). \end{cases}$$

Proposition 4.8. The map S defined above is an H-isomorphism from $\Pi_{\mathfrak{L}}$ to Π_L

Proof. Let f_0 be the function, in the space of $\Pi_{\mathfrak{L}}$, defined by

$$f_0(z) = \begin{cases} \psi_{\mathfrak{L}}(z) & \text{if } z \in \widetilde{\mathfrak{L}} \\ 0 & \text{otherwise} \end{cases}$$

and

$$f_{\mathfrak{M}}(z) = \begin{cases} \psi_{\mathfrak{M}}(z) & \text{if } z \in \widetilde{\mathfrak{M}} \\ 0 & \text{otherwise} \end{cases}$$

A computation shows $S(f_0) = \rho$ and $S(f_{\mathfrak{M}}) = \rho_{\mathfrak{M}}$.

Since S is different from 0 and $\Pi_{\mathfrak{L}}$ is irreducible, S is injective.

We will prove now that S is onto. To this end we prove that the space of Π_L is equal to $\langle \{\rho_{\mathfrak{M}} \mid \mathfrak{M} \subset \mathfrak{L}\} \rangle$. First, $S(f_{\mathfrak{M}}) = \rho_{\mathfrak{M}}$ so $\langle \{\rho_{\mathfrak{M}} \mid \mathfrak{M} \subset \mathfrak{L}\} \rangle \subset \Pi_L$. On the other hand any f in Π_L has support compact modulo $\widetilde{\mathfrak{L}}$ and it is locally constant. From this, it can be seen that any function f is a linear combination of $\rho_{\mathfrak{M}}$ for different lattices $\mathfrak{M} \subset \mathfrak{L}$. Hence we can conclude that S is an isomorphism.

Define now $T: \Pi_L \longrightarrow \Pi_{\mathfrak{L}}$ by

$$T(f)(x) = \int_{H/\mathbf{F}} \theta(y) f(y^{-1}x) dy$$

where θ is given by

$$\theta(z) = \left\{ \begin{array}{rl} \psi_{\mathfrak{L}}(x)\psi_{\scriptscriptstyle L}(y) & \text{if} \quad z = x \cdot y, \ x \in \mathfrak{L}, y \in L \\ \\ 0 & \text{if} \qquad \qquad z \notin \mathfrak{L}L \end{array} \right.$$

We have that $T \neq 0$ and by Schur's Lemma [1] [3], TS = cI, so $TS(f_0) = cf_0$ which implies c = 1, and finally

$$TS = I_{\Pi_{\mathfrak{L}}}$$

5. Connections over $SL_*(2, A)$.

The group $G = SL_*(2, \mathbf{A})$ acts naturally by matrix multiplication on W by fixing the bicharacter χ ,

$$\chi(gx, gy) = \chi(x, y) \qquad (x, y \in W)$$

We define a complex G-bundle space $\mathfrak{F} = (\mathfrak{E}, p, \Gamma, \tau)$ by:

- 1. $\Gamma = \{L \mid L \text{ a Lagrangian of } W\}$
- 2. Fix a Haar measure dw on W and dw_L on a Lagrangian L such that $d\overline{w_L}$ is the unique Haar measure on W/L which verify that $dw = d\overline{w_L}dw_L$.

For each Lagrangian L we consider the set \mathfrak{E}_L of all functions $f: W \longrightarrow \mathbf{C}$ which are locally constant, compactly supported modulo L, and such that $f(w+l) = \chi(w,l)f(w)$ for every $w \in W$ and $l \in L$.

We set

$$\mathfrak{E} = igcup_{L\in \mathfrak{d}} \mathfrak{E}_L$$

and we define an inner product on each \mathfrak{E}_L by

$$\langle f,h \rangle = \int_{W/L} f(w)\overline{h(w)}dw_L \qquad (f,h \in \mathfrak{E}_L)$$

- 3. Let $p: \mathfrak{E} \longrightarrow \Gamma$ be the canonical projection which sends each f of \mathfrak{E}_L to L.
- 4. The group G acts on \mathfrak{E} and Γ by

$$[\tau_g(f)](w) = f(g^{-1}w) \qquad (f \in \mathfrak{E}, \ g \in G, \ w \in W)$$

and by

$$\tau_g(L) = gL \qquad (L \in \mathfrak{d}, \ g \in G)$$

respectively.

Lemma 5.1. Let L be a Lagrangian subspace of W. Let M be an $O_{\mathbf{F}}$ -lattice of W. We set

$$g_M(w) = \begin{cases} \overline{\chi(x,c)} & \text{if } w = x + c \in L + M \\ 0 & \text{otherwise.} \end{cases}$$

Then, the set $\{g_M \mid M \text{ be an } O_{\mathbf{F}} - \text{lattice of } L\}$ span \mathfrak{E}_L as a \mathbf{C} -vector space. **Proof.** For each f in \mathfrak{E}_L we can pick an $O_{\mathbf{F}}$ -lattice M such that $\operatorname{Supp}(f) =$ L+M. We use that f is locally constant and M is compact, to write f as linear combination of $g_{M'}$ as above.

Let L and L' be Lagrangians included in a fixed maximal $O_{\mathbf{F}}$ -lattice \mathfrak{L} in W. As we have seen, there are two isomorphisms, namely $S_L: \Pi_{\mathfrak{L}} \longrightarrow \Pi_L$ and $S_{L'}: \Pi_{\mathfrak{L}} \longrightarrow \Pi_{L'}$ with $T_L: \Pi_L \longrightarrow \Pi_{\mathfrak{L}}$ and $T_{L'}: \Pi_{L'} \longrightarrow \Pi_{\mathfrak{L}}$ as the respective inverses.

We now define isomorphisms $\widetilde{\gamma}_{L',L}: \Pi_L \longrightarrow \Pi_{L'}$, by

$$\widetilde{\gamma}_{L',L} = S_{L'} \circ T_L$$

Let $\Lambda^L : \Pi_L \longrightarrow \mathfrak{E}_L$ be defined by $\Lambda^L(f)(w) = f(0, w)$, for $f \in \Pi_L$ and $w \in W$, and let, $\Omega^L : \mathfrak{E}_L \longrightarrow \Pi_L$ be defined by $\Omega^L(f)(a, w) = \psi(a)f(w)$, for $f \in \mathfrak{E}_L$ and $(a,w) \in \widetilde{L}$. A computation shows that Λ^L and Ω^L are inverse to each other and both are intertwining operators.

We can define now isomorphisms (which we will call connections) $\gamma_{LL'}$: $\mathfrak{E}_L \to \mathfrak{E}_{L'}$ by $\gamma_{L,L'} = \Lambda^{L'} \circ \widetilde{\gamma}_{L,L'} \circ \Omega^L$.

Then the diagram

$$\begin{array}{cccc} \Pi_L & \xrightarrow{\gamma_{L,L'}} & \Pi_{L'} \\ \Omega^L \uparrow & & \downarrow \Lambda^{L'} \\ \mathfrak{E}_L & \xrightarrow{\gamma_{L,L'}} & \mathfrak{E}_{L'} \end{array}$$

is commutative.

We obtain

Theorem 5.2. The set $\Gamma = \{\gamma_{L',L} \mid L', L \in \mathfrak{d}\}$ is a family of *G*-equivariant connections over the fiber bundle \mathfrak{F} which verifies, for $L, L', L'' \in \mathfrak{b}$; $f, f' \in \mathfrak{E}_L$; $h \in \mathfrak{E}_{L'}$ $g \in G$ the following properties:

1. $\gamma_{L,L'} \circ \gamma_{L',L} = \gamma_{L,L} = id_{\mathfrak{E}_L}$

- 1. $\langle \gamma_{L',L}(f), h \rangle = \langle f, \gamma_{L,L'}(h) \rangle$
- 2. $\langle \gamma_{L',L}(f), \gamma_{L',L}(f') \rangle = \langle f, f' \rangle$
- 3. $\gamma_{L,L''} \circ \gamma_{L'',L'} \circ \gamma_{L',L} = S_W(L;L',L'')id_{\mathfrak{E}_L}$
- 4. where $S_W(L; L', L'')$ is a constant.
- 5. $\tau_g \circ \gamma_{L',L} = \gamma_{gL',gL} \circ \tau_g$

Note that $S_W(L; L', L'')$ is the analogous of the Maslov index in [4] and this theorem is comparable with theorem 1.4 in [6].

References

- [1] Bernstein, J., and A. Zelevinsky, Representations of the group GL(n, F) where F is a non-Arquimidian local field, Russian Math. Surveys **31** (1976), 1–68.
- Bushnell, C. J., Induced representations of locally profinite groups, J. Alg. 134, (1990), 104–114.
- [3] Cartier, P., *Representations of p-adic groups*, Aut. Forms, Representations, and L-functions, "Proc. of Sym. in Pure Math." vol **33**, Amer. Math. Soc, 1997.
- [4] Lion, G., et M. Vergne, *The Weil Representation, Maslov index and Theta Series*, Prog. Math., **6**, Birkhäuser-Verlag, (1980).
- [5] Moeglin, C., M.-F. Vignéras, and J.-L. Waldspurger, Correspondences de Howe sur un corps p-adique, Lecture Notes in Math. 1291, Springer-Verlag, Berlin, (1987).
- [6] Perrin, P., Représentations de Schrödinger, Indice de Maslov et groupe métaplectique, "Non Conm. Harmonic Analysis and Lie Groups," Springer-Verlag, Berlin, (1981).

Roberto Johnson Universidad Católica de Valparaíso Chile rjohnson@ucv.cl José Pantoja Universidad Católica de Valparaíso Chile jpantoja@ucv.cl

Received January 25, 2001 and in final form July 16, 2003