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Abstract. Let g = n− ⊕ h ⊕ n+ be an indecomposable Kac-Moody Lie
algebra associated with the generalized Cartan matrix A = (aij) and W be
its Weyl group. For w ∈ W , we study the nilpotency index of the subalgebra
Sw = n+ ∩ w(n−) and find that it is bounded by a constant k=k(A) which
depends only on A but not on w for all A = (aij) finite, affine of type other
than E or F and indefinite type with |aij | ≥ 2. In each case we find the best
possible bound k . In the case when A = (aij) is hyperbolic of rank two we show
that the nilpotency index is either 1 or 2.

Introduction

Let A = (aij)i,j∈I be an indecomposable generalized Cartan matrix and g = g(A)
denote the associated Kac-Moody Lie algebra over the field of complex numbers
[2]. Following the usual convention we will take the index set I to be {0, 1, · · · , n}
when A is of affine type and I to be {1, 2, · · · , n} otherwise. Let g = n−⊕h⊕n+

be the triangular decomposition of g with respect to the Cartan subalgebra h and
let ∆ = ∆+ ∪ ∆− denote the set of roots with ∆+ and ∆− denoting the set of
positive and negative roots respectively. Let Π = {αi|i ∈ I} denote the set of
simple roots and Π̌ = {hi|i ∈ I} be the set of simple coroots. Note that αi(hj) =

aji for i, j ∈ I . Let gα denote the α-root space, and Q =
∑
i∈I

Zαi denote the root

lattice. For α, β ∈ Q , we define α > β if α − β ∈ Q+ =
∑
i∈I

Z≥0αi and α 6= β .

For α =
∑
i∈I

kiαi ∈ Q+ define ht(α) =
∑
i∈I

ki to be the height of α . Let W be the

Weyl group of g generated by the simple reflections {ri|i ∈ I} . For w ∈ W we

denote ∆+(w) = {α ∈ ∆+|w−1α < 0} and w(n±) =

⊕
α ∈ ∆±

gwα . In this paper,

for w ∈ W we study the nilpotency index of the nilpotent subalgebras
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Sw = n+ ∩ w(n−) =
⊕

α∈∆+(w)

gα.

In [3], Billig and Pianzola conjectured that the nilpotency index of the
subalgebra Sw is bounded by a constant k = k(A) which depends only on the
Cartan matrix A and not on w . This information helps in determining the
existence of certain subroot system within the root system of a Kac-Moody Lie
algebra. In this paper we prove the following theorem which settles the conjecture
in most cases. Although we believe the conjecture to be true in the remaining few
cases we have not been able to prove it using our approach.

Main Theorem. For w ∈ W the nilpotency index of the subalgebras Sw is
bounded by k = k(A) where

1. k is the height of the highest long root when A is of finite type.

2. k = h − 1, h being the Coxeter number, when A is of affine type 1 other
than E , F or A is of type A

(2)
2n and k = ȟ − 1, ȟ being the dual Coxeter

number, when A is of affine type 2 or 3 other than A
(2)
2n or E

(2)
6 .

3. k = 1 when A is of indefinite type with |aij| ≥ 2 and k = 2 when

A =

(
2 −a
−1 2

)
, a > 4 .

Furthermore, in each case k is the best bound possible.

In the following three sections we prove the three parts of our main theorem
in Theorem 1.2, Theorem 2.5, Theorem 3.5 and Theorem 3.6.

1. A of finite type

Let A be of finite type and g = g(A) be the associated simple Lie algebra. Let h

be the Cartan subalgebra and Π = {α1, · · · , αn} be the set of simple roots. Let
θ be the highest long root. Since −Π = {−α1, · · · ,−αn} is also a root basis and
since W acts transitively on the root bases [1], there exists w0 ∈ W such that
w−1

0 (Π) = −Π. Note that in this case clearly the nilpotency index has a bound.
Our interest is to find the best possible bound k .

Proposition 1.1. Each positive root α can be written as αi1 + · · ·+αik , αij ∈
Π, such that each partial sum αi1 + · · ·+ αij is also a root.

Theorem 1.2. Let g be a finite dimensional simple Lie algebra. If k = ht(θ),

then S
(k)
w = 0 for all w ∈ W . Moreover, k is the least such integer.

Proof. Let w0 ∈ W such that w0(Π) = −Π. Then Sw0 =
⊕

α ∈ ∆+
gα .

By Proposition 1.1 there is a sequence of positive roots β1, · · · , βk = θ with

ht(βi) = i . Then S
(t)
w0 =

∑
ht(α)>t

gα . Hence S
(k)
w0 = 0. On the other hand, if

s < k , then [gαi
, gβs ] = gβs+αi

6= 0 for some αi ∈ Π with βs + αi = βs+1 . Hence

S
(k−1)
w0 6= 0. Since w−1

0 (Π) = −Π and ∆+(w0) = ∆+ , it follows that S
(t)
w0 ⊇ S

(t)
w

for t = 1, · · · , k , and all w ∈ W . Hence S
(k)
w = 0 for all w ∈ W .
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2. A of affine type

Let A = (aij)i,j∈I , with I = {0, 1, · · · , n} , be of affine type, g = g(A) be

the associated affine Lie algebra,
◦
A = (aij), 1 ≤ i, j ≤ n , and

◦
g = g(

◦
A)

be the corresponding simple Lie algebra with Cartan matrix
◦
A . Let ∆ and

◦
∆

denote the sets of roots, W and
◦

W the Weyl groups, and Π = {α0, · · · , αn}
and

◦
Π = {α1, · · · , αn} the sets of simple roots of g and

◦
g respectively. Let the

subscripts + and − stand for positive and negative roots and let the superscripts
’re’ and ’im’ stand for real and imaginary roots respectively. Thus ∆re

+ denotes the

set of real positive roots in ∆. Let δ =
n∑

i=0

aiαi where each ai is a positive integer,

gcd(a0, · · · , an) = 1 and A(a0, · · · , an)t = 0. Then ∆im
+ = {jδ|j ∈ Z>0} . Since

∆im
+ is W -invariant, ∆+(w) = {α ∈ ∆+|w−1(α) < 0} ⊆ ∆re

+ for each w ∈ W .

It is known that a0 = 1 unless A = A
(2)
2n in which case a0 = 2. Furthermore,

if g is of type 1 or of type A
(2)
2n , then δ − a0α0 is the highest long root in

◦
∆+ .

Otherwise, it is the highest short root.

The real roots for g = g(A), where A is of affine type are described in [2].

They are of the form γ = β + jδ where β ∈
◦
∆ and j is an integer, and when

A = A
(2)
2n , we also have roots of the form γ = 1

2
(β + (2j − 1)δ) where β is a long

root in
◦
∆ and j is an integer.

Let θ denote the highest long root in
◦
∆+ , k = ht(θ) and w0 ∈

◦
W such

that w−1
0 (

◦
Π) = −

◦
Π. By the description of real roots in ∆ and Theorem 1.2 it

follows that S
(k−1)
w0 6= 0. It is known that k is related to the Coxeter number h

and the dual Coxeter number ȟ as follows. If A is of type 1, then k = h − 1.
If A is of type A

(2)
2n , then k = h− 2 and k = ȟ− 1 otherwise. For the algebras

in the Main Theorem, we will show that S
(k)
w = 0 for all w ∈ W (S

(k+1)
w = 0 for

g = A
(2)
2n ) and that S

(k)
w 6= 0 for some w ∈ W when g = A

(2)
2n .

For w ∈ W , define N0 = {0, 1, 2, . . . } and

X = {β ∈
◦
∆+|(∃j ∈ N0) β + jδ ∈ ∆+(w) or 1

2
(β + jδ) ∈ ∆+(w)}

Y = {β ∈
◦
∆−|(∃j ∈ N0) β + jδ ∈ ∆+(w) or 1

2
(β + jδ) ∈ ∆+(w)}

and −X = {−α|α ∈ X}, −Y = {−α|α ∈ Y } . Let {βi} be a sequence in X ∪ Y

such that sm =
m∑

l=1

βi ∈ X ∪ Y for each m . The βi are not necessarily distinct.

Proposition 2.1. Let g = g(A) be an affine Lie algebra with Weyl group W
and let w ∈ W . Then

1. X ∩ (−Y ) = Ø

2. If j 6= r , then sj 6= ±sr

3. No partial sum of the βi is 0.



14 Kim, Misra, and Stitzinger

Proof. (1) Let β ∈ X∩(−Y ). Then β+n1δ or 1
2
(β+n1δ) is in ∆+(w) for some

non-negative integer n1 and −β+n2δ or 1
2
(−β+n2δ) is in ∆+(w) for some positive

integer n2 . Suppose γ1 = 1
2
(β + n1δ) ∈ ∆+(w) and γ2 = (−β + n2δ) ∈ ∆+(w) for

n1 ≥ 0, n2 > 0. Then w−1(−β +n2δ) < 0 and w−1(1
2
(β +n1δ)) < 0. Hence either

0 < (2n1 + n2)δ < 0 or 0 < (n1 + n2)δ < 0, a contradiction. The other cases are
treated in the same manner.

(2) Suppose that sj = sr for j > r . Then sr = sr + βr+1 + · + βj and
0 = βr+1+· · ·+βj . Thus βr+1 = −(βr+2+· · ·+βj). But w−1(βr+i+niδ) < 0, ni ≥ 0
for i = 2, · · · , j − r . Therefore w−1((βr+2 + · · · + βj) + (n2 + · · · + nj−r)δ) < 0.
If βr+1 ∈ X , then βr+2 + · · · + βj ∈ Y and βr+1 ∈ X ∩ (−Y ), a contradiction.
Similarly, if βr+1 ∈ Y , then −βr+1 ∈ X ∩ (−Y ), a contradiction. Now assume
that sj = −sr for some j > r . Then sr + βr+1 + · · · + βj = −sr and βr+1 =
−(2sr + βr+2 + · + βj). Thus either βr+1 ∈ X ∩ (−Y ) or −βr+1 ∈ X ∩ (−Y ).
Either case is a contradiction.

(3) Suppose that sip =

p∑
j=1

βij = 0. Then βip = −
p−1∑
j=1

βij and βip ∈

X ∩ (−Y ) or −βip ∈ X ∩ (−Y ). Both cases yield contradictions.

For each
◦
g we associate a graph using the highest long root θ . For g 6= D

(1)
n

the graph has vertices θ0 = 0, θ1, · · · , θk = θ where θj = αi1 + · + αij , αil ∈
◦
Π,

each θj 6= 0 for all j > 0 and k =ht(θ). As we have seen, S
(k−1)
w0 6= 0 where

w0(
◦
Π) = −

◦
Π. For D

(1)
n , there is an extra vertex since both α1 + · · · + αn−1 and

α1 + · · ·+ αn−2 + αn are roots. The graphs and associated θj are as follows:

A = A
(1)
n

θ0 θ1 θ2 · · · θn−1 θn

θi = α1 + · · ·+ αi, 1 ≤ i ≤ n , θ = α1 + · · ·+ αn

A = B
(1)
n or D

(2)
n+1

θ0 θ1 θ2 · · · θ2n−2 θ2n−1

θi = α1 + · · ·+ αi, 1 ≤ i ≤ n , θ = α1 + 2α2 + · · ·+ 2αn

θn+i+1 = α1 + · · ·+ αn + αn + · · ·+ αn−i 0 ≤ i ≤ n− 2 .

A = C
(1)
n or A

(2)
2n or A

(2)
2n−1

θ0 θ1 · · · θ2n−2 θ2n−1

θi = α1 + · · ·+ αi , 1 ≤ i ≤ n , θ = 2α1 + 2α2 + · · ·+ 2αn−1 + αn

θn+i+1 = α1 + · · ·+ αn + · · ·+ αn−(i+1), 0 ≤ i ≤ n− 2.

A = D
(1)
n

θ0 θ1 θ2
q q q θn−1

��
ZZ��

ZZ

θ̂n−1

q q q θ2n−2 θ2n−1

θi = α1 + · · ·+ αi, 1 ≤ i ≤ n− 1, θ̂n−1 = α1 + · · ·+ αn−2 + αn
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θn = α1 + · · ·+αn, θn+i = α1 + · · ·+αn−1 +αn +αn−2 + · · ·+αn−i−1 1 ≤
i ≤ n− 3,

θ = α1 + 2α2 + · · ·+ 2αn−2 + αn−1 + αn

A = G
(1)
2

θ0 θ1 θ2 θ3 θ4 θ5

θ1 = α1, θ2 = α1 + α2, θ3 = α1 + α2 + α2

θ4 = α1 + α2 + α2 + α2, θ5 = α1 + α2 + α2 + α2 + α1 = θ .

A = D
(3)
4

θ0 θ1 θ2 θ3 θ4 θ5

θ1 = α2, θ2 = α2 + α1, θ3 = α2 + α1 + α1

θ4 = α2 + α1 + α1 + α1, θ5 = α2 + α1 + α1 + α1 + α2 = θ .

Note that the Coxeter numbers and dual Coxeter numbers for these algebras
are listed on page 80 of [2] and correspond to the respective heights as previously
noted.

Each root in
◦
∆ gives a connected directed subgraph as is seen by checking

each case using the results on p. 64-65 of [1].

Example 2.2. Let A = A
(1)
5 and let θi = α1 + · · · + αi for i = 1, · · · , 5. Let

θ = θ5 . Then ht(θ) = 5 and the graph is
θ0 θ1 θ2 θ3 θ4 θ5

A typical root is β = α3 + α4 = θ4 − θ2 and the subgraph is
θ2 θ3 θ4

β uses two vertices. Generally if β1 + · · · + βs is a root for s = 1, · · · , t ,
then t + 1 vertices are used. Since cycles are not permitted, only 5 β ’s may occur
in a string. These remarks hold in the general case.

Suppose that g 6= A
(2)
2n and that S

(t−1)
w 6= 0. Then there exists t roots of

the form βi + miδ in ∆+(w), βi ∈
◦
∆ and mi ∈ Z , whose sum is a root and the

corresponding
∑t

i=1 βi ∈ X ∪ Y . In case g 6= D
(1)
n , t < k + 1 where k = ht(θ)

which is seen as follows (see also the example). s1 = β1 contains two vertices on
the graph. Then s2 = β1 + β2 forms a connection of one of the original vertices
with a new vertex since the graph is connected with no cycles using Proposition
2.1. Continuing in the manner, st uses t+1 vertices. Hence t < k+1 and S

(k)
w = 0

for all w ∈ W .

Suppose that g = D
(1)
n . The number of vertices is k + 2. As in the

preceding paragraph, t ≤ k + 1. Suppose that t = k + 1. Then there are roots

β1, · · · , βt ∈ X ∪ Y with sj =

j∑
i=1

βi ∈ X ∪ Y for j = 1, · · · , t .

Let z0 be the initial vertex of st . Hence z0 is the initial vertex of some βi1 ,
with terminal vertex z1 . Then z1 is the initial vertex of some βi2 with terminal



16 Kim, Misra, and Stitzinger

vertex z2 . Continue this process to obtain the sequence S = {z0, z1, · · · , zt} with
βij connecting zj−1 to zj and all vertices on the graph are listed in S . To simplify
the notation we will write that βj connects zj−1 to zj .

Two vertices will be called symmetric if a subgraph joining them is of the
form

B : ±(2αi + · · ·+ 2αn−2 + αn−1 + αn) or C : ±(αn−1 − αn) .

We denote symmetric vertices by xi and yi .

Lemma 2.3. Adjacent vertices in S are not symmetric.

Proof. Otherwise a root would be of the form B or C , a contradiction.

Define zi < zj in S if i < j . Thus βi+1 + · · ·+ βj connects zi to zj .

Lemma 2.4. xi < xj if and only if yj < yi .

Proof. Suppose that xi < xj and yi < yj . Then some βk1 + · · ·+ βkb
connects

yi to yj . Then βi+1 + · · ·+ βj = −(βk1 + · · ·+ βkb
) which yields a partial sum of

β equal to 0. This contradicts Proposition 2.1.

The following Corollary is an immediate consequence of Lemma 2.4.

Corollary 2.5. xi < xj < xl if and only if yl < yj < yi .

Now suppose that z0 = 0 and let z1 = xi . By Lemma 2.3, yi is the final
vertex in S . Let z2 = xj . Then yj is the next to last vertex in S . Continue this
process and finally we obtain adjacent symmetric vertices, a contradiction. If the
final vertex in S is 0, this same process yields another contradiction.

Therefore, suppose that neither the initial nor final vertex in S is 0. Then
the initial and final vertices are symmetric by Lemma 2.4. Thus st has the form B
or C and is not a root. But st ∈ X ∪ Y and hence is a root. Therefore t 6= k + 1.
Consequently, t < k + 1 and only k roots are allowed in a non-zero sum. Hence
S

(k)
w = 0 for each w ∈ W .

Now we consider the case g = g(A
(2)
2n ). The existence of half roots makes

this case special. The real roots divide into the cases

1. ∆s = ∆re
s = {1

2
(α + (2j − 1)δ)|α ∈

◦
∆l, j ∈ Z}

2. ∆m = ∆re
m = {α + jδ|α ∈

◦
∆s, j ∈ Z}

3. ∆l = ∆re
l = {α + 2jδ|α ∈

◦
∆l, j ∈ Z}

where
◦
∆s = {±(αi + · · ·+ αn + · · ·+ αj)|1 ≤ i < j ≤ n} ∪ {±(αi + · · ·+ αj)|1 ≤

i < j ≤ n− 1} and
◦
∆l = {±(αi + · · ·+ αn + · · ·+ αi)|1 ≤ i ≤ n}.

Define ∆i +∆j = ∆k if there exist γi ∈ ∆i, γj ∈ ∆j such that γi +γj ∈ ∆k .
If γi + γj is never a root when γi ∈ ∆i and γj ∈ ∆j , then let ∆i + ∆j = 0. We
obtain the following addition table.
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∆s ∆m ∆l

∆s ∆m ∪∆l ∆s 0

∆m ∆s ∆m ∪∆l ∆m

∆l 0 ∆m 0

This table is verified case by case. The material in [1, p. 64] is helpful.

Let γi = 1
2
(βi + (2ni − 1)δ) ∈ ∆s for i = 1, 2. Then γ1 + γ2 = 1

2
(β1 + β2 +

2(n1 +n2−1)δ). If γi +γj is a root, then either 1
2
(βi +βj) ∈

◦
∆s and γi +γj ∈ ∆m

or 1
2
(βi + βj) ∈

◦
∆l and γi + γj ∈ ∆l . Hence ∆s + ∆s = ∆m ∪∆l .

Let γ1 = 1
2
(β1 + (2n1 − 1)δ) ∈ ∆s and γ2 = β2 + n2δ ∈ ∆m . Then

γ1 + γ2 = 1
2
[(β1 + 2β2) + (2n1 + 2n2− 1)δ] . If γ1 + γ2 is a root, then β1 + 2β2 ∈

◦
∆l

and γ1 + γ2 ∈ ∆s . Hence ∆s + ∆m = ∆s .

Let γ1 = 1
2
(β1 + (2n1 − 1)δ) ∈ ∆s and γ2 = β2 + 2n2δ ∈ ∆l . Then

γ1 + γ2 = 1
2
[(β1 + 2β2) + (2n1 − 1 + 4n2)δ] . But β1 + 2β2 is not a root since

β1, β2 ∈
◦
∆l . Hence ∆s + ∆l = 0.

Let γi = βi +niα ∈ ∆m for i = 1, 2. Then γ1 +γ2 = (β1 +β2)+ (n1 +n2)δ .

It is possible that β1 + β2 ∈
◦
∆l or in

◦
∆s . Hence γ1 + γ2 ∈ ∆m ∪∆l . Therefore,

∆m + ∆m = ∆m ∪∆l .

Let γ1 = β1 + 2n1δ ∈ ∆l, γ2 = β2 + n2δ ∈ ∆m . Then γ1 + γ2 =

(β1+β2)+(2n1+n2)δ . If γ1+γ2 is a root, then β1+β2 ∈
◦
∆s . Hence γ1+γ2 ∈ ∆m .

So ∆m + ∆l = ∆m .

Let γi = βi +2niδ ∈ ∆l , for i = 1, 2. Then γ1 + γ2 = β1 +β2 +2(n1 +n2)δ .
But β1 + β2 is not a root. Hence γ1 + γ2 is not a root and ∆l + ∆l = 0.

In the graph of A
(2)
2n there are 2n vertices and k = ht(θ) = 2n − 1. As in

previous cases no more than k βi ’s can exist in a given sum that is a non-zero root.
We proceed by considering how the number of summands in a sum of γi ∈ ∆+(w)
translates into the number of summands in the corresponding βi . From the results
in the table and their proofs, adding a γ adds one β unless

D : γ1 + · · ·+ γj ∈ ∆s and γj+1 ∈ ∆s

or E : γ1 + · · ·+ γj ∈ ∆m and γj+1 ∈ ∆s

or F : γ1 + · · ·+ γj ∈ ∆s and γj+1 ∈ ∆m.

In the first case, the number of β ’s do not decrease. In the other cases, the
number of β ’s increase by at least two.

Again consider γ1 + · · · + γt . Let nt be the number of corresponding β ’s
and set n0 = 0. Then n1 = 1. Checking cases it is seen that n2 < 2 implies
n2 = 1 and γ1 + γ2 6= ∆s .

We claim that nj < j implies nj = j − 1 and γ1 + · · ·+ γj 6∈ ∆s . Assume
the result holds for j and consider γ1 + · · ·+ γj+1 . Suppose that nj = j − 1. By
assumption γ1+ · · ·+γj ∈ ∆m∪∆l . If γj+1 ∈ ∆s , then nj+1 ≥ j+1. If γj+1 6∈ ∆s ,
then nj+1 = j . Now suppose that nj 6= j − 1. Then nj ≥ j implies nj+1 ≥ j . If
nj+1 = j = nj , then γ1 + · · ·+ γj , γj+1 ∈ ∆s and γ1 + · · ·+ γj+1 6= ∆s . Hence the
result holds.
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Now if S
(t−1)
w 6= 0, then t−1 ≤ nt < k+1 and t < k+2. Hence S

(k+1)
w = 0.

It remains to show that S
(k)
w 6= 0 for some w ∈ W . We will work with the

graph for A
(2)
2n and the discussion of the roots of Cn in [1, p. 64]. The roots are of

the form ±2ei and ±(ei ± ej), i 6= j with base αj = ej+1 − ej , j = 1, · · · , n − 1

and αn = 2en . Let w0 ∈
◦

W such that w−1
0 (

◦
Π) = −

◦
Π. Let γ1 = 1

2
(θ + (2j − 1)δ),

γ2 = 1
2
(θ + (2j + 1)δ), γ3 = 1

2
(−α1 + j1δ), · · · , γk+2 = (−αk + jkδ) where k =

ht(θ) = 2n− 1. The first two of these roots are in ∆s and γ1 + γ2 = θ +2jδ ∈ ∆l .
The remaining roots are in ∆m and γ1 + · · · + γj ∈ ∆m for all j > 2. On the
graph, θ goes from θ0 to θk and the second θ does not move from vertex θk . Each
remaining γi moves one vertex to the left. Hence γ1 + · · · + γk+1 is a root and

S
(k)
w0 6= 0 but γ1 + · · ·+ γk+2 is a cycle and S

(k+1)
w0 = 0.

Due to the relation between the heights of the highest long roots with the
Coxeter numbers and dual Coxeter numbers pointed out earlier in the paper, we
have completed the proof of the following theorem.

Theorem 2.6. Let g = g(A) be any affine Lie algebra other than type E or F.

Then there is a smallest positive integer m such that S
(m)
w = 0 for all w ∈ W .

Furthermore,

1. if A is of affine type 1 or A
(2)
2n then m = h−1 where h is the Coxeter

number, and

2. if A is of affine type 2 or 3 and A 6= A
(2)
2n , E

(2)
6 , then m = ȟ−1 where

ȟ is the dual Coxeter number.

3. A of indefinite type

Let A = (aij), 1 ≤ i, j ≤ n be an indecomposable generalized Cartan matrix
of indefinite type and g = g(A) be the associated Kac-Moody Lie algebra. Let
Π = {α1, α2, · · · , αn} denote the set of simple roots and W = 〈r1, r2, · · · , rn〉
denote the Weyl group of g , where ri = rαi

are the simple reflections. The
following lemma is well known.

Lemma 3.1. 2 . For w ∈ W , let w = ri1 · · · rit be a reduced expression. Then
∆+(w) = {β1, β2, · · · , βt}, where βp = ri1 · · · rip−1(αip), 1 ≤ p ≤ t, are distinct
real positive roots.

Proposition 3.2. Let w = ri1 · · · rit ∈ W be reduced and

βp = ri1 · · · rip−1(αip), 1 ≤ p ≤ t

as above. Then for 1 ≤ k < j ≤ t, 1 ≤ l ≤ t, we have βk + βj = βl ⇒ k < l < j .

Proof. Clearly l 6= k, j . Suppose l < k . Then

ri1 · · · rik−1
αik + ri1 · · · rij−1

αij = ri1 · · · ril−1
αil

implies
ril · · · rik−1

αik + ril · · · rij−1
αij = αil .
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Since ril · · · rik−1
rik and ril · · · rij−1

rij are reduced by Lemma 3.1 we have

ril · · · rik−1
αik > 0 and ril · · · rij−1

αij > 0 ,

which implies that

1 = ht(αil) = ht(ril · · · rik−1
αik + ril · · · rij−1

αij)
= ht(ril · · · rik−1

αik) + ht(ril · · · rij−1
αij) ≥ 1 + 1 = 2 ,

a contradiction. Now suppose j < l . Then βk + βj = βl implies

αij = rij · · · ril−1
αil + rij−1

· · · rik+1
αik .

As before, since rij · · · ril−1
ril and rij−1

· · · rik+1
rik are reduced, by Lemma 3.1 we

have

ht(rij · · · ril−1
αil) ≥ 1 and ht(rij−1

· · · rik+1
αik) ≥ 1 ,

which gives a contradiction. Hence k < l < j .

Corollary 3.3. Let w = ri1 · · · rit ∈ W be reduced and βp = ri1 · · · rip−1αip , 1 ≤
p ≤ t as before. If β1 < β2 < · · · < βt , then S

(1)
w = 0.

Proof. Since {βp} is an increasing sequence, it follows from Proposition 3.2

that βi + βj 6∈ ∆+(w), 1 ≤ i, j ≤ t . Hence S
(1)
w = [Sw, Sw] = [gβ1 ⊕ · · · ⊕

gβt , gβ1 ⊕ · · · ⊕ gβt ] = 0.

Lemma 3.4. Let A = (aij) with |aij| ≥ 2, 1 ≤ i, j ≤ n. Then for β ∈
Q+, riβ ≥ β ⇒ rk(riβ) ≥ riβ for all k 6= i.

Proof. Let β =
∑n

j=1 xjαj ∈ Q+ . Then riβ ≥ β implies β(hi) ≤ 0, which
implies 2xi ≤

∑
j 6=i(−aij)xj . To show that rk(riβ) ≥ riβ , we need to show that

(β − β(hi)αi)(hk) = β(hk)− β(hi)aki ≤ 0. We have

β(hi)aki − β(hk) = (2xi +
∑

j 6=i(aij)xj)aki − (2xk +
∑

j 6=k(akj)xj)

= xiaki + (aikaki − 2)xk +
∑

j 6=k,i(aijaki − akj)xj

≥ 1
2

∑
j 6=i(−aij)akixj + (aikaki − 2)xk +

∑
j 6=k,i(aijaki − akj)xj

= 1
2

[
(aikaki − 4)xk +

∑
j 6=k,i(aijaki − 2akj)xj

]
≥ 0 ,

since |aij| ≥ 2, hence (aikaki − 4) ≥ 0 and (aijaki − 2akj) ≥ 0. Therefore, the
result follows.

Theorem 3.5. Let A = (aij) with |aij| ≥ 2, 1 ≤ i, j ≤ n. Then S
(1)
w = 0 for

all w ∈ W .
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Proof. Let w = ri1ri2 · · · rit ∈ W be reduced. Then ∆+(w) = {β1, β2, · · · , βt}
where βp = ri1 · · · rip−1(αip),
1 ≤ p ≤ t . Consider

βp+1 − βp = ri1 · · · ripαip+1 − ri1 · · · rip−1αip

= ri1 · · · rip−1β ,

where β = (−aipip+1 − 1)αip + αip+1 ∈ Q+ since aipip+1 ≤ −2. Now

rip−1β − β = −β(hip−1)αip−1

= [(−aipip+1 − 1)(−aip−1ip) + (−aip−1ip+1)]αip−1 .

Since −aij ≥ 2 for i 6= j , we have rip−1β − β ≥ 0, hence rip−1β ≥ β . Therefore,
by Lemma 3.4, we have βp+1 − βp = ri1 · · · rip−1β ≥ β > 0 for 1 ≤ p ≤ t . This

implies that β1 < β2 < · · · < βt and hence by Corollary 3.3 we have S
(1)
w = 0.

Now consider the case A =

(
2 −a
−b 2

)
, ab > 4, a, b ≥ 0, any rank two

hyperbolic GCM. If a ≥ 2 and b ≥ 2, then by Theorem 3.5 we have S
(1)
w = 0

for all w ∈ W . Hence without loss of generality assume b = 1 and a > 4.
In this case the Weyl group W is an infinite dihedral group with presentation
W = {(r1r2)

j, r2(r1r2)
j|j ∈ Z} . We define the sequence of integers {Aj}j∈Z by

the recurrence relations

A0 = 0, A1 = 1, A2j+2 = A2j+1 − A2j and A2j+1 = aA2j − A2j−1 .

Note that, A−j = −Aj for j ∈ Z and

r2(α1) = A1α1 + A2α2 .

Assume that
r2(r1r2)

j(α1) = A2j+1α1 + A2j+2α2 .

Then
r2(r1r2)

j+1(α1) = (r2r1)r2(r1r2)
j(α1)

= (r2r1)(A2j+1α1 + A2j+2α2)
= −A2j+1(α1 + α2) + A2j+2(aα1 + aα2 − α2)
= (aA2j+2 − A2j+1)α1 + (aA2j+2 − A2j+1 − A2j+2)α2

= A2j+3α1 + (A2j+3 − A2j+2)α2 = A2j+3α1 + A2j+4α2 .

Hence by induction for j ≥ 0 we have

r2(r1r2)
j(α1) = A2j+1α1 + A2j+2α2 .

Similarly,
(r1r2)

j(α1) = A2j+1α1 + A2jα2 .

Note that

r2(r1r2)
−j(α1) = −(r1r2)

j−1(α1) = −A2j−1α1 − A2j−2α2

= A2(−j)+1α1 + A2(−j)+2α2 ,

and
(r1r2)

−j(α1) = −r2(r1r2)
j−1(α1)

= −A2j−1α1 − A2jα2 = A2(−j)+1α1 + A2(−j)α2 .
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Therefore, for all j ∈ Z we have

r2(r1r2)
j(α1) = A2j+1α1 + A2j+2α2 ,

(r1r2)
j(α1) = A2j+1α1 + A2jα2 .

Similarly,
r2(r1r2)

j(α2) = −aA2jα1 − A2j+1α2 ,
(r1r2)

j(α2) = −aA2jα1 − A2j−1α2 .

Theorem 3.6. Let A =

(
2 −a
−1 2

)
, a > 4. Then S

(1)
w 6= 0 and S

(2)
w = 0

for all w ∈ W .

Proof. In this case W = {r2(r1r2)
j, (r1r2)

j|j ∈ Z} . We consider the case
w = r2(r1r2)

j, j ≥ 0. The proof for the other cases are similar. For w =
r2(r1r2)

j, l(w) = 2j + 1 and

∆+(w) = {β1, β2, · · · , β2j+1}

where

β2p−1 = (r2r1)
p−1α2 = (r1r2)

−p+1α2 = −aA−2p+2α1 − A−2p+1α2

= aA2p−2α1 + A2p−1α2 ,

for p = 1, 2, · · · , j + 1 and for p = 1, 2, · · · , j ,

β2p = (r2r1)
p−1r2(α1) = r2(r1r2)

p−1(α1) = A2p−1α1 + A2pα2 .

Note that since βp ∈ ∆+, 1 ≤ p ≤ 2j + 1, we have Ap ≥ 0. Observe that since
a > 4, we have

β4 = A3α1 + A4α2 = (a− 1)α1 + (a− 2)α2 > α1 + α2 = β2 .

Assume
β2p = A2p−1α1 + A2pα2 > β2p−2 = A2p−3α1 + A2p−2α2 .

Hence
A2p−1 ≥ A2p−3 and A2p ≥ A2p−2 .

Then

A2p+1 − A2p−1 = aA2p − 2A2p−1 = aA2p − 2(A2p + A2p−2)

= (a− 2)A2p − 2A2p−2 > 2(A2p − A2p−2) ≥ 0 ,

and
A2p+2 − A2p = A2p+1 − 2A2p = A2p+1 − 2

a
(A2p+1 + A2p−1)

= 1
a
((a− 2)A2p+1 − 2A2p−1)

> 2
a
(A2p+1 − A2p−1) ≥ 0.

Hence,
β2p+2 − β2p = (A2p+1 − A2p−1)α1 + (A2p+2 − A2p)α2 > 0
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Therefore, by induction the subsequence {β2p}j
p=1 is an increasing sequence. Simi-

larly, the subsequence {β2p−1}j+1
p=1 is also an increasing sequence. Also since a > 4

β4 − β1 = (a− 1)α1 + (a− 3)α2 > 0,

and (a−1)(a−3) > (a−1). Note that β2p+2−β2p−1 = (r2r1)(β2p−β2p−3 ). Hence
using induction we have β2p+2 − β2p−1 > 0.

β2p + β2p+2 = (A2p−1 + A2p+1)α1 + (A2p + A2p+2)α2

= aA2pα1 + A2p+1α2 = β2p+1

Therefore, S
(1)
w 6= 0 and also β2p−1 < β2p+2 < β2p+1 for p = 1, 2, · · · , j − 1.

Observe that

β2p−1 + β2p+1 = a(A2p−2 + A2p)α1 + (A2p−1 + A2p+1)α2

= aA2p−1α1 + aA2pα2 = aβ2p 6∈ ∆+(w).

Furthermore, since {β2p} and {β2p−1} are increasing sequences and β2p−1 <
β2p+2 < β2p+1 for p = 1, 2, · · · , j − 1, by Proposition 3.2 we have β2k−1 + β2p+1 6∈
∆+(w), β2k + β2p+1 6∈ ∆+(w), β2k−1 + β2p 6∈ ∆+(w) and β2k + β2p 6= β2m for
k < m < p . For example, if β2k−1 + β2p+1 = β2m then β2m > β2p+1 > β2p+2 which
is a contradiction since {β2p} is an increasing sequence. If β2k−1 +β2p = β2m−1 for
some k < m ≤ p then since β2p > β2p−3 the only possibility is m = p . However,
β2k−1 + β2p = β2p−1 = β2p−2 + β2p will imply β2k−1 = β2p−2 which is not true.
Therefore,

S(1)
w ⊆

j+1⊕
p=1

gβ2p−1

and hence by Corollary 3.3, S
(2)
w = [Sw, S

(1)
w ] = 0, since {β2p−1} is an increasing

sequence.
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