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Abstract. Let g be a finite-dimensional complex semi-simple Lie algebra.
We present a new calculation of the continuous cohomology of the Lie algebra
zg[[z]] . In particular, we shall give an explicit formula for the Laplacian on
the Lie algebra cochains, from which we can deduce that the cohomology in
each dimension is a finite-dimensional representation of g which contains any
irreducible representation of g at most once.
MSC subject classification: 17B56, 17B65.

1. Introduction

Let g be a complex semi-simple Lie algebra. In this paper, we shall calculate
the cohomology of the Lie algebra zg[[z]] of formal power series (with vanishing
constant term) by an infinite dimensional analog of the method described in the
paper by B. Kostant [5].

The Lie algebras of interest in Kostant’s paper are nilpotent Lie subalge-
bras n of a finite dimensional semi-simple Lie algebra g . Kostant identifies the
cohomology of n with the kernel of the Laplace operator on the cochains of n .
The cochains of n can be identified with a summand in the cochains of the larger
algebra g , and Kostant defines an operator L̃ on the cochains of g which restricts
to the Laplace operator on the cochains of n . Calculating the kernel of L̃ , which
turns out to be easier than a direct calculation of the Laplace operator on the
Lie algebra cochains of the nilpotent Lie algebra, yields the cohomology of the Lie
subalgebra.

The Lie algebra a = zg[[z]] with which we are concerned, is an infinite
dimensional topologically nilpotent subalgebra of the algebra g[[z]][z−1] of formal
loops in g . We would like to emulate Kostant’s method in the following way. First
we will define and describe a graded complex of “semi-infinite forms”. On this
complex, we will define an operator L̃ . The Lie algebra cochains of a will be
shown to be a subcomplex of the semi-infinite forms. It will be proved that the
operator L̃ restricts to the Laplace operator on the subcomplex. We will then give
an explicit formula for L̃ , which will finally enable us to calculate its kernel and
give a description of the cohomology of a .

1Written while holding a research fellowship at the Abdus Salam International Centre for
Theoretical Physics, Trieste, Italy and the Max-Planck Institut für Mathematik, Bonn, Germany.
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The final result of this paper follows already from the theorem of H. Garland
and J. Lepowsky [3]. However, they make use of the weak Bernstein-Gelfand-
Gelfand resolution and do not concern themselves with an explicit description of
the Laplace operator on the Lie algebra cochains. The calculation in this paper
gives an explicit formula. This formula is useful in connection with the smooth
cochain cohomology of loop groups, which will hopefully be discussed in a separate
paper. The discussion also relates the cohomology to semi-infinite cohomology
which is of independent interest. Finally, the translation of Kostant’s result into
an infinite dimensional setting is appealing in itself, because it illustrates the power
of his method.

To be precise, we will describe the Lie algebra a in the following way: let
G be a connected semi-simple real Lie group. Let g denote the Lie algebra of G .
Consider the Lie algebra A consisting of Laurent polynomials of the form∑

p∈Z

Apz
p

where p runs over the integers, Ap is in the complexification gC of g , and such that

Ap = 0 for all but a finite number of p ’s. Given A =
∑
p∈Z

Apz
p and B =

∑
p∈Z

Bpz
p ,

the Lie bracket is
[A,B] =

∑
p,q∈Z

[Ap, Bq]z
p+q.

Note that A can be decomposed as

A = a⊕ gC ⊕ a

where a is the Lie algebra consisting of elements of the form
∑
k<0

Akz
k , and a is

the Lie algebra consisting of elements of the form
∑
k>0

Akz
k . We would like to

calculate the cohomology of a where we consider the pth degree cochains A∗(a)
of the Lie algebra to be complex multilinear alternating continuous maps

a× · · · × a−→C.

The Lie algebra a can be related to the real Lie algebra quotient J of the Lie
algebra L0g of based loops in g by those whose derivatives vanish to infinite order.
The Lie algebra J can be identified with the Lie algebra zg[[z]] . The cochains on
the complexification of J is a subspace of the cochains on a and the inclusion
induces an isomorphism on the level of cohomology. We will come back to all this
in some more detail at the end of this paper.

In Section 2 we will describe the semi-infinite forms on A and introduce an
operator L̃ on these forms. We will also prove that L̃ restricts to the Laplacian
on the cochains of a . Then, in Section 3 we will write down an explicit formula
for L̃ , which will enable us to calculate the kernel of the Laplacian. Section 4 will
summarise the results following from the formula for the Laplacian. Finally, in
Section 5, we will discuss the relationship between a and the loop group of G .

Before we move on to the next section, note the following convention with
regard to notation. There will be many infinite sums in this paper. To avoid
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ambiguity, every effort has been made to keep track of indices over which each
sum is to be taken. However, it is to be understood that, as a rule, repeated
indices will be summed over all the integers unless a restriction has been specified.

2. Semi-infinite forms

We will first define the cochain complex of “semi-infinite forms” on A . This
definition follows the one for general graded Lie algebras found in [2] (Section 1).

Let g and A be as in the previous section and let gC be the complexification
of g like before. Let c be the coxeter number of gC and let 〈·, ·〉 be 1

2c
times the

Killing form. Let the dimension of gC be n . Choose an ordered orthonormal basis
{αi}ni of gC with respect to 〈·, ·〉 . Let ei,k = αiz

k . Then {ei,k}i,k∈Z form a basis
of A . Denote by {ei,k}i,k∈Z the corresponding dual basis elements in A∗ . Define
the space ∧d∞(A) of semi-infinite forms of degree d as the complex linear space
spanned by formal symbols of the form ω = ei0,k0∧ei1,k1∧· · ·∧eip,kp∧· · · such that
there exists N(ω) ∈ Z for each ω , so that, for all p > N(ω), kpn+ ip − n = d− p
and such that

ei0,k0 ∧ ei1,k1 ∧ · · · ∧ eip−1,kp−1 ∧ eip+1,kp+1 ∧ eip,kp ∧ eip+2,kp+2 ∧ · · ·

= −ei0,k0 ∧ ei1,k1 ∧ · · · ∧ eip−1,kp−1 ∧ eip,kp ∧ eip+1,kp+1 ∧ eip+2,kp+2 · · ·

Given any x =
∑
q

xqejq ,lq in A and x′ =
∑
q

xqe
jq ,lq in A∗ , there are operators

ι(x) and ε(x′) on ∧∗∞(A) given by

ι(x)(ω) =
∑
p,q

(−1)pxqe
ip,kp(ejq ,lq)e

i0,k0 ∧ · · · ∧ êip,kp ∧ · · ·

where êip,kp means that the term will be omitted, and

ε(x′)(ω) =
∑
q

xq(e
jq ,lq ∧ ω).

In order to simplify the notation, we will write ι(ei,k) and ε(ei,k) as ιi,k and εi,k

respectively. These operators serve to define ∧∗∞(A) as a module of the Clifford
algebra on A ⊕ A∗ associated to the pairing 〈x, x′〉 for x ∈ A and x′ ∈ A∗ .
That is, the anti-commutator [ιi,k, ε

j,m]+ = δi,jδk,m , where δi,j = 0 if i 6= j and
δi,i = 1. Also note that ∧∗∞(A) = ⊕d∧d∞ is bi-graded: apart from the degree there
is a second grading by energy where the energy E(ω) of ω above is defined as
Σk>0kεi,kιi,k(ω)− Σk≤0kιi,kεi,k(ω) = E(ω)ω . Note that this makes sense and that
E(ω) is an integer.

Now let

: ιi,kε
j,m :=

{
ιi,kε

j,m if k ≤ 0,
−εj,mιi,k if k > 0

(1)

For each x ∈ A , there is an operator L(x) on ∧∗∞(A), defined by

L(ei,k) =
∑

Cp
iq : ιp,sε

q,s−k :
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where Cp
iq are the structure constants with respect to the basis {αp} , i.e.,

[αi, αq] =
∑
p

Cp
iqαp.

Note that this operator makes sense on semi-infinite forms. Although this is an
infinite sum as it is written, only a finite number of terms are non-zero on any
semi-infinite form. Since we had taken an orthonormal basis with respect to the
Killing form, the structure constants Cp

iq are anti-symmetric in the three indices
i, p, q . This, along with the identity [ιi,k, ε

j,m]+ = δi,jδk,m , implies that we could

just as well have written L(ei,k) =
∑

Cp
iqιp,sε

q,s−k . Again, we will simplify L(ei,k)

to Li,k .

Remark 2.1. Given a finite sum Σk
i aibi it is clear that [Σaibi, c] = Σ[ai, c]+bi−

Σai[bi, c]+ and that [Σaibi, c] = Σ[ai, c]bi + Σai[bi, c] . However, we will be dealing
with infinite sums. In this case the above identities only hold if all sums and terms
make sense as operators on the semi-infinite forms. It is for this reason that in

Proposition 2.2 we will write simply L(ei,k) =
∑

Cp
iqιp,sε

q,s−k , but in Lemma 2.4

the ordering (1) will be used again.

Proposition 2.2. The commutator [ιj,m,Li,k] is given by

[ιj,m,Li,k] = −
∑
p

Cp
ijιp,m+k.

Proof. Note that

[ιj,m,Li,k] = [ιj,m,
∑
q,p,s

Cp
iqιp,sε

q,s−k]

=
∑
p,q,s

Cp
iq[ιj,m, ιp,s]+ε

q,s−k −
∑
s,p,q

Cp
iqιp,s[ιj,m, ε

q,s−k]+

= −
∑
s≤0,p,q

Cp
iqιp,sδj,qδm,(s−k) −

∑
s>0,p,q

Cp
iqιp,sδj,qδm,(s−k)

= −
∑
p

Cp
ijιp,k+m,

concluding the proof. Likewise, it is just as easy to see that [εj,m,Li,k] =∑
q

Cj
iqε

q,m−k .

Proposition 2.3. The operators Li,k define a projective representation of A

on ∧∗∞(A).

This follows directly from the following lemma.

Lemma 2.4. The commutator [Li,k,Lj,m] is given by

[Li,k,Lj,m] = L([ei,k, ej,m]),

if m 6= −k , and
[Li,k,Lj,−k] = L([ei,k, ej,−k]) + 2c · δi,jk.
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Proof. Assume that m ≥ 0(if m ≤ 0, we merely need to replace m by −m).
Note that

[Li,k,Lj,m] = [
∑
q,p,s

Cp
iq : ιp,sε

q,s−k :,Lj,m]

= −[
∑
s>0

Cp
iqε

q,s−kιp,s,Lj,m] + [
∑
s≤0

Cp
iqιp,sε

q,s−k,Lj,m]

= −
∑
s>0

Cp
iq[ε

q,s−k,Lj,m]ιp,s −
∑
s>0

Cp
iqε

q,s−k[ιp,s,Lj,m]

+
∑
s≤0

Cp
iq[ιp,s,Lj,m]εq,s−k +

∑
s≤0

Cp
iqιp,s[ε

q,s−k,Lj,m]

= −
∑
s>0

Cp
iqC

q
jnε

n,s−k−mιp,s +
∑
s>0

Cp
iqC

n
jpε

q,s−kιn,s+m

−
∑
s≤0

Cp
iqC

n
jpιn,s+mε

q,s−k +
∑
s≤0

Cp
iqC

q
jnιp,sε

n,s−k−m

=
∑
p,q,n

Cp
iqC

q
jn : ιp,sε

n,s−k−m : −
∑
p,q,n

Cq
inC

p
jq : ιp,sε

n,s−k−m :

−
∑

0<s≤m

Cq
inC

p
jq[ιp,s, ε

n,s−k−m]+

Since [ei,k, ej,m] = [αi, αj]z
k+m , we have

L([ei,k, ej,m]) =
∑
q

Cq
ijLq,k+m =

∑
p,q,s

Cq
ijC

p
qn : ιp,sε

n,s−k−m : .

In terms of structure constants, the Jacobi identity for gC translates into∑
q

(Cq
ijC

p
qn + Cq

jnC
p
qi + Cq

niC
p
qj) = 0.

Hence

[Li,k,Lj,m]− L([ei,k, ej,m]) =
∑
p,q,n

Cp
iqC

q
jn : ιp,sε

n,s−k−m : −
∑
p,q,n

Cq
inC

p
jq : ιp,sε

n,s−k−m :

−
∑

0<s≤m

Cq
inC

p
jq[ιp,s, ε

n,s−k−m]+

−
∑
p,q,n

Cq
ijC

p
qn : ιp,sε

n,s−k−m :

= −
∑

0<s≤m

Cq
inC

p
jq[ιp,s, ε

n,s−k−m]+.

This shows that, unless k = −m and p = n ,

[Li.k,Lj,m]− L([ei,k, ej,m]) = 0,

and, when k = −m and p = n , we have

[Li,k,Lj,−k]− L([ei,k, ej,−k]) = k ·
∑
q,n

Cq
inC

n
jq =

∑
q,n

Cq
inC

n
jq = 2c〈αi, αj〉.
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Since we had chosen an orthonormal basis with respect to the Killing form, the
last term is only non-zero when i = j , and

L([ei,k, ei,−k]) = 0.

Thus
[Li,k,Li,−k] = 2c · k.

The identity obviously does not depend on the assumption that m ≥ 0, hence this
concludes the proof of Lemma 2.4.

Remark 2.5. Note that the projective representation of A , when restricted to
g , becomes a genuine representation which determines an action of G . There is
also a natural rotation action of the circle T on loops which defines an action of
T×G on the semi-infinite forms.

Define d : ∧∗∞(A) → ∧∗∞(A) which increases degree by 1 by

d =
1

2

∑
i,k

Li,kεi,k. (2)

Although d is expressed as a sum over all integers k , as an operator on any element
of ∧∗∞(A) only a finite number of its terms will be non-zero, because there is an
integer N for any element ω in ∧∗∞(A) such that ω will be annihilated by εi,k

for k < N . Also note that because of our choice of basis, Li,k and εi,k commute,
hence it doesn’t matter in which order we write it. Consider the twisted operator

d̃ =
1

2

∑
i,k

skLi,kεi,k,

where sk = 1 when k > 0 and sk = −1 when k ≤ 0. Take the adjoint d̃∗ of d̃
and let L̃ = d̃∗d+ dd̃∗ . Now define

Ω = en,0 ∧ en−1,0 ∧ · · · e1,0 ∧ en,−1 ∧ · · ·

(recall that n is the dimension of gC ). Call this the vacuum vector of ∧∗∞(A). Note
that the energy and degree of the vacuum vector is zero. The Lie algebra cochains
A∗(a) can be identified with a subspace of ∧∗∞(A) by the map a 7→ ε(a)Ω. The
main statement of this section is the following.

Proposition 2.6. The operator L̃ restricts to the ordinary Laplacian L =
d∗d+ dd∗ on A∗(a).

The proposition follows directly from the following two lemmas.

Lemma 2.7. The operator d restricts to the ordinary Lie algebra differential
(which we will also denote d) on the subspace A∗(a) ⊂ ∧∗∞(A).

Lemma 2.8. The adjoint d̃∗ of d̃ restricts to the adjoint d∗ of the ordinary
Lie algebra differential d on A∗(a) ⊂ ∧∗∞(A).
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Proof. [Lemma 2.7] We need only prove two things. First we will prove that

d(α ∧ ω) = d(α) ∧ ω ± α ∧ d(ω) (3)

for α ∈ A∗(a) and ω ∈ ∧∗∞(A), where the sign depends on the degree of α . Then
we will prove that

dΩ = 0. (4)

This will give us Lemma 2.7 since it will prove that, for α ∈ A∗(a),

d(ε(α)Ω) = ε(d(α))Ω.

Identity 3 follows, with a bit of calculation, from the fact that εi,k anti-commutes

with any other εj,m and the fact that [εj,m,Li,k] =
∑
q

Cj
iqε

q,m−k . On the other

hand,

dΩ =
1

2

∑
i,k

Li,kεi,kΩ.

By the definition of Ω, the only possible non-zero terms are the ones for which
k > 0. Recall that Li,k and εi,k commute, so all we need to show is that Li,kΩ = 0
for k > 0. But

Li,k =
∑
p,q,s

Cp
iq : ιp,sε

q,s−k :=
∑
s≤0,p,q

Cp
iqιp,sε

q,s−k −
∑
s>0,p,q

Cp
iqε

q,s−kιp,s

is zero on Ω, since εq,s−k is zero on Ω if s ≤ 0 and ιp,s is zero on Ω if s > 0. This
concludes the proof of Lemma 2.7.

Proof. [Lemma 2.8] For c1 ∈ A∗(a) and c2 ∈ ∧∗∞(A),

〈d̃∗(c1 ∧ Ω), c2〉 = 〈c1 ∧ Ω, d̃(c2)〉

= 〈c1 ∧ Ω,−1

2

∑
k≤0

Li,kεi,k(c2) +
1

2

∑
k>0

Li,kεi,k(c2)〉.

Since all other terms will be killed, we may assume that c2 is a linear combination
of elements of type c3∧Ω and elements of type c4∧Ωj,m where Ωj,m is the vacuum
vector Ω with ej,m missing and c3, c4 ∈ A∗(a). It is enough to show that

〈d̃∗(c1 ∧ Ω), c3 ∧ Ω〉 = 〈d∗(c1) ∧ Ω, c3 ∧ Ω〉. (5)

and that
〈d̃∗(c1 ∧ Ω), c4 ∧ Ωj,m〉 = 0.

For k ≤ 0, Li,kεi,k(c3 ∧ Ω) = 0 and

1

2

∑
k>0

Li,kεi,k(c3 ∧ Ω) =
1

2

∑
k>0

Cp
iq : ιp,sε

q,s−k : εi,k(c3 ∧ Ω)

The sum is over all p, q, s, i as well as k > 0. Since k > 0, note that the terms for
which s ≤ 0 are zero (the operator εq,s−k is zero on Ω). So,

1

2

∑
k>0

Li,kεi,k(c3 ∧ Ω) = d(c3 ∧ Ω).
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Hence,

〈d̃∗(c1 ∧ Ω), c3 ∧ Ω〉 = 〈d∗(c1 ∧ Ω), c3 ∧ Ω〉 = 〈d∗(c1) ∧ Ω, c3 ∧ Ω〉

(the last equality follows from identity 3 and identity 4), which proves the iden-
tity 5. On the other hand,

d̃(c4 ∧ Ωj,m) = −1

2

∑
k≤0

Li,kεi,k(c4 ∧ Ωj,m) +
1

2

∑
k>0

Li,kεi,k(c4 ∧ Ωj,m)

= −1

2

∑
k≥0

Li,−kεi,−k(c4 ∧ Ωj,m) +
1

2

∑
k>0

Li,kεi,k(c4 ∧ Ωj,m)

= −1

2

∑
k≥0,s>0

Cp
iqιp,sε

q,s+kεi,−k(c4 ∧ Ωj,m)

+
1

2

∑
k>0,s>0

Cp
iqιp,sε

q,s−kεi,k(c4 ∧ Ωj,m).

If s ≤ 0, note that the only non-zero terms in
∑
k>0

Cp
iqιp,sε

q,s+kεi,−k(c4 ∧ Ωj,m) or

in
∑
k>0

Cp
iqιp,sε

q,s−kεi,k(c4 ∧ Ωj,m) which lie in A∗(a) are the ones where p = q or

p = i . Since we have chosen an orthonormal basis of g , these terms are zero. On
the other hand∑

k>0,s>0

Cp
iqιp,sε

q,s−kεi,k(c4 ∧ Ωj,m) =
∑
s>0

∑
k>−s

Cp
iqιp,sε

q,−kεi,s+k(c4 ∧ Ωj,m).

Therefore,

d̃(c4 ∧ Ωj,m) =
1

2

∑
s>0

∑
0>k>−s

Cp
iqιp,sε

q,−kεi,s+k(c4 ∧ Ωj,m).

But ιp,sε
q,−kεi,s+k(c4 ∧ Ωj,m) can not be contained in A∗(a) when −s < k ≤ 0,

because c4 ∧Ωj,m is missing ei,k for some k < 0 and ιp,sε
q,−kεi,s+k can not replace

this missing element. Hence,

〈d̃∗(c1 ∧ Ω), c4 ∧ Ωj,m〉 = 0,

concluding the proof of Lemma 2.8.

The results in this section show that, to calculate the Lie algebra cohomol-
ogy of a , we need only find the kernel of L̃ . Since the semi-infinite forms are
acted on by T × G (Remark 2.5), we know that the cochains of a are acted on
by T × G . In fact we will shortly see that Li,0 , for each i , commutes with the
operator d and hence, the action of T × G on the cochains induces an action
on the cohomology. It follows that the cohomology can be written as a sum of
irreducible representations of T×G . The exact nature of the decomposition will
follow from the explicit formula for L̃ which will be given in the next section.



Kim 279

3. The calculation for the operator L̃

The main aim of this section is to find a convenient expression of L̃ which will
enable us to calculate its kernel.

Proposition 3.1. The Laplacian [d, d̃∗]+ is given by

[d, d̃∗]+ = −
∑
k>0

c · kεi,kιi,k −
∑
k<0

c · kιi,kεi,k +
1

2

∑
i

L2
i,0.

Proof. [Proposition 3.1] First note that

[d, d̃∗]+ = [d,−1

2

∑
i,k

skιi,kLi,k]+

= [d,−1

2
(
∑
k>0,i

ιi,kLi,−k −
∑
k<0,i

ιi,kLi,−k −
∑
i

ιi,0Li,0)]+

This is equal to

− 1

2
(
∑
k>0,i

[d, ιi,k]+Li,−k −
∑
k>0,i

ιi,k[d,Li,−k])

+
1

2
(
∑
k<0,i

[d, ιi,k]+Li,−k −
∑
k<0,i

ιi,k[d,Li,−k])

+
1

2
(
∑
i

[d, ιi,0]+Li,0 −
∑
i

ιi,0[d,Li,0]).

(6)

To resolve this equation, we need to identify [d, ιi,k]+ and [d,Li,−k] . Given a
Lie group and its Lie algebra, the infinitesimal action of the Lie algebra on the
Lie group is the Lie derivative which can be written as the anti-commutator
of the differential and the interior product with respect to the vector fields in
the Lie algebra. The operator Li,k on the semi-infinite forms (with the given
basis) can likewise be expressed as Li,k = [ιi,k, d]+ . This easily follows from
the definition of d and the anti-commutators and commutators calculated in the
previous section. Substituting this into [Li,k, d] , and using the Jacobi identity, it
is an easy calculation to see that

[Li,k, d] = [ιi,k, d
2].

We claim that

Lemma 3.2. The square d2 can be expressed as

d2 =
∑
k>0,i

2c · kεi,kεi,−k.

Lemma 3.2 would imply that

[Li,k, d] = 2c · kεi,−k.
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From this, we see that
[d,Li,−k] = 2c · kεi,k. (7)

Substituting (7) and the identity for [ιi,k, d]+ in (6), we have

[d, d̃∗]+ = −1

2

∑
k>0

(Li,kLi,−k − 2c · kιi,kεi,k) +
1

2

∑
k<0

(Li,kLi,−k − 2c · kιi,kεi,k)

+
1

2

∑
i

Li,0Li,0.

Using the commutation rules for Li,k, ιi,k and εi,k , we have

−1

2

∑
k>0

(Li,kLi,−k − 2c · kιi,kεi,k) = −1

2

∑
k>0

(2c · k + Li,−kLi,k − 2c · k + 2c · kεi,kιi,k)

= −1

2

∑
k>0

(Li,−kLi,k + 2c · kεi,kιi,k).

Hence,

[d, d̃∗]+ =
1

2

∑
k<0

Li,kLi,−k −
1

2

∑
k>0

Li,−kLi,k −
∑
k>0

c · kεi,kιi,k −
∑
k<0

c · kιi,kεi,k

+
1

2

∑
i

Li,0Li,0

= −
∑
k>0

c · kεi,kιi,k −
∑
k<0

c · kιi,kεi,k +
1

2

∑
i

L2
i,0.

To complete the proof of Proposition 3.1, we need only prove Lemma 3.2.

Proof. [Lemma 3.2] First of all, we will prove that d2 is a homomorphism on
the ∧∗(a∗)-module ∧∗∞(A). To see this, all we need to show is that [d2, ε(α)] = 0
for any α ∈ ∧∗(a∗). First note that

[d2, ε(α)] = [d, [d, ε(α)]]+ = [d, [d, ε(α)]+]. (8)

If α is of odd degree then [d, ε(α)]+ is multiplication by d(α). If α is of even degree
then [d, ε(α)] is multiplication by d(α). The operator d increases the degree of α
by one. Hence, Identity (8) implies that, regardless of the degree of α , [d2, ε(α)]
is multiplication by d(d(α)). However d2(α) = 0. Hence [d2, ε(α)] = 0. Now let
Ω−k be the element in

∧
∞ = ∧∗∞(A) given by

Ω−k = e1,−k ∧ · · · ∧ en,−k ∧ e1,−k−1 ∧ · · · ∧ en,−k−1 ∧ · · ·

(n is the dimension of gC ) and let Λ denote the exterior algebra ∧(A∗). Then∧
∞ =

⋃
k

ΛΩ−k,

where ΛΩ−k denotes all elements of the form ε(α)Ω−k for α ∈ Λ. Let I−k be ideal
of Λ generated by the elements ea,−m for m ≥ k . Then ΛΩ−k is a Λ/I−k -module.
Hence,

∧
∞ is actually a Λ̂-module where Λ̂ is the direct limit of Λ/I−k as k runs

over the positive integers. We will prove the following lemma.
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Lemma 3.3. If T is an even degree homomorphism of Λ-modules then T is
multiplication by an element α ∈ Λ̂ of even degree.

Proof. If T is even degree and if T is multiplication by α ∈ Λ̂ then α must
be of even degree, so it is enough to show that T is multiplication by α . First
note that ΛΩ−k consists of all the elements ξ of

∧
∞ such that ε(α)ξ = 0 for all

α ∈ I−k . This shows that T (ΛΩ−k) ⊂ ΛΩ−k . In particular, T (Ω−k) ⊂ ΛΩ−k .
That is,

T (Ω−k) = α−kΩ−k,

for α−k ∈ Λ/I−k . But
Ω−k = ω−kΩ−k−1,

where ω−k = e1,−k ∧ · · · ∧ en,−k . So

α−kΩ−k = T (Ω−k) = T (ω−kΩ−k−1) = ω−kT (Ω−k−1) = ω−kα−k−1Ω−k−1

= α−k−1ω−kΩ−k−1 = α−k−1Ω−k.

This means that α−k = α−k−1 in Λ/I−k . So the collection {α−k} , as k runs over
the integers, defines an element of Λ̂, concluding the proof of the lemma.

The lemma proves that d2 is multiplication by some element ω̃ ∈ Λ2 . However

[ιi,k, [ιj,m, d
2]]+ = [ιi,k,Lj,md− dLj,m]

= [ιi,k,Lj,m]d+ Lj,mLi,k − Li,kLj,m + d[ιi,k,Lj,m]

=
∑
p

Cp
ijLp,k+m − [Li,k,Lj,m]

= −δi,jδk,−m2c · k.

Suppose ω̃ =
∑
s,t,u,v

fs,t,u,ve
s,uet,v . A short calculation shows that

[ιi,k, [ιj,m, ε(ω̃)]]+ = −2fijkm.

So,

ω̃ =
∑

c · kei,kei,−k =
∑
k>0

2c · kei,kei,−k.

The formula of Proposition 3.1 shows that Li,0 commutes with the Lapla-
cian. This proves that on an irreducible representation of g the Laplacian acts by
a scalar. Hence, we need only check how it acts on lowest weight vectors, which
brings us to the main theorem of the paper.

Theorem 3.4. The twisted Laplacian L̃ = [d, d̃∗]+ defined above acts on a
irreducible representation V ⊂ Aq(a) of T×G(T is the group of rotations) with
lowest weight λ by

−〈ρ, λ〉+
1

2
‖ λ ‖2 −c · k

where k is the energy of the lowest weight vector, and ρ is the half sum of the
positive roots of G.
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Proof. Given the identity (3), to determine how [d, d̃∗] acts on A∗(a), it is
enough to calculate it on a vector of the form v = el,k ∧ Ω. We know from
Proposition 3.1 that

L̃(v) =
1

2

∑
i

L2
i,0(v)−

∑
m>0,i

c ·mεi,mιi,m(v)−
∑
m<0,i

c ·mιi,mεi,m(v).

It is obvious that the third term is zero on v . The second term is also easily seen
to be

−c · k(v).

To calculate the first term, note that

Li,0 =
∑
p,q,s

Cp
iq : ιp,sε

q,s : .

Then, since
∑
p,q,s≤0

Cp
iqιp,sε

q,s kills anything of the form β ∧ Ω,

L2
i,0(v) = Li,0{−

∑
p,q,s>0

Cp
iqε

q,sιp,s(v)} = Li,0{−
∑
q

C l
iqe

q,k∧Ω} =
∑
q,r

C l
iqC

q
ire

r,k∧Ω.

But,∑
q,r

C l
iqC

q
ir =

∑
q,r

Cq
ir〈[αi, αq], αl〉 =

∑
r

〈[αi, [αi, αr]], αl〉 =
∑
r

〈[αi, [αi, αl]], αr〉,

where the last equality holds because of the Jacobi identity and the fact that

〈[x, y], z〉 = 〈x, [y, z]〉 . So 1
2

∑
L2
i,0 acts as −1

2

∑
i

α2
i , which is how the Casimir

of g acts with respect to the chosen basis (the minus sign comes in because we are
acting on the dual space). The action of the Casimir on a lowest weight vector has
been already worked out (e.g. Section 9.4 [6])and has the form

1

2

∑
i

L2
i,0(v) = {−〈ρ, λ〉+

1

2
‖ λ ‖2}(v),

where λ is the lowest weight for the representation and ρ is the half sum of all
positive roots of G . This concludes the proof of Theorem 3.4.

From Theorem 3.4 it immediately follows that the cohomology of a in any
degree is finite dimensional. To see this, first note that the cochain complex
A∗(a) of a can be decomposed according to the energy grading, so that Ap(k)(a)
denotes the space of pth cochains of energy k . The differential does not change the
energy of the cochain, hence, A∗(k)(a) is a subcomplex of A∗(a). If p > k , then
Ap(k)(a) = 0. That is, the cohomology H∗(k)(a) of A∗(k)(a) is finite dimensional.
The cohomology H∗(k)(a) is the part of H∗(a) which is of energy k . On the other
hand, the energy level of the cochains of any one degree is bounded. To prove this,
let us write H∗(k)(a;C) as a sum of irreducible representations Vλ of G with lowest
weight λ . Theorem 3.4 shows us that the twisted Laplacian acts as P (λ) − c · k
on Vλ where P (λ) is the Casimir operator of G on Vλ and k is the energy of
the lowest weight vector. Since the Laplacian is zero on the cohomology and the
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twisted Laplacian restricts to the Laplacian on the cohomology, this implies that
P (λ) = c · k on Vλ . The Casimir operator has been shown to depend only on the
lowest weight λ(in Section 9.4 [6]) which is a sum of p roots of G . This means that
only a finite number of irreducible representations of G occur in the cohomology
of degree p . We conclude that Hp(k)(a;C) = 0 if c · k > sup P (λ) where the
supremum is taken over all the lowest weights λ of irreducible representations that
might occur in Hp(a;C).

The above argument does not show that there is only one copy of any
irreducible representation in the sum. But this follows from the results of the next
section.

4. Conclusion

Based on the results in the previous sections, we will summarise the conclusion of
this paper in the following theorem.

Theorem 4.1. The pth degree cohomology of a can be written as a direct sum
of irreducible representations of T×G,

Hp(a) =
⊕
w

Vw,

where the sum ranges over elements w of length p in the the quotient Waff

W of the
affine Weyl group Waff by the Weyl group of the finite dimensional Lie group G.
By the length of an element in the quotient we mean the length of the shortest
representative.

Proof. If gC is semi-simple, gC = g1⊕· · ·⊕gp for some p and gi simple. Then

a = a1 ⊕ · · · ⊕ ap

where ai is the corresponding Lie subalgebra of A associated to gi . Then

H∗(a) = H∗(a1)⊗ · · · ⊗H∗(ap).

Hence, it is enough to calculate the cohomology when gC is simple. In this case
the formula for the Laplacian given in Theorem 3.4 can be re-written in a much
tidier and familiar form.

Recall Remark 2.5. There is an action of T×G and any weight of T×G
can be described by a triple λ = (n1, λ, 0), where n1 is the weight of the rotation
action of T , λ is a weight of the G action and the last component is the weight of
the central extension corresponding to the projective representation of A . Recall
that c denotes the coxeter number of g . And, let ρ denote the weight (0, ρ,−c)
where ρ is a half sum of the positive roots of G . Define

〈(n1, λ1, b1), (n2, λ2, b2)〉 = −n2b1 − n1b2 + 〈λ1, λ2〉,
where 〈·, ·〉 on the right-hand side is the inner product we have chosen for gC .
Then the formula in Theorem 3.4 for the Laplacian translates into

L̃ =
1

2
(|| λ− ρ ||2 − || ρ ||2), (9)

on a irreducible representation with lowest weight λ = (k, λ, 0) where λ is a lowest
weight of G and k denotes the energy of the lowest weight vector. The rest of the
proof for Theorem 4.1 follows from Lemma 4.3 and the remark below.
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Remark 4.2. As the lowest weight of a representation of g on A∗(a), λ can be
expressed as a sum of roots (not necessarily all negative or positive) of gC . Since
a is spanned by ei,k where k > 0, the circle acts non-trivially and the energy k
must always be positive. Hence, λ has to be a sum of positive affine roots which
are not roots of gC .

Proposition 4.3. Let λ be a sum of positive affine roots. The expression (9)
is zero if and only if the positive affine roots in the sum λ are exactly the set
of positive affine roots turned negative by the shortest representative of a coset in
Waff

W .

Proof. First assume that Equation (9) is zero. Let P denote the positive
alcove. We can choose w in the affine Weyl group Waff so that w(ρ − λ) ∈ P .
Since λ can be written as a sum of positive affine roots, ρ − w(ρ − λ) is also a
sum of positive affine roots, i.e., ρ − w(λ − ρ) is positive or zero on anything in
the positive alcove. Since ρ ∈ P and w(ρ− λ) ∈ P , ρ + w(ρ− λ) ∈ P . In fact,
because ρ is in the interior of the positive alcove P , so is ρ + w(ρ− λ). Hence,

‖ ρ ‖2 − ‖ ρ− λ ‖2

= 〈ρ− w(ρ− λ),ρ + w(ρ− λ)〉 ≥ 0.

This is equal to zero if and only if ρ − w(ρ − λ) = 0, which in turn implies
λ = ρ − w−1ρ . It is already known that ρ − w−1ρ is the sum s(λ) of all the
positive affine roots which become negative under the action of w−1 (see [6] p280).
Furthermore, no other sum of positive affine roots can equal λ . To see this, suppose
such a sum α1 + · · · + αk existed. Then w−1(s(λ)) = w−1(α1) + · · · + w−1(αk).
The term w−1(s(λ̂)) is a sum of negative roots by construction, but some of of the
w−1(αi) would be positive roots. Those which have turned negative are in the sum
w−1(s(λ)) and can be cancelled from each side, so we will be left with an identity
for which the left-hand side is a sum of negative roots and the right-hand side is
a sum of positive roots. This is not possible. Hence, the positive affine roots in
λ have to be exactly the set of positive affine roots which turn negative by some
w−1 in Waff . Recall that λ is a sum of positive affine roots which are not roots
of G (see Remark 4.2). Hence, w−1 has to be a representative of a coset in Waff

W .
Since any other element of Waff which belong to the same coset would turn roots
of G negative, w−1 is the shortest representative.

On the other hand, assume that λ = α1 + · · ·+ αk for positive affine roots
αi and that there exists an element w ∈ W such that α1, · · · ,αk are exactly the
positive roots which become negative by w , then

ρ− λ = w(ρ),

that is,

‖ ρ− λ ‖2=‖ w(ρ) ‖2=‖ ρ ‖2 .

In other words, P (λ) = 0, concluding the proof of Proposition 4.3.
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5. Comment

Given a finite dimensional Lie group G , the loop group LG of G is the infinite
dimensional Lie group consisting of smooth maps from the circle to G . The Lie
algebra Lg of the loop group is a vector space of maps from the circle to the
Lie algebra g of G . In this section we wish to make a short comment on the
relationship between a and Lg . Choose a base point 0 on the circle S1 . Let L0g

denote the Lie algebra of loops in g which vanish at the base point 0. Given an
element in L0g , we can associate to it its Taylor series at 0, which is represented
by an infinite formal series

a1t+
1

2
a2t

2 + · · ·+ 1

N !
aN t

N + · · · ,

where ai represents the ith derivative of the loop at 0. Let J denote the vector
space spanned by all formal series with coefficients in g and vanishing constant
term. It is a Lie algebra. If we let L∞g denote the loops whose derivatives vanish
to infinite order, it is clear that the Taylor series map is an injective map from

the quotient L0g
L∞g

to J . It is a known but a non-trivial fact that this map is

also surjective (see [7], p.390, Theorem 38.1). Let JN denote the vector space of
polynomials with coefficients in g

a1t+
1

2
a2t

2 + · · ·+ 1

N !
aN t

N ,

endowed with the product topology. Take the topology of J to be the inverse
limit topology induced by the topology on JN . The Taylor series map takes the
quotient Lie algebra isomorphically, as topological vector spaces, to J . If we take
the complexification JC of J , there is a map ψ : a−→JC which induces a map

H∗(JC;C)
ψ∗−→H∗(a;C)

in cohomology. Since J is an inverse limit of the JN , this map is injective. Each
Lie algebra cochain has an energy level. This energy level is not changed by the
differential, hence the total cohomology is a sum over the cohomology at each
energy level. Restricted to any one energy level, ψ is an isomorphism. We showed
earlier that, for each cohomology degree, only finite number of energy levels are
involved. Hence, ψ is an isomorphism.
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