An Equivalence between Categories of Modules for Generalized Kac-Moody Lie Algebras

Elizabeth Jurisich

Communicated by F. Knop

Abstract. An equivalence between categories of modules for a generalized Kac-Moody algebra and modules for an appropriate parabolic subalgebra is shown. In particular, properties such as the irreducibility and complete reducibility of a module whose weights satisfy certain conditions can be determined by restriction to a subalgebra.

1. Introduction

Generalized Kac-Moody algebras are Lie algebras determined by certain symmetrizable matrices as in [11], and [1]. Let \mathfrak{g} be a generalized Kac-Moody algebra. In [10] some examples of irreducible highest weight modules for \mathfrak{g} which are generalized Verma modules are given. These generalized Verma modules are modules that are induced from an irreducible highest weight module for a "parabolic" subalgebra $\mathfrak{p} = (\mathfrak{g}_S + \mathfrak{h}) \oplus \mathfrak{u}^+$, where \mathfrak{g}_S is a generalized Kac-Moody subalgebra of \mathfrak{g} (often \mathfrak{g}_S can be chosen to be a Kac-Moody or semi-simple Lie algebra). In this paper, we show that the converse is also true, that in fact any irreducible \mathfrak{g} module for a parabolic subalgebra. More generally, it is shown that a subcategory of the category \mathcal{O} of \mathfrak{g} -modules is equivalent to a subcategory of the Lie algebra $\mathfrak{r} = \mathfrak{g}_S + \mathfrak{h}$.

This result is most useful in cases where the subalgebra \mathfrak{g}_S can be chosen to be a semi-simple or Kac-Moody Lie algebra, so that some of the representation theory for the generalized Kac-Moody algebra can be reduced to that of the semisimple or Kac-Moody subalgebra.

In §2 of this paper, we review the definition of generalized Kac-Moody algebra, introduce notation and define the category of \mathfrak{g} modules that we use. Section 3 contains the statement and proof of the main theorem. The equivalence of categories is proven by using the functor determined by inducing a module for the parabolic subalgebra \mathfrak{p} to \mathfrak{g} , and the functor determined by considering the set of elements of a \mathfrak{g} -module V annihilated by \mathfrak{u}^+ . The method of proof is similar to that in [4] (see also [5] and [12]). Section 4 contains some applications.

2. The Setting

We recall the definition of a generalized Kac-Moody algebra. The definition given here is similar to Borcherds' original definition [1] and agrees with the definition in [9]. A variety of other definitions exist, for example [2], [11], [13]. We refer the reader to [11] and [13] for general definitions involving Lie algebras defined by symmetrizable matrices, of which generalized Kac-Moody algebras are an example. Definitions and proofs regarding the basic structure of generalized Kac-Moody algebras are presented in [1],[8], [9] and [10]. For the convenience of the reader, we include the definitions that differ from the definitions for the more familiar Kac-Moody algebras.

We define a generalized Kac-Moody algebra over \mathbb{C} by specifying generators and relations. Let \mathbb{Z}_+ denote the nonnegative integers. Let I be a countable index set, $A = (a_{ij})_{i,j \in I}$ a matrix with entries in \mathbb{R} satisfying the conditions:

- 1. A is symmetrizable.
- 2. If $a_{ii} > 0$, then $a_{ii} = 2$.
- 3. For all $k \neq j$ $a_{jk} \leq 0$ and for all $i \in I$ such that $a_{ii} > 0$, $a_{ij} \in -\mathbb{Z}_+$ for all $j \in I$.

Let $\mathfrak{g}(A)'$ be the Lie algebra with generators $e_i, f_i, h_i, i \in I$ and defining relations: For all $i, j \in I$

$$[h_i, h_j] = 0, [e_i, f_j] = \delta_{ij}h_i$$

 $[h_i, e_j] = a_{ij}e_j, [h_i, f_j] = -a_{ij}f_j$

For all $i \in I$ such that $a_{ii} > 0$

$$(ad e_i)^{-a_{ij}+1}e_j = 0, (ad f_i)^{-a_{ij}+1}f_j = 0.$$

Finally, for all $i, j \in I$ such that $a_{ij} = a_{ji} = 0$

$$[e_i, e_j] = 0, [f_i, f_j] = 0.$$

Define degree derivations ∂_i , $i \in I$, on $\mathfrak{g}(A)'$ by taking $\partial_i(e_j) = \delta_{ij}$, $\partial_i(f_j) = -\delta_{ij}$ and $\partial_i(h_j) = 0$. Let \mathfrak{d} be the abelian Lie algebra generated by the ∂_i , $i \in I$.

Definition 1. The generalized Kac-Moody algebra $\mathfrak{g} = \mathfrak{g}(A)$ is defined to be the semidirect product $\mathfrak{g}(A)' \ltimes \mathfrak{d}$.

We also call any Lie algebra of the form $\mathfrak{g}(A)/\mathfrak{c}$ where \mathfrak{c} is a central ideal a generalized Kac-Moody algebra. Borcherds' Monster Lie algebra is an example of this kind.

The Lie algebra \mathfrak{g} has a triangular decomposition $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$, where \mathfrak{n}^{\pm} is the subalgebra generated by the e_i (resp. the f_i), and the Cartan subalgebra \mathfrak{h} is the abelian subalgebra spanned by the h_i and the ∂_i . There is

a symmetric invariant bilinear form on \mathfrak{g} , and on \mathfrak{h}^* , which will be denoted by (\cdot, \cdot) in both cases.

The roots of \mathfrak{g} are the nonzero elements φ of \mathfrak{h}^* such that $\mathfrak{g}^{\varphi} = \{x \in$ $\mathfrak{g}[h, x] = \varphi(h)x$ for all $h \in \mathfrak{h}$ is nonzero. Denote the set of roots of \mathfrak{g} by Δ . There is a system of positive roots Δ_+ and $\Delta = \Delta_+ \cup -\Delta_+$. Roots with positive square norm are called real, and roots with non-positive square norm are called imaginary. Denote the set of real roots by Δ_R . The set of simple roots, denoted $\{\alpha_i\}_{i\in I} \subset \mathfrak{h}^*$, are defined by the conditions

$$[h, e_i] = \alpha_i(h)e_i$$
 for all $h \in \mathfrak{h}$.

Note that $\alpha_j(h_i) = a_{ij}$, and $\alpha_j(\partial_i) = \delta_{ij}$ for all $i, j \in I$ and that the α_i for $i \in I$ are linearly independent. The bilinear form is chosen so that $(\alpha_i, \alpha_j) = a_{ij}$ for all $i, j \in I$. Note that for $i \in I$ $(\alpha_i, \alpha_i) = a_{ii}$ may be non-positive, so that simple roots may be imaginary.

Given an element $\mu \in \mathfrak{h}^*$ of the form $\lambda - \sum_{i \in I} n_i \alpha_i$, $n_i \in \mathbb{Z}_+$, we define the depth $d_{\lambda}(\mu) = \sum_{i \in I} n_i$.

Given a \mathfrak{g} -module and $\lambda \in \mathfrak{h}^*$ let

$$M^{\lambda} = \{ v \in M | h \cdot v = \lambda(h)v, \text{ for all } h \in \mathfrak{h} \}.$$

The elements $\lambda \in \mathfrak{h}^*$ for which $M^{\lambda} \neq 0$ are called the *weights* of M. Given a g-module M let P(M) denote the set of weights of M. A weight $\lambda \in (\mathfrak{h})^*$ is dominant if $(\lambda, \alpha_i) \in \mathbb{R}$ and $(\lambda, \alpha_i) \geq 0$ for all $i \in I$. A weight λ is called integral if $\lambda(h_i) \in \mathbb{Z}_+$ for all $i \in I$ such that $a_{ii} > 0$. Denote by P_+ the set of dominant integral weights.

A \mathfrak{g} -module M is a standard module if M is a highest weight Definition 2. module with highest weight $\mu \in P_+$ and highest weight vector v such that:

- 1. for $i \in I$, if $(\mu, \alpha_i) = 0$ then $f_i \cdot v = 0$; 2. if α_i $(i \in I)$ is real then $f_i^{n_i+1} \cdot v = 0$, where $n_i = 2(\mu, \alpha_i)/(\alpha_i, \alpha_i)$ (necessarily a nonnegative integer).

Given any $\mu \in P_+$ there is a unique (up to isomorphism) standard irreducible highest weight \mathfrak{g} -module of highest weight μ , denote this module by $L_{\mathfrak{g}}(\mu)$ [9].

Fix S a distinguished subset of I containing $\{i \in I | \alpha_i \in \Delta_R\}$. Denote by \mathfrak{g}_S the generalized Kac-Moody subalgebra of \mathfrak{g} associated to the matrix $(a_{ij})_{i,j\in S}$. Assume that S is chosen so that the resulting matrix $(a_{ij})_{i,j\in S}$ is indecomposible. Note that if $S = \{i \in I | \alpha_i \in \Delta_R\}$ then \mathfrak{g}_S is a Kac-Moody algebra. In the case of the monster Lie algebra we can choose $\mathfrak{g}_S = \mathfrak{sl}_2$; (see §4 below).

We make the following definitions: $\Delta^S = \Delta \cap \prod_{i \in S} \mathbb{Z}\alpha_i, \ \Delta^S_+ = \Delta_+ \cap \Delta^S$ and $\Delta^S_{-} = \Delta_{-} \cap \Delta^S$. Denote by \mathfrak{h}_S the span of the $\overline{h_i}, i \in S$. There is a root space decomposition

$$\mathfrak{g}_S = \coprod_{\varphi \in \Delta^S_+} \mathfrak{g}^{\varphi} \oplus \mathfrak{h}_S \oplus \coprod_{\varphi \in \Delta^S_-} \mathfrak{g}^{\varphi}.$$

Define the following subalgebras of \mathfrak{g} :

$$\mathfrak{u}^+ = \coprod_{arphi \in \Delta_+ \setminus \Delta^S_+} \mathfrak{g}^arphi; \quad \mathfrak{u}^- = \coprod_{arphi \in \Delta_- \setminus \Delta^S_-} \mathfrak{g}^arphi; \quad \mathfrak{r} = \mathfrak{g}_S + \mathfrak{h}.$$

Let $\mathfrak{p} = \mathfrak{r} \oplus \mathfrak{u}^+$, the "parabolic" subalgebra of \mathfrak{g} determined by S. Then

$$\mathfrak{g}=\mathfrak{u}^-\oplus\mathfrak{r}\oplus\mathfrak{u}^+=\mathfrak{u}^-\oplus\mathfrak{p}.$$

If M is a \mathfrak{r} -module we define a \mathfrak{p} -module which we also call M by letting \mathfrak{u}^+ act as zero on M. Note that if M is irreducible, or completely reducible as a \mathfrak{g}_S or \mathfrak{p} -module, then the \mathfrak{p} -module M is irreducible, or completely reducible as well.

We recall the definition of generalized Verma module of [6]. Let $\lambda \in P_+$, and consider the standard (irreducible) highest weight \mathfrak{r} -module $L(\lambda)$ associated to λ (this is a standard module for \mathfrak{g}_S). The highest weight space of $L(\lambda)$ (as a \mathfrak{g}_S -module) is a weight space for \mathfrak{h} , with weight λ . Let \mathfrak{u}^+ act trivially on $L(\lambda)$; this gives $L(\lambda)$ the structure of an irreducible \mathfrak{p} -module. Define the generalized Verma module $V^{L(\lambda)}$ to be the induced module $U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} L(\lambda)$.

Definition 3. Let $\mathcal{O}_{\mathfrak{g}}$ denote the category of \mathfrak{g} -modules that are weight modules whose weight spaces are finite dimensional, and whose set of weights lies in a finite union of sets of the form

$$D(\lambda) = \{\lambda - \sum_{i \in I} n_i \alpha_i | \lambda \in \mathfrak{h}^*\}.$$

The morphisms are \mathfrak{g} -module homomorphisms.

Definition 4. Let $\mathcal{O}_{\mathfrak{g}}^{S}$ be the full subcategory of $\mathcal{O}_{\mathfrak{g}}$ whose objects are \mathfrak{g} modules $V \in \mathcal{O}_{\mathfrak{g}}$ such that every weight $\mu \in P(V)$ satisfies $(\mu, \alpha_{i}) > 0$ for all $i \in I \setminus S$.

Let $M \in \mathcal{O}_{\mathfrak{g}}$. Recall that a highest weight series for M is an increasing filtration

$$(0) \subset M_1 \subset M_2 \subset \cdots$$

of submodules of M satisfying $\bigcup_{i=0}^{\infty} M_i = M$. For $M_{i+1} \neq M_i$ the module M_{i+1}/M_i is a highest weight module. We extend a well known result of [6] to modules in $\mathcal{O}_{\mathfrak{g}}$, where the index set I may be countably infinite.

Proposition 2.1. Let $M \in \mathcal{O}_{\mathfrak{g}}$. Then M has a highest weight series $\{M_i\}_{i\in\mathbb{Z}}$.

Proof. Let $\lambda_1, \lambda_2, \ldots, \lambda_r$ be a set of weights of such that

$$P(M) \subset D(\lambda_1) \cup D(\lambda_2) \ldots \cup D(\lambda_r).$$

With out loss of generality we may assume that the sets $D(\lambda_i)$ are distinct. Then any $\mu \in P(M)$ is of the form $\mu = \lambda_j - \beta$ for some $j \ 1 \le j \le r$, with

 $\beta = \sum n_i \alpha_i$ where $n_i \in \mathbb{Z}_+$. Define $d(\mu) = \sum i n_i$. Since $d(\mu) = N$ implies $n_i = 0$ for sufficiently large *i* the set $\{\mu \in P(M) | d(\mu) = N\}$ is finite for all $N \in \mathbb{Z}_+$. Now a filtration of *M* can be constructed using the same argument as in the case where *I* is finite [6]: Let μ_1 be a weight in P(M) with minimal $d(\mu_1)$. Choose a nonzero weight vector $x_1 \in M^{\mu}$. By the minimality of $d(\mu_1)$ the vector x_1 is a highest weight vector. Denote by M_1 the highest weight module generated by x_1 . To construct a module M_2 with $(0) \subset M_1 \subset M_2$ and M_2/M_1 a highest weight module repeat the above argument for the module M/M_1 . The series $d(\mu_k)$ is increasing, and can only remain at one value for finitely many *k*. Thus eventually $M^{\mu} = M_n^{\mu} = M_{n+1}^{\mu} \dots$ for every $\mu \in P(M)$. This construction gives the desired highest weight series.

In order to prove the main theorem we will use the following result from category theory [7].

Lemma 2.2. Let \mathcal{A} and \mathcal{B} be categories. Let F be a functor from \mathcal{A} to \mathcal{B} . The categories are equivalent if and only if

1. F is full, that is, for all objects V_1, V_2 of A the mapping

$$Hom_{\mathcal{A}}(V_1, V_2) \to Hom_{\mathcal{B}}(F(V_1), F(V_2))$$

described by $f \mapsto F(f)$ is surjective.

- 2. F is faithful, that is, the above mapping is injective.
- 3. For every object M of \mathcal{B} there is an object V of \mathcal{A} such that M is isomorphic to F(V).

3. The equivalence of categories

We will show that the category $\mathcal{O}^S_{\mathfrak{g}}$ is equivalent to the category $\mathcal{O}^S_{\mathfrak{r}}$.

If $V \in \mathcal{O}_{\mathfrak{g}}^{S}$ let $V^{\mathfrak{u}^{+}}$ denote the set of elements of V annihilated by the action of \mathfrak{u}^{+} . The space $V^{\mathfrak{u}^{+}}$ is an \mathfrak{g}_{s} -module since $U(\mathfrak{g}_{s})V^{\mathfrak{u}^{+}} \subset V^{\mathfrak{u}^{+}}$. Likewise $V^{\mathfrak{u}^{+}}$ is an \mathfrak{r} -module and a \mathfrak{p} -module. Note that the subspace $V^{\mathfrak{u}^{+}}$ considered as an \mathfrak{r} -module is in $\mathcal{O}_{\mathfrak{r}}^{S}$.

The functors between our categories $\mathcal{O}^S_{\mathfrak{g}}$ and $\mathcal{O}^S_{\mathfrak{r}}$ are simply restriction and induction.

Definition 5. The functor $R : \mathcal{O}^S_{\mathfrak{g}} \to \mathcal{O}^S_{\mathfrak{r}}$ is defined as follows: $R(V) = V^{\mathfrak{u}^+}$ for $V \in \mathcal{O}^S_{\mathfrak{g}}$ and given a pair V, U of modules in $\mathcal{O}^S_{\mathfrak{g}}$ and a module homomorphism $f : V \to U$ define $R(f) = \overline{f}$ to be the restriction of the homomorphism f to $V^{\mathfrak{u}^+}$.

Definition 6. The functor $\operatorname{Ind}_{\mathfrak{p}}^{\mathfrak{g}} : \mathcal{O}_{\mathfrak{r}}^{S} \to \mathcal{O}_{\mathfrak{g}}^{S}$ is defined by $\operatorname{Ind}_{\mathfrak{p}}^{\mathfrak{g}}(N) = U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} N$ for N an object of $\mathcal{O}_{\mathfrak{r}}^{S}$, considered as a \mathfrak{p} -module with \mathfrak{u}^{+} acting as multiplication by 0, and $\operatorname{Ind}_{\mathfrak{p}}^{\mathfrak{g}}(f) = 1 \otimes f$ for f a morphism in $\mathcal{O}_{\mathfrak{r}}^{S}$, considered as a morphism in $\mathcal{O}_{\mathfrak{p}}^{S}$.

Lemma 3.1. Let $M \in \mathcal{O}^S_{\mathfrak{r}}$. Then $(Ind_{\mathfrak{p}}^{\mathfrak{g}}M)^{\mathfrak{u}^+} = 1 \otimes M$. **Proof.** By definition M is annihilated by \mathfrak{u}^+ as a \mathfrak{p} -module, so $1 \otimes M \subset (\operatorname{Ind}_{\mathfrak{p}}^{\mathfrak{g}}M)^{\mathfrak{u}^+}$.

Using the Poincare-Birkhoff-Witt theorem, we have an isomorphism $\operatorname{Ind}_{\mathfrak{p}}^{\mathfrak{g}}M \simeq U(\mathfrak{u}^{-}) \otimes_{\mathbb{C}} M$. Consider $U(\mathfrak{u}^{-}) \otimes_{\mathbb{C}} M = (U(\mathfrak{u}^{-})\mathfrak{u}^{-} \otimes_{\mathbb{C}} M) \oplus (1 \otimes M)$.

Let $w \in U(\mathfrak{u}^-)\mathfrak{u}^- \otimes_{\mathbb{C}} M$ be nonzero. Since M is a weight module, we may assume w is a linear combination of vectors of the form $f_{i_1}f_{i_2}\ldots f_{i_j}\otimes v$, where $v \in M$ is a weight vector of weight λ , and the $f_{i_1}f_{i_2}\cdots f_{i_j}$, $i_1 \leq i_2 \leq \cdots \leq i_j$ is an element of the Poincare-Birkhoff-Witt basis of $U(\mathfrak{u}^-) \subset U(\mathfrak{n}^-)$. We will consider the elements $f_{i_1}f_{i_2}\cdots f_{i_j}\otimes v$, $i_1 \leq i_2 \leq \cdots \leq i_j$ to be basis vectors of the vector space $U(\mathfrak{u}^-)\mathfrak{u}^-\otimes v$. Let $w = f_{i_1}f_{i_2}\ldots f_{i_j}\otimes v$. Not all of the indices $i_1, i_2, \ldots i_j$ are in S, by the definition of \mathfrak{u}^- . Assume that $i_k \in I \setminus S$, we will show that $e_{i_k}w \neq 0$. The vector w can be rewritten as $w = f_{i_1}f_{i_2}\cdots f_{i_{k-1}}f_{i_k}^n f_{i_{k+1}}\cdots f_{i_j}\otimes v$ where $n \geq 1$, $i_i \leq i_2 \leq \cdots \leq i_{k-1} <$ $i_k < i_{k+1} \leq \cdots \leq i_j$, renaming the indices if necessary. Using the commutation relations of the Lie algebra,

$$\begin{split} e_{i_k}w &= f_{i_1}\cdots f_{i_{k-1}}\left(e_{i_k}f_{i_k}^n\right)\cdots f_{i_j}\otimes v\\ &= f_{i_1}\cdots f_{i_{k-1}}\left(f_{i_k}^n e_{i_k} + nf_{i_k}^{n-1}h_{i_k} + -a_{i_ki_k}\frac{(n-1)n}{2}f_{i_k}^{n-1}\right)f_{i_{k+1}}\cdots f_{i_j}\otimes v\\ &= f_{i_1}\cdots f_{i_k}^n e_{i_k}f_{i_{k+1}}\cdots f_{i_j}\otimes v + nf_{i_1}\cdots f_{i_k}^{n-1}h_{i_k}f_{i_{k+1}}\cdots f_{i_j}\otimes v\\ &+ -a_{i_ki_k}\frac{(n-1)n}{2}f_{i_1}\cdots f_{i_k}^{n-1}f_{i_{k+1}}\cdots f_{i_j}\otimes v. \end{split}$$

Since v is in M it is annihilated by $e_{i_k} \in \mathfrak{u}^+$, and one has

$$f_{i_1}\cdots f_{i_k}^n e_{i_k} f_{i_{k+1}}\cdots f_{i_j} \otimes v = f_{i_1}\cdots f_{i_k}^n f_{i_{k+1}}\cdots f_{i_j} e_{i_k} \otimes v = 0.$$

It is also true that

$$h_{i_k}f_{i_{k+1}}\cdots f_{i_j}\otimes v=f_{i_{k+1}}\cdots f_{i_j}h_{i_k}\otimes v+\sum_{s=1}^{j-k}-a_{i_ki_{k+s}}f_{i_{k+1}}\cdots f_{i_j}\otimes v.$$

Thus

 $e_{i_k}w$

$$= nf_{i_{1}} \cdots f_{i_{k}}^{n-1} f_{i_{k+1}} \cdots f_{i_{j}} h_{i_{k}} \otimes v + n \sum_{s=1}^{j-k} -a_{i_{k}i_{k+s}} f_{i_{1}} \cdots f_{i_{k}}^{n-1} f_{i_{k+1}} \cdots f_{i_{j}} \otimes v$$

$$- a_{i_{k}i_{k}} \frac{(n-1)n}{2} f_{i_{1}} \cdots f_{i_{k}}^{n-1} f_{i_{k+1}} \cdots f_{i_{j}} \otimes v$$

$$= n\lambda(h_{i_{k}}) f_{i_{1}} \cdots f_{i_{k}}^{n-1} f_{i_{k+1}} \cdots f_{i_{j}} \otimes v - n \sum_{s=1}^{j-k} a_{i_{k}i_{k+s}} f_{i_{1}} \cdots f_{i_{k}}^{n-1} f_{i_{k+1}} \cdots f_{i_{j}} \otimes v$$

$$- a_{i_{k}i_{k}} \frac{(n-1)n}{2} f_{i_{1}} \cdots f_{i_{k}}^{n-1} f_{i_{k+1}} \cdots f_{i_{j}} \otimes v$$

$$= \left[n\lambda(h_{i_{k}}) + n \sum_{s=1}^{j-k} -a_{i_{k}i_{k+s}} + -a_{i_{k}i_{k}} \frac{(n-1)n}{2} \right] f_{i_{1}} \cdots f_{i_{k}}^{n-1} f_{i_{k+1}} \cdots f_{i_{j}} \otimes v.$$

$$\neq 0.$$

The above expression is nonzero because $\lambda(h_{i_k}) > 0$, $a_{i_k i_{k+s}} \leq 0$ for all $1 \leq s \leq j - k$ and $a_{i_k i_k} \leq 0$ for $i_k \in I \setminus S$. Let $w' = f_{i'_1} \cdots f_{i'_l} \otimes v$, $i'_1 \leq i'_2 \leq \cdots i'_l$ be a basis vector not equal to w. If f_{i_k} does not occur in w' we have $e_{i_k}w' = 0$, and if f_{i_k} does occur in w' then the lists $i_1 \leq i_2 \leq \cdots \leq i_j$ and $i'_1 \leq i'_2 \leq \cdots \leq i'_l$ do not agree, so by the above computation $e_{i_k}w$ is not in the linear span of $e_{i_k}w'$. Now consider an element $w \in U(\mathfrak{u}^-)\mathfrak{u}^- \otimes v$ that is a linear combination of the basis vectors $f_{i_1}f_{i_2}\ldots f_{i_j}\otimes v$, $i_1 \leq i_2 \cdots \leq i_j$, choose an index $i_k \in I \setminus S$ that appears in the first term of w. Then $e_{i_k}w$ is a linear combination of the basis vectors, with nonzero first term, so is nonzero. We conclude that w is not annihilated by \mathfrak{u}^+ , that $(\operatorname{Ind}^{\mathfrak{g}}_{\mathfrak{p}}M)^{\mathfrak{u}^+} \subset 1 \otimes M$, and finally that $(\operatorname{Ind}^{\mathfrak{g}}_{\mathfrak{p}}M)^{\mathfrak{u}^+} = 1 \otimes M$.

Proposition 3.2. Let $V \in \mathcal{O}_{\mathfrak{g}}^S$ be a highest weight module. Then $V = U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} V^{\mathfrak{u}^+}$.

Proof. Let λ be the highest weight of V, with highest weight vector v_0 . The induced module $U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} V^{\mathfrak{u}^+}$ is also a highest weight module for \mathfrak{g} . There is a natural map $\mu : U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} V^{\mathfrak{u}^+} \to U(\mathfrak{g}) V^{\mathfrak{u}^+} = V$, which we will show is an isomorphism. The map μ is surjective because $V^{\mathfrak{u}^+}$ generates the module V, as $V^{\mathfrak{u}^+}$ contains the highest weight vector v_0 . Let $W = \operatorname{Ker} \mu$. If W is nontrivial then W contains a weight vector $w \neq 0$ whose weight is of minimal depth. Applying an element of \mathfrak{u}^+ to $w \in W$ reduces the depth of w, so that w is annihilated by \mathfrak{u}^+ . By Lemma 3.1 $w \in 1 \otimes V^{\mathfrak{u}^+}$, which contradicts the fact that μ is injective when restricted to $1 \otimes V^{\mathfrak{u}^+}$.

Proposition 3.3. Let $V \in \mathcal{O}_{\mathfrak{g}}^S$, then $V = U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} N$ for some $N \in \mathcal{O}_{\mathfrak{r}}^S$. **Proof.** Consider the highest weight series

$$(0) = V_0 \subset V_1 \subset V_2 \subset \cdots$$

where $\bigcup_{i=0}^{\infty} V_i = V$. Note $\bigcup_{i=0}^{\infty} V_i^{\mathfrak{u}^+} = (\bigcup_{i=0}^{\infty} V_i)^{\mathfrak{u}^+} = V^{\mathfrak{u}^+}$.

We will prove the existence of an isomorphism by induction on $i \in \mathbb{Z}_+$. The module V_1 is by assumption a highest weight module so Proposition 3.2 shows the proposition holds in this case. Similarly, the result holds for the highest weight module V_{i+1}/V_i any $i \in \mathbb{Z}_+$. Assume that $V_i = U(\mathfrak{g}) \otimes V_i^{\mathfrak{u}^+}$. Applying the five lemma to the diagram

implies $V_{i+1} = U(\mathfrak{g}) \otimes V_{i+1}^{\mathfrak{u}^+}$, so by induction $V_i = U(\mathfrak{g}) \otimes V_i^{\mathfrak{u}^+}$ for all $i \in \mathbb{Z}_+$. Thus

$$V = \bigcup U(\mathfrak{g}) \otimes V_i^{\mathfrak{u}^+} = U(\mathfrak{g}) \otimes \bigcup V_i^{\mathfrak{u}^+} = U(\mathfrak{g}) \otimes V^{\mathfrak{u}^+}.$$

Theorem 3.4. The category $\mathcal{O}_{\mathfrak{g}}^S$ is equivalent to the category $\mathcal{O}_{\mathfrak{r}}^S$.

Proof. First we show that the functor $\operatorname{Ind}_{\mathfrak{p}}^{\mathfrak{g}} : \mathcal{O}_{\mathfrak{r}}^{S} \to \mathcal{O}_{\mathfrak{g}}^{S}$ is full. All objects V_{1}, V_{2} of $\mathcal{O}_{\mathfrak{g}}^{S}$ are, by Proposition 3.2, of the form $V_{i} = U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} V_{i}^{\mathfrak{u}^{+}}$ and

 $V_2 = U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} V_2^{\mathfrak{u}^+}$. Then any \mathfrak{g} -homomorphism $g: V_1 \to V_2$ is determined by its action on $V_1^{\mathfrak{u}^+}$

$$g(U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} V_1^{\mathfrak{u}^+}) = U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} \overline{g}(V_1^{\mathfrak{u}^+}).$$

Hence $g = 1 \otimes \overline{g}$.

Since $1 \otimes f = 1 \otimes g$ if and only if f = g the functor $\operatorname{Ind}_{\mathfrak{p}}^{\mathfrak{g}}$ is faithful.

Finally, Proposition 3.3 says that for every object V of $\mathcal{O}_{\mathfrak{g}}^S$ there is an $N \in \mathcal{O}_{\mathfrak{r}}^S$ with $\operatorname{Ind}_{\mathfrak{p}}^{\mathfrak{g}}(N) = V$. The conditions of Lemma 2.2 are satisfied and the categories are equivalent.

4. Applications

Our first corollary includes Proposition 4.2 of [10].

Corollary 4.1. Fix $S \subset I$. For $\mu \in P_+$ satisfying $(\mu, \alpha_i) > 0$ for $i \in I \setminus S$ the irreducible highest weight module $L_{\mathfrak{g}}(\mu)$ is a generalized Verma module:

$$L_{\mathfrak{g}}(\mu) = Ind_{\mathfrak{p}}^{\mathfrak{g}}L(\mu),$$

here $L(\mu)$ is the irreducible highest weight \mathfrak{p} -module of highest weight μ , which is a standard irreducible module for the generalized Kac-Moody algebra \mathfrak{g}_S . Conversely, any generalized Verma module $V^{L(\mu)} = \operatorname{Ind}_{\mathfrak{p}}^{\mathfrak{g}}L(\mu)$ is an irreducible highest weight \mathfrak{g} -module.

The following complete reducibility result appears in [14](where he uses the additional assumption that I is finite). For a Kac-Moody algebra $\mathfrak{l}, \mu \in \mathfrak{h}^*$, and an \mathfrak{l} -module M in $\mathcal{O}_{\mathfrak{l}}$ define the multiplicity $[M : L(\mu)]$ of the irreducible \mathfrak{l} -module $L(\mu)$ in M to be the number of proper factors of type $L(\mu)$ in any local composition series of M at μ see [13].

Corollary 4.2. Let \mathfrak{g} be a generalized Kac-Moody algebra. Take $S = \{i \in I | a_{ii} > 0\}$, so that \mathfrak{g}_S is a Kac-Moody algebra. Let V be a module in the category $\mathcal{O}^S_{\mathfrak{g}}$. Then V is completely reducible and

$$V = \bigoplus_{\mu \in P_+} [V^{\mathfrak{u}^+}, L(\mu)] L_{\mathfrak{g}}(\mu).$$

Proof. Since \mathfrak{g}_S is a Kac-Moody algebra and $V^{\mathfrak{u}^+}$ is an integrable \mathfrak{g}_S -module the complete reducibility of integrable modules of a Kac-Moody algebra implies

$$V^{\mathfrak{u}^+} = \oplus_{\mu \in P_+} [V^{\mathfrak{u}^+}, L_{\mathfrak{r}}(\mu)] L_{\mathfrak{r}}(\mu).$$

Applying the main theorem gives

$$\mathrm{Ind}_{\mathfrak{p}}^{\mathfrak{g}}V^{\mathfrak{u}^+} = \oplus_{\mu \in P_+}[V^{\mathfrak{u}^+}, L_S(\mu)]\mathrm{Ind}_{\mathfrak{p}}^{\mathfrak{g}}L_{\mathfrak{r}}(\mu)$$

So by Corollary 4.1 and Proposition 3.2

$$V = \bigoplus_{\mu \in P_+} [V^{\mathfrak{u}^+}, L_{\mathfrak{r}}(\mu)] L_{\mathfrak{g}}(\mu).$$

For a module $V \in \mathcal{O}_{\mathfrak{g}}$ recall the formal character is defined as

$$\operatorname{ch}(V) = \sum_{\lambda \in \mathfrak{h}^*} \dim V_{\lambda} e^{\lambda}.$$

Using Theorem 3.4, we can compute the character of a module $V \in \mathcal{O}_{\mathfrak{g}}^S$ by computing the product of the \mathfrak{h} weight modules $U(\mathfrak{u}^-)$ and $V^{\mathfrak{u}^+}$.

Corollary 4.3. Let $V \in \mathcal{O}^S_{\mathfrak{q}}$. Then

$$ch(V) = ch(U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} V^{\mathfrak{u}^+}) = ch(U(\mathfrak{u}^-)) \cdot ch(V^{\mathfrak{u}^+})$$

Depending upon the structure of the Lie algebra, $ch(U(u^{-}))$ and $V^{u^{+}}$ may be computed more readily than ch(V). For example, choose S so that $a_{ij} \neq 0$ for all $i, j \in I \setminus S$. The subalgebra \mathfrak{g}_S of \mathfrak{g} and hence its universal enveloping algebra $\mathcal{U}(\mathfrak{g}_S)$ act via the adjoint action on \mathfrak{g} . Identify the root $-\alpha_j \in -\Delta_+$ of \mathfrak{g} with the weight of the highest weight vector f_j of the standard \mathfrak{g}_S -module $L_{\mathfrak{g}_S}(-\alpha_i) = \mathcal{U}(\mathfrak{g}_S) \cdot f_j \subset \mathfrak{g}$. By Theorem 5.1 in [9] $\mathfrak{g} = \mathfrak{u}^+ \oplus (\mathfrak{g}_S + \mathfrak{h}) \oplus \mathfrak{u}^-$, where \mathfrak{u}^- is the free Lie algebra over the vector space $\sum_{j \in I \setminus S} L(-\alpha_i)$.

Then

$$\operatorname{ch}(U(\mathfrak{u}^{-})) = 1 - \sum_{j \in I \setminus S} \operatorname{ch}(L_{S}(-\alpha_{j})) = \prod_{\varphi \in \Delta_{+} \setminus \Delta_{+}^{S}} (1 - e^{-\varphi})^{\dim F(V)^{-\varphi}}$$

and

$$\operatorname{ch}(V) = \prod_{\varphi \in \Delta_+ \setminus \Delta_+^S} (1 - e^{-\varphi})^{\dim F(V)^{-\varphi}} \operatorname{ch}(V^{\mathfrak{u}^+}).$$
(1)

In the case of the monster Lie algebra, one can choose S so that $\mathfrak{g}_S = \mathfrak{sl}_2$. Then each $L(-\alpha_i)$ is a finite dimensional \mathfrak{sl}_2 -module of highest weight $-\alpha_1$. For this case equation (1) specializes to Borcherds' product formula for the modular function $j(\tau)$ [2]. Formula (1) appears in [8],[9] and is used in [10] to further elucidate a portion of the monstrous moonshine phenomenon already studied in [2].

Computing the homology $H_n(\mathfrak{g}, V)$ for $V \in \mathcal{O}_{\mathfrak{g}}^S$ can also be reduced to computing the homology groups for modules for the smaller Lie algebra \mathfrak{g}_S .

Corollary 4.4. For a g-module V in $\mathcal{O}^S_{\mathfrak{q}}$

$$H_n(\mathfrak{g}, V^t) \simeq H_n(\mathfrak{p}, (V^{u^+})^t).$$

Proof. This corollary follows from Theorem 3.4 and Proposition 4.2 of [3]. ■

References

- [1] Borcherds, R. E., *Generalized Kac-Moody algebras*, J. Algebra **115** (1988), 501–512.
- [2] —, Monstrous moonshine and monstrous Lie superalgebras, Invent. Math. 109 (1992), 405–444.
- [3] Cartan, H. and S. Eilenberg, "Homological Algebra," Princeton University Press 1956.
- [4] Cox, B., Structure of the nonstandard category of highest weight modules, Modern trends in Lie algebra representation theory (Kingston, ON, 1993) Queen's Univ., Kingston, ON (1994), 35–47.
- [5] Enright, T., and B. Shelton, Categories of highest weight modules: applications to classical Hermitian symmetric pairs, Memoirs of the American Mathematical Society, 67, 1987, 367, iv+94 pp.
- [6] Garland, H., and J. Lepowsky, *Lie algebra homology and the Macdonald-Kac formulas*, Invent. Math. **34** (1976), 37–76.
- [7] Jacobson, N., "Basic Algebra," **2**, W. H. Freeman, New York, 1989.
- [8] Jurisich, E., Generalized Kac-Moody Lie algebras, free Lie algebras and the structure of the Monster Lie algebra, Journal of Pure and Applied Algebra **126** (1998), 233–266.
- [9] —, An exposition of generalized Kac-Moody algebras in: "Lie algebras and their representations," Amer. Math. Soc., Contemporary Mathematics 194, 121–160.
- [10] Jurisich, E., J. Lepowsky, and R. Wilson, *Realizations of the Monster Lie algebra*, Selecta Mathematica, New Series **1** (1995), 129–161.
- [11] Kac, V., "Infinite Dimensional Lie Algebras," Cambridge University Press, 3rd Edition, 1990.
- [12] Lepowsky, J., and G. W. McCollum, On the determination of irreducible modules by restriction to a subalgebra, Trans. Amer. Math. Soc. 176 (1973), 217–228.
- [13] Moody, R., and A. Pianzola, "Lie algebras with triangular decompositions," Wiley-Interscience, 1995.
- [14] Naito, S., The strong Bernstein-Gelfand-Gelfand resolution for generalized Kac-Moody algebras, I, The existence of the resolution, Publ. of the Research Institute for Mathematical Sciences, **29** (1993), 709–730.

Elizabeth Jurisich Department of Mathematics The College of Charleston Charleston SC 29424

Received October 7, 2002 and in final form June 4, 2003