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Abstract. An equivalence between categories of modules for a generalized

Kac-Moody algebra and modules for an appropriate parabolic subalgebra is

shown. In particular, properties such as the irreducibility and complete
reducibility of a module whose weights satisfy certain conditions can be

determined by restriction to a subalgebra.

1. Introduction

Generalized Kac-Moody algebras are Lie algebras determined by certain sym-
metrizable matrices as in [11], and [1]. Let g be a generalized Kac-Moody al-
gebra. In [10] some examples of irreducible highest weight modules for g which
are generalized Verma modules are given. These generalized Verma modules
are modules that are induced from an irreducible highest weight module for a
“parabolic” subalgebra p = (gS +h)⊕u+ , where gS is a generalized Kac-Moody
subalgebra of g (often gS can be chosen to be a Kac-Moody or semi-simple Lie
algebra). In this paper, we show that the converse is also true, that in fact any
irreducible g module whose weights satisfy the appropriate conditions is a gener-
alized Verma module for a parabolic subalgebra. More generally, it is shown that
a subcategory of the category O of g-modules is equivalent to a subcategory of
the category O of the Lie algebra r = gS + h .

This result is most useful in cases where the subalgebra gS can be chosen
to be a semi-simple or Kac-Moody Lie algebra, so that some of the representation
theory for the generalized Kac-Moody algebra can be reduced to that of the semi-
simple or Kac-Moody subalgebra.

In §2 of this paper, we review the definition of generalized Kac-Moody
algebra, introduce notation and define the category of g modules that we use.
Section 3 contains the statement and proof of the main theorem. The equivalence
of categories is proven by using the functor determined by inducing a module for
the parabolic subalgebra p to g , and the functor determined by considering the
set of elements of a g-module V annihilated by u+ . The method of proof is
similar to that in [4] (see also [5] and [12]). Section 4 contains some applications.
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2. The Setting

We recall the definition of a generalized Kac-Moody algebra. The definition
given here is similar to Borcherds’ original definition [1] and agrees with the
definition in [9]. A variety of other definitions exist, for example [2], [11], [13].
We refer the reader to [11] and [13] for general definitions involving Lie algebras
defined by symmetrizable matrices, of which generalized Kac-Moody algebras are
an example. Definitions and proofs regarding the basic structure of generalized
Kac-Moody algebras are presented in [1],[8], [9] and [10]. For the convenience
of the reader, we include the definitions that differ from the definitions for the
more familiar Kac-Moody algebras.

We define a generalized Kac-Moody algebra over C by specifying genera-
tors and relations. Let Z+ denote the nonnegative integers. Let I be a countable
index set, A = (aij)i,j∈I a matrix with entries in R satisfying the conditions:

1. A is symmetrizable.
2. If aii > 0, then aii = 2.
3. For all k 6= j ajk ≤ 0 and for all i ∈ I such that aii > 0, aij ∈ −Z+

for all j ∈ I .
Let g(A)′ be the Lie algebra with generators ei, fi, hi, i ∈ I and defining

relations: For all i, j ∈ I

[hi, hj ] = 0, [ei, fj ] = δijhi

[hi, ej ] = aijej , [hi, fj ] = −aijfj .

For all i ∈ I such that aii > 0

(ad ei)−aij+1ej = 0, (ad fi)−aij+1fj = 0.

Finally, for all i, j ∈ I such that aij = aji = 0

[ei, ej ] = 0, [fi, fj ] = 0.

Define degree derivations ∂i , i ∈ I , on g(A)′ by taking ∂i(ej) = δij ,
∂i(fj) = −δij and ∂i(hj) = 0. Let d be the abelian Lie algebra generated by
the ∂i , i ∈ I .

Definition 1. The generalized Kac-Moody algebra g = g(A) is defined to be
the semidirect product g(A)′ n d .

We also call any Lie algebra of the form g(A)/c where c is a central ideal
a generalized Kac-Moody algebra. Borcherds’ Monster Lie algebra is an example
of this kind.

The Lie algebra g has a triangular decomposition g = n− ⊕ h ⊕ n+ ,
where n± is the subalgebra generated by the ei (resp. the fi ), and the Cartan
subalgebra h is the abelian subalgebra spanned by the hi and the ∂i . There is
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a symmetric invariant bilinear form on g , and on h∗ , which will be denoted by
(·, ·) in both cases.

The roots of g are the nonzero elements ϕ of h∗ such that gϕ = {x ∈
g|[h, x] = ϕ(h)x for all h ∈ h} is nonzero. Denote the set of roots of g by ∆.
There is a system of positive roots ∆+ and ∆ = ∆+∪−∆+ . Roots with positive
square norm are called real, and roots with non-positive square norm are called
imaginary. Denote the set of real roots by ∆R . The set of simple roots, denoted
{αi}i∈I ⊂ h∗ , are defined by the conditions

[h, ei] = αi(h)ei for all h ∈ h.

Note that αj(hi) = aij , and αj(∂i) = δij for all i, j ∈ I and that the αi for
i ∈ I are linearly independent. The bilinear form is chosen so that (αi, αj) = aij

for all i, j ∈ I . Note that for i ∈ I (αi, αi) = aii may be non-positive, so that
simple roots may be imaginary.

Given an element µ ∈ h∗ of the form λ−
∑

i∈I niαi , ni ∈ Z+ , we define
the depth dλ(µ) =

∑
i∈I ni .

Given a g-module and λ ∈ h∗ let

Mλ = {v ∈ M |h · v = λ(h)v, for all h ∈ h}.

The elements λ ∈ h∗ for which Mλ 6= 0 are called the weights of M . Given
a g-module M let P (M) denote the set of weights of M . A weight λ ∈ (h)∗

is dominant if (λ, αi) ∈ R and (λ, αi) ≥ 0 for all i ∈ I . A weight λ is called
integral if λ(hi) ∈ Z+ for all i ∈ I such that aii > 0. Denote by P+ the set of
dominant integral weights.

Definition 2. A g-module M is a standard module if M is a highest weight
module with highest weight µ ∈ P+ and highest weight vector v such that:

1. for i ∈ I , if (µ, αi) = 0 then fi · v = 0;
2. if αi (i ∈ I ) is real then fni+1

i · v = 0, where ni = 2(µ, αi)/(αi, αi)
(necessarily a nonnegative integer).
Given any µ ∈ P+ there is a unique (up to isomorphism) standard

irreducible highest weight g-module of highest weight µ , denote this module by
Lg(µ) [9].

Fix S a distinguished subset of I containing {i ∈ I|αi ∈ ∆R} . Denote
by gS the generalized Kac-Moody subalgebra of g associated to the matrix
(aij)i,j∈S . Assume that S is chosen so that the resulting matrix (aij)i,j∈S is
indecomposible. Note that if S = {i ∈ I|αi ∈ ∆R} then gS is a Kac-Moody
algebra. In the case of the monster Lie algebra we can choose gS = sl2 ; (see §4
below).

We make the following definitions: ∆S = ∆∩
∐

i∈S Zαi , ∆S
+ = ∆+∩∆S

and ∆S
− = ∆− ∩∆S . Denote by hS the span of the hi , i ∈ S . There is a root

space decomposition

gS =
∐

ϕ∈∆S
+

gϕ ⊕ hS ⊕
∐

ϕ∈∆S
−

gϕ.
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Define the following subalgebras of g :

u+ =
∐

ϕ∈∆+\∆S
+

gϕ; u− =
∐

ϕ∈∆−\∆S
−

gϕ; r = gS + h.

Let p = r⊕ u+ , the “parabolic” subalgebra of g determined by S . Then

g = u− ⊕ r⊕ u+ = u− ⊕ p.

If M is a r -module we define a p -module which we also call M by letting
u+ act as zero on M . Note that if M is irreducible, or completely reducible as
a gS or p -module, then the p -module M is irreducible, or completely reducible
as well.

We recall the definition of generalized Verma module of [6]. Let λ ∈ P+ ,
and consider the standard (irreducible) highest weight r -module L(λ) associated
to λ (this is a standard module for gS ). The highest weight space of L(λ) (as a
gS -module) is a weight space for h , with weight λ . Let u+ act trivially on L(λ);
this gives L(λ) the structure of an irreducible p -module. Define the generalized
Verma module V L(λ) to be the induced module U(g)⊗U(p) L(λ).

Definition 3. Let Og denote the category of g-modules that are weight
modules whose weight spaces are finite dimensional, and whose set of weights
lies in a finite union of sets of the form

D(λ) = {λ−
∑
i∈I

niαi|λ ∈ h∗}.

The morphisms are g-module homomorphisms.

Definition 4. Let OS
g be the full subcategory of Og whose objects are g-

modules V ∈ Og such that every weight µ ∈ P (V ) satisfies (µ, αi) > 0 for all
i ∈ I\S .

Let M ∈ Og . Recall that a highest weight series for M is an increasing
filtration

(0) ⊂ M1 ⊂ M2 ⊂ · · ·

of submodules of M satisfying
⋃∞

i=0 Mi = M . For Mi+1 6= Mi the module
Mi+1/Mi is a highest weight module. We extend a well known result of [6] to
modules in Og , where the index set I may be countably infinite.

Proposition 2.1. Let M ∈ Og . Then M has a highest weight series
{Mi}i∈Z .

Proof. Let λ1, λ2, . . . λr be a set of weights of such that

P (M) ⊂ D(λ1) ∪D(λ2) . . . ∪D(λr).

With out loss of generality we may assume that the sets D(λi) are distinct.
Then any µ ∈ P (M) is of the form µ = λj − β for some j 1 ≤ j ≤ r , with
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β =
∑

niαi where ni ∈ Z+ . Define d(µ) =
∑

ini . Since d(µ) = N implies
ni = 0 for sufficiently large i the set {µ ∈ P (M)|d(µ) = N} is finite for all
N ∈ Z+ . Now a filtration of M can be constructed using the same argument
as in the case where I is finite [6]: Let µ1 be a weight in P (M) with minimal
d(µ1). Choose a nonzero weight vector x1 ∈ Mµ . By the minimality of d(µ1) the
vector x1 is a highest weight vector. Denote by M1 the highest weight module
generated by x1 . To construct a module M2 with (0) ⊂ M1 ⊂ M2 and M2/M1

a highest weight module repeat the above argument for the module M/M1 . The
series d(µk) is increasing, and can only remain at one value for finitely many k .
Thus eventually Mµ = Mµ

n = Mµ
n+1 . . . for every µ ∈ P (M). This construction

gives the desired highest weight series.

In order to prove the main theorem we will use the following result from
category theory [7].

Lemma 2.2. Let A and B be categories. Let F be a functor from A to B .
The categories are equivalent if and only if

1. F is full, that is, for all objects V1, V2 of A the mapping

HomA(V1, V2) → HomB(F (V1), F (V2))

described by f 7→ F (f) is surjective.
2. F is faithful, that is, the above mapping is injective.
3. For every object M of B there is an object V of A such that M is

isomorphic to F (V ) .

3. The equivalence of categories

We will show that the category OS
g is equivalent to the category OS

r .

If V ∈ OS
g let V u+

denote the the set of elements of V annihilated
by the action of u+ . The space V u+

is an gs -module since U(gs)V u+ ⊂ V u+
.

Likewise V u+
is an r -module and a p -module. Note that the subspace V u+

considered as an r -module is in OS
r .

The functors between our categories OS
g and OS

r are simply restriction
and induction.

Definition 5. The functor R : OS
g → OS

r is defined as follows: R(V ) =
V u+

for V ∈ OS
g and given a pair V,U of modules in OS

g and a module
homomorphism f : V → U define R(f) = f̄ to be the restriction of the
homomorphism f to V u+

.

Definition 6. The functor Indg
p : OS

r → OS
g is defined by Indg

p(N) =
U(g)⊗U(p) N for N an object of OS

r , considered as a p -module with u+ acting
as multiplication by 0, and Indg

p(f) = 1⊗f for f a morphism in OS
r , considered

as a morphism in OS
p .
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Lemma 3.1. Let M ∈ OS
r . Then (Indg

pM)u+
= 1⊗M .

Proof. By definition M is annihilated by u+ as a p -module, so 1 ⊗ M ⊂
(Indg

pM)u+
.

Using the Poincare-Birkhoff-Witt theorem, we have an isomorphism
Indg

pM ' U(u−)⊗C M . Consider U(u−)⊗C M = (U(u−)u− ⊗C M)⊕ (1⊗M).
Let w ∈ U(u−)u−⊗CM be nonzero. Since M is a weight module, we may

assume w is a linear combination of vectors of the form fi1fi2 . . . fij
⊗ v , where

v ∈ M is a weight vector of weight λ , and the fi1fi2 · · · fij
, i1 ≤ i2 ≤ · · · ≤ ij

is an element of the Poincare-Birkhoff-Witt basis of U(u−) ⊂ U(n−). We
will consider the elements fi1fi2 · · · fij ⊗ v , i1 ≤ i2 ≤ · · · ≤ ij to be basis
vectors of the vector space U(u−)u− ⊗ v . Let w = fi1fi2 . . . fij

⊗ v . Not
all of the indices i1, i2, . . . ij are in S , by the definition of u− . Assume that
ik ∈ I\S , we will show that eik

w 6= 0. The vector w can be rewritten as
w = fi1fi2 · · · fik−1f

n
ik

fik+1 · · · fij ⊗ v where n ≥ 1, ii ≤ i2 ≤ · · · ≤ ik−1 <
ik < ik+1 ≤ · · · ≤ ij , renaming the indices if necessary. Using the commutation
relations of the Lie algebra,

eik
w = fi1 · · · fik−1

(
eik

fn
ik

)
· · · fij ⊗ v

= fi1 · · · fik−1

(
fn

ik
eik

+ nfn−1
ik

hik
+−aikik

(n− 1)n
2

fn−1
ik

)
fik+1 · · · fij ⊗ v

= fi1 · · · fn
ik

eik
fik+1 · · · fij

⊗ v + nfi1 · · · fn−1
ik

hik
fik+1 · · · fij

⊗ v

+−aikik

(n− 1)n
2

fi1 · · · fn−1
ik

fik+1 · · · fij
⊗ v.

Since v is in M it is annihilated by eik
∈ u+ , and one has

fi1 · · · fn
ik

eik
fik+1 · · · fij

⊗ v = fi1 · · · fn
ik

fik+1 · · · fij
eik

⊗ v = 0.

It is also true that

hik
fik+1 · · · fij

⊗ v = fik+1 · · · fij
hik

⊗ v +
j−k∑
s=1

−aikik+s
fik+1 · · · fij

⊗ v.

Thus

eik
w

= nfi1 · · · fn−1
ik

fik+1 · · · fij hik
⊗ v + n

j−k∑
s=1

−aikik+s
fi1 · · · fn−1

ik
fik+1 · · · fij ⊗ v

− aikik

(n− 1)n
2

fi1 · · · fn−1
ik

fik+1 · · · fij ⊗ v

= nλ(hik
)fi1 · · · fn−1

ik
fik+1 · · · fij ⊗ v − n

j−k∑
s=1

aikik+s
fi1 · · · fn−1

ik
fik+1 · · · fij ⊗ v

− aikik

(n− 1)n
2

fi1 · · · fn−1
ik

fik+1 · · · fij
⊗ v

=

[
nλ(hik

) + n

j−k∑
s=1

−aikik+s
+−aikik

(n− 1)n
2

]
fi1 · · · fn−1

ik
fik+1 · · · fij

⊗ v.

6= 0.
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The above expression is nonzero because λ(hik
) > 0, aikik+s

≤ 0 for all 1 ≤ s ≤
j − k and aikik

≤ 0 for ik ∈ I\S . Let w′ = fi′1
· · · fi′

l
⊗ v , i′1 ≤ i′2 ≤ · · · i′l be a

basis vector not equal to w . If fik
does not occur in w′ we have eik

w′ = 0, and if
fik

does occur in w′ then the lists i1 ≤ i2 ≤ · · · ≤ ij and i′1 ≤ i′2 ≤ · · · ≤ i′l do not
agree, so by the above computation eik

w is not in the linear span of eik
w′ . Now

consider an element w ∈ U(u−)u− ⊗ v that is a linear combination of the basis
vectors fi1fi2 . . . fij

⊗v , i1 ≤ i2 · · · ≤ ij , choose an index ik ∈ I \S that appears
in the first term of w . Then eik

w is a linear combination of the basis vectors,
with nonzero first term, so is nonzero. We conclude that w is not annihilated by
u+ , that (Indg

pM)u+ ⊂ 1⊗M , and finally that (Indg
pM)u+

= 1⊗M .

Proposition 3.2. Let V ∈ OS
g be a highest weight module. Then V =

U(g)⊗U(p) V u+
.

Proof. Let λ be the highest weight of V , with highest weight vector v0 . The
induced module U(g) ⊗U(p) V u+

is also a highest weight module for g . There
is a natural map µ : U(g) ⊗U(p) V u+ → U(g)V u+

= V , which we will show is
an isomorphism. The map µ is surjective because V u+

generates the module
V , as V u+

contains the highest weight vector v0 . Let W = Kerµ . If W is
nontrivial then W contains a weight vector w 6= 0 whose weight is of minimal
depth. Applying an element of u+ to w ∈ W reduces the depth of w , so that w
is annihilated by u+ . By Lemma 3.1 w ∈ 1 ⊗ V u+

, which contradicts the fact
that µ is injective when restricted to 1⊗ V u+

.

Proposition 3.3. Let V ∈ OS
g , then V = U(g)⊗U(p) N for some N ∈ OS

r .

Proof. Consider the highest weight series

(0) = V0 ⊂ V1 ⊂ V2 ⊂ · · ·

where
⋃∞

i=0 Vi = V . Note
⋃∞

i=0 V u+

i = (
⋃∞

i=0 Vi)u+
= V u+

.
We will prove the existence of an isomorphism by induction on i ∈ Z+ .

The module V1 is by assumption a highest weight module so Proposition 3.2
shows the proposition holds in this case. Similarly, the result holds for the
highest weight module Vi+1/Vi any i ∈ Z+ . Assume that Vi = U(g) ⊗ V u+

i .
Applying the five lemma to the diagram

0 → U(g)⊗ V u+

i −→ U(g)⊗ V u+

i+1 −→ U(g)⊗ (Vi+1/Vi)u+ → 0

≈
y y ≈

y
0 → Vi −→ Vi+1 −→ Vi+1/Vi → 0

implies Vi+1 = U(g) ⊗ V u+

i+1 , so by induction Vi = U(g) ⊗ V u+

i for all i ∈ Z+ .
Thus

V =
⋃

U(g)⊗ V u+

i = U(g)⊗
⋃

V u+

i = U(g)⊗ V u+
.

Theorem 3.4. The category OS
g is equivalent to the category OS

r .

Proof. First we show that the functor Indg
p : OS

r → OS
g is full. All objects

V1, V2 of OS
g are, by Proposition 3.2, of the form Vi = U(g) ⊗U(p) V u+

i and
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V2 = U(g) ⊗U(p) V u+

2 . Then any g-homomorphism g : V1 → V2 is determined
by its action on V u+

1

g(U(g)⊗U(p) V u+

1 ) = U(g)⊗U(p) ḡ(V u+

1 ).

Hence g = 1⊗ ḡ .
Since 1⊗ f = 1⊗ g if and only if f = g the functor Indg

p is faithful.
Finally, Proposition 3.3 says that for every object V of OS

g there is an
N ∈ OS

r with Indg
p(N) = V . The conditions of Lemma 2.2 are satisfied and the

categories are equivalent.

4. Applications

Our first corollary includes Proposition 4.2 of [10].

Corollary 4.1. Fix S ⊂ I . For µ ∈ P+ satisfying (µ, αi) > 0 for i ∈ I\S
the irreducible highest weight module Lg(µ) is a generalized Verma module:

Lg(µ) = Indg
pL(µ),

here L(µ) is the irreducible highest weight p-module of highest weight µ , which
is a standard irreducible module for the generalized Kac-Moody algebra gS . Con-
versely, any generalized Verma module V L(µ) = Indg

pL(µ) is an irreducible high-
est weight g-module.

The following complete reducibility result appears in [14](where he uses
the additional assumption that I is finite). For a Kac-Moody algebra l , µ ∈ h∗ ,
and an l-module M in Ol define the multiplicity [M : L(µ)] of the irreducible
l-module L(µ) in M to be the number of proper factors of type L(µ) in any
local composition series of M at µ see [13].

Corollary 4.2. Let g be a generalized Kac-Moody algebra. Take S = {i ∈
I|aii > 0} , so that gS is a Kac-Moody algebra. Let V be a module in the category
OS

g . Then V is completely reducible and

V =
⊕

µ∈P+

[V u+
, L(µ)]Lg(µ).

Proof. Since gS is a Kac-Moody algebra and V u+
is an integrable gS -module

the complete reducibility of integrable modules of a Kac-Moody algebra implies

V u+
= ⊕µ∈P+ [V u+

, Lr(µ)]Lr(µ).

Applying the main theorem gives

Indg
pV

u+
= ⊕µ∈P+ [V u+

, LS(µ)]Indg
pLr(µ)
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So by Corollary 4.1 and Proposition 3.2

V = ⊕µ∈P+ [V u+
, Lr(µ)]Lg(µ).

For a module V ∈ Og recall the formal character is defined as

ch(V ) =
∑
λ∈h∗

dimVλeλ.

Using Theorem 3.4, we can compute the character of a module V ∈ OS
g by

computing the product of the h weight modules U(u−) and V u+
.

Corollary 4.3. Let V ∈ OS
g . Then

ch(V ) = ch(U(g)⊗U(p) V u+
) = ch(U(u−)) · ch(V u+

)

Depending upon the structure of the Lie algebra, ch(U(u−)) and V u+

may be computed more readily than ch(V ). For example, choose S so that
aij 6= 0 for all i, j ∈ I\S . The subalgebra gS of g and hence its universal
enveloping algebra U(gS) act via the adjoint action on g . Identify the root
−αj ∈ −∆+ of g with the weight of the highest weight vector fj of the
standard gS -module LgS

(−αi) = U(gS) · fj ⊂ g . By Theorem 5.1 in [9]
g = u+ ⊕ (gS + h)⊕ u− , where u− is the free Lie algebra over the vector space∑

j∈I\S L(−αi).
Then

ch(U(u−)) = 1−
∑

j∈I\S

ch(LS(−αj)) =
∏

ϕ∈∆+\∆S
+

(1− e−ϕ)dim F (V )−ϕ

and
ch(V ) =

∏
ϕ∈∆+\∆S

+

(1− e−ϕ)dim F (V )−ϕ

ch(V u+
). (1)

In the case of the monster Lie algebra, one can choose S so that gS = sl2 .
Then each L(−αi) is a finite dimensional sl2 -module of highest weight −α1 . For
this case equation (1) specializes to Borcherds’ product formula for the modular
function j(τ) [2]. Formula (1) appears in [8],[9] and is used in [10] to further
elucidate a portion of the monstrous moonshine phenomenon already studied in
[2].

Computing the homology Hn(g, V ) for V ∈ OS
g can also be reduced to

computing the homology groups for modules for the smaller Lie algebra gS .

Corollary 4.4. For a g -module V in OS
g

Hn(g, V t) ' Hn(p, (V u+
)t).

Proof. This corollary follows from Theorem 3.4 and Proposition 4.2 of [3].
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