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Abstract. Suppose G is a real connected simple noncompact Lie group with
(using standard notation) Iwasawa decomposition G = KAN . If M = Z(A)∩K ,
the group B = MAN is a minimal parabolic subgroup of G . Since A is a vector
group and N is a simply connected nilpotent group, the topological structure of
B is determined by the structure of M . When G is a linear group the structure
of M is well known. However, if G is not a linear group there is very little
available information about M . Our purpose here is to give a description of the
group M for any connected, simply connected, nonlinear simple group G .

1. Introduction and Notation

Let g be a real simple Lie algebra with gC its complexification. Suppose G is a real
connected Lie group with Lie algebra g . If G has finite center, G has an Iwasawa
decomposition G = KAN . That is, K is a maximal compact subgroup of G , A
is a maximal vector subgroup of G with Ad(A) consisting of semisimple elements,
and N is a maximal nilpotent group normalized by A . If G does not have a finite
center, G is a covering of a group with finite center; the Iwasawa decomposition
still holds if K is the inverse image of the maximal compact subgroup by the
covering map Ad : G −→ Ad(G). If M = Z(A) ∩ K , the group MAN is a
minimal parabolic subgroup of G . Unlike the case when G is a linear group, the
structure of M is not known when G is not a linear group.

Let k,m, a, and n be the respective Lie algebras of K,M,A , and N .
When G is a linear group M = Z1 ·M0

∼= Z1 ×M0 where M0 is the connected
component of the identity of M and Z1 is a subgroup of (exp ia)∩K isomorphic
to Zr

2 for some r ≤ dim a (Satake [12], Helgason [7]). If G ⊂ GC where GC

is a connected and simply connected Lie group with Lie algebra gC , it is known
that r is the number of white dots in the Satake diagram of G that are neither
attached to another white dot by an arrow nor adjacent to a black dot (Johnson
[10]). If π : G̃ −→ G is a nontrivial covering of G with K̃ = π−1(K), then
G̃ = K̃AN where A and N are as above. If M̃ = π−1(M), then M̃ = Z(A) ∩ K̃
and M̃AN is a minimal parabolic subgroup of G̃ . Again M̃ = Z̃1 · M̃0 where M̃0

is the connected component of the identity of M̃ and Z̃1 is a discrete subgroup.
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A priori , the group Z̃1 need not be either finite or abelian. Indeed we will show
that Z̃1 is in general not abelian. However, it is true that the group Z̃1 is finite
provided G/K is not a tube type domain.

Our main goal in this paper is to give a complete description of the structure
of M̃ for any simply connected group G̃ . To establish our footing we first prove
two results that should be well known.

Proposition 1.1. The Group G is a linear group Lie group if and only if it is
isomorphic to a subgroup of GC .

Proof. If G ⊂ GC , G is linear since GC is already linear. On the other hand,
if G is linear, we may assume G is a subgroup of GL(n,C) for some n . Then G
is a subgroup of the analytic subgroup of GL(n,C) whose Lie algebra is gC .

Theorem 1.2. Suppose G ⊂ GC with GC simply connected. Then no nontriv-
ial covering group of G is linear.

Proof. Suppose G̃ is a nontrivial covering group of G . Then G̃/F ∼= G for
some discrete group F with |F | > 1. Since any finite dimensional representation
σ of G̃ extends to a representation of GC , σ(F ) = I .

In particular, note that the double cover of SL(n,R) is not a linear group.

This paper begins with a brief review of the Clifford algebra and spinors
followed by an examination of the finite group Dn and its representations. The
bulk of the paper deals with the case by case study of the exceptional groups.
Moreover, since every real simple exceptional simple Lie algebra may be realized
as a subalgra of a real form of e8 , we devote several sections to explicitly describe
a real form of the Lie algebra e8 . Sections 2, 3, and 4 are devoted to recalling
results about the Clifford algebra, the group Dn and spinors. In sections 5 and 6,
we explicitly construct the Lie algebra e8,C . In sections 7 and 8, we obtain the split
real forms of e8,C, e7,C, e6,C, f4,C and the corresponding simply connected groups,
and in section 9, we construct the corresponding groups M̃ . The split group
G̃2(2) is considered in section 10. The remaining nonsplit exceptional groups are
examined in sections 11 through 16, and the classical groups are dealt with in
section 17. The final results describing the structure of M̃ are summarized in
section 18.

This paper grew out of joint work with Adam Korányi and Martin Reimann.
I am particularly indebted to Adam Korányi for comments and suggestions. I am
also grateful to David Benson who acquianted me with the properties of the group
Dn .
Notation:

1. In the subsequent sections E6,C , E7,C , E8,C , F4,C , and G2,C will all denote
complex simply connected simple exceptional Lie groups. We will use the
notation from [6] to denote specific real exceptional groups; the groups
E6(6), E6(2), E6(−14), E6(−26) denote connected noncompact real forms of E6,C ;
the groups E7(7), E7(−5), E7(−25) denote connected noncompact real forms of
E7,C ; the groups E8(8), E8(−24) denote connected noncompact real forms of
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E8,C ; the groups F4(4), F4(−20) denote connected noncompact real forms of
F4,C ; and, the group G2(2) denotes a connected noncompact real form of
G2,C .

2. The corresponding simply connected covering groups will be denoted by
placing tilde over the letter E,F, or G .

3. The corresponding exceptional Lie algebras will be denoted by boldface lower
case letters.

4. The symbol 〈x1, . . . , xn〉 will denote either the complex or real linear span
of x1, . . . , xn or the group generated by these terms. The precise meaning
will be clear from the context.

2. The Clifford Algebra

Let (, ) denote the standard inner product on Rn . Extend (, ) to be bilinear on
Cn×Cn . The respective tensor algebras of Rn and Cn will be denoted by T (Rn)
and T (Cn). If I(Rn) is the two sided ideal of T (Rn) generated by all elements
of the form x⊗ x + (x, x)1 (x ∈ Rn) and I(Cn) is the two sided ideal of T (Cn)
generated by all elements of the form z ⊗ z + (z, z)1 (z ∈ Cn), then C(Rn) =
T (Rn)/I (Rn) is the Clifford algebra of Rn and C(Cn) = T (Cn)/I (Cn) is the
Clifford algebra of Cn . Since T (Cn) = T (Rn) ⊗R C and I(Cn) = I (Rn) ⊗R C ,
we have C(Cn) = C (Rn) ⊗R C . If a, b ∈ C(V) denote their product in C(V)
by a · b . An element of an irreducible C(V)-module is called a spinor. We now
use one of the many well known constructions construct irreducible C(Rn) and
C(Cn)-modules. The one we are using may be found in Cartan [5].

Let {ej : 1 ≤ j ≤ n} be the standard basis for Rn . Suppose first that
n = 2k . Set fj = (e2j−1 − ie2j)/

√
2, and gj = (e2j−1 + ie2j)/

√
2 for j ≤ k .

Note that (fj, gl) = δjl . The spaces W = 〈f1, · · · , fk〉 and W̄ = 〈g1, · · · , gk〉 are
maximally isotropic subspaces and are dual to each other with respect to the inner
product.

Set
∗∧
W =

k⊕
j=0

j∧
W,

e∧
W =

[k/2]⊕
j=0

2j∧
W,

and
o∧
W =

[(k−1)/2]⊕
j=0

2j+1∧
W

where, as usual,
∧0W = C . Consider the map

γ : {f1, · · · , fk, g1, · · · , gk} → End
∗∧
W

defined by setting γ(fj)ω = fj ∧ ω and γ(gj)ω = −2ι(gj)ω . Now γ extends
to a linear map of Cn into End

∧∗W and hence to an algebra map of T (Cn)
into End

∧∗W . Since γ maps any z ⊗ z + (z, z)1 to zero, I(Cn) is in the
kernel of γ . Hence γ induces an algebra map of C(Cn) into End

∧∗W . Since
C(Cn) = 〈ei1 · · · eir : i1 < · · · < ir〉 , we have
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dimC(Cn) ≤ 2n = 22k = dimEnd
∧∗W .

Notation: Set S = {1, · · · , k} and for I ⊂ S set fI = fi1 ∧ · · · ∧ fir where
I = {i1, · · · , ir} and i1 < · · · < ir .

Theorem 2.1. The space
∧∗W is an irreducible C(Cn)-module.

Proof. If U is a C(Cn)-submodule and 0 6= ω ∈ U by applying appropriate
γ(gj)

′s , we see that fφ = 1 is in U . Similarly, by applying appropriate γ(fj)
′s ,

we see that U = 〈fI : I ⊂ S〉 . Hence U =
∧∗W .

By Burnsides’ theorem (see [8]) γ(C(Cn)) = End
∧∗W , and by dimension

we have that γ is an isomorphism and dimC(Cn) = 2n .

If n = 2k + 1, define W and W̄ as before. Also, define γ on Cn−1 as
above. We extend γ to all of Cn by setting γ(e2k+1) = i on

∧eW and = −i on∧oW . Thus C(C2k) is a simple associative algebra.

Note that if zεC2k , γ(z) interchanges
∧eW and

∧oW , but γ(e2k+1) leaves
both spaces invariant.

Since C(V) is an associative algebra, it has the natural structure of a Lie
algebra where [a, b] = a · b− b · a .

Let

g(n) = 〈x · y : (x, y) = 0, x, yεRn〉 and g(n)C = 〈u · v : (u, v) = 0, u, vεCn〉.

Proposition 2.2. g(n) and g(n)C are Lie algebras.

The proposition is well known and its proof follows from a direct calculation.

Note that

[u · v, w] = 2(u,w)v − 2(v, w)u(u, v, wεCn).

The map u · v → 2(v ⊗ ut − v ⊗ ut) is a Lie algebra map of g(n)C onto
on(n,C) that restricts to a map of g(n) onto o(n). We then obtain the following
result.

Proposition 2.3. g(n) ∼= o(n), g(n)C ∼= on(n,C), and g(n)C ∼= g(n)⊗R C.

The group G(n) will be the group of all even products of the form v1 · · · v2l

with v1, · · · , v2l unit vectors in Rn .

Proposition 2.4. G(n) is an analytic group with Lie algebra g(n).

Proof. Suppose x·y ∈ g(n) with x and y both unit vectors. Since (x·y)2 = −1,
etx·y = cos t+ sin tx · y = x · (− cos tx+ sin ty).

Also, if |v1| = |v2| = 1, v1 · v2 = v1 · (− cosψv1 +sinψw) where (v1, w) = 0.
The proof now follows.

Let G(n)C be the analytic subgroup of C(Cn) having Lie algebra g(n)C .
The bracket operations on C(Cn) and C(Rn) turn Cn and Rn into respective
g(n)C and g(n)-modules. Let τ : g(n)C → EndCn , τ : g(n) → EndRn

denote the representations induced by the bracket operation. Then τ induces
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representations (also denoted by τ ) of G(n)C on Cn and of G(n) on Rn where
τ(g)v = g·v·g−1 .

As τ is a Lie algebra isomorphism, we see that τ : G(n) → SO(n) is a
covering homomorphism. Hence τ : GC → SO(n,C) is also a covering homo-
morphism. As τ((e1, e2)

2) = τ(−I) = 1, we see that G(n) = Spin(n) and so
G(n)C = Spin(n,C) for n ≥ 3

If n = 2k + 1, Z(SO(n)) is trivial and so Z(Spin(n)) = {±I} . Now

(e1 · · · en) · ej = (−1)n+1ej · (e1 · · · en).

Hence, if n is even, e1 · · · en ∈ Z(Spin(n)). A simple calculation yields

(e1 · · · e2j)
2 = (−I)j.

Thus, if n is even, Z(SO(n)) = {I,−I} and Z(Spin(n)) = {±I,±e1 · · · en} . If
n ≡ 0 mod 4, (e1 · · · en)2 = 1 and so Z(Spin(n)) = Z2 × Z2 . If n ≡ 2 mod 4,
(e1 · · · en)2 = (−1) and Z(Spin(n)) = Z4 .

As γ : C(Cn) → End
∧∗W is a Lie algebra homomorphism, it restricts

to a Lie algebra homomorphism of g(n)C . Hence γ induces representations of
Spin(n,C) and of Spin(n) on

∧∗W . Note that for n even
∧eW and

∧oW are
both Spin(n)-modules.

Proposition 2.5. If n is odd,
∧∗W is an irreducible Spin(n)-module.

If n is even,
∧eW and

∧oW are irreducible and inequivalent Spin(n)-
modules.

We will not prove this result here but will prove a much stronger result in
the next section.

Remark. Note that for n = 2k + 1,

p± =
1± ik+1(e1 · · · en)√

2

are commuting central idempotents of C(Cn), and so

C(Cn) ∼= C(C2k)⊕ C(C2k)

as an associative algebra.

3. The group Dn

Let Dn = {ei1 · · · ei2l
: 1 ≤ i1, . . . , i2l ≤ n} . Now Dn is a subgroup of Spin(n) and

Dn/{±I} ≡ {diag(ε1, . . . , εn) : ε1 · · · εn = 1, εj = ±1}

is the centralizer in SO(n) of the diagonal matrices of SL(n,R).

The following result was told to me by David Benson.

Theorem 3.1. If n is even, the modules
∧eW and

∧oW are inequivalent
irreducible Dn -modules. If n is odd,

∧∗W is an irreducible Dn -module.
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Proof. If I ⊂ S , γ(e2j−1 · e2j)fI = ifI whenever j ∈ I and γ(e2j−1·e2j)fI =
−ifI whenever j /∈ I . Suppose n = 2k and U is a Dn -submodule of

∧eW .
If f ∈

∧eW , write f =
∑
aI(f)fI where the sum is taken over all subsets

of S of even order. Set `(f) = |{I : aI(f) 6= 0}| . Select f ∈ U such that
`(f) = inf{`(F ) : 0 6= F ∈ U} . Suppose `(f) > 1 with aI(f) 6= 0 and
aJ(f) 6= 0 for sets I and J . Without loss of generality, we may assume there
is a j ∈ I ∼ J . Then (−iγ(e2j−1·e2j)(f) − f) = F ∈ U and `(F ) < `(f). This
is a contradiction. Hence `(f) = 1. So f = fI for some set I . For J ⊂ S set
eJ = e2j1−1 · · · e2j2l−1 where J = {j1, . . . , j2l} and j1 < · · · < j2l . Then for J ⊂ S ,
we have γ(eJ)γ(eI)fI = cfJ for some c 6= 0. Thus we have that fJ ∈ U for any
J ⊂ S . Therefore

∧eW is an irreducible Dn -module.

Since γ(e2j−1 · e2k−1)fk = cfj for some c 6= 0, we see that
∧oW is also

an irreducible Dn -module. To see that these two modules are inequivalent note
that an intertwining operator maps eigenvectors of the elements γ(e2j−1 · e2j) to
eigenvectors with the same eigenvalue. Since fS is the only element of

∧∗W that
is an eigenvector with eigenvalue i for each γ(e2j−1 · e2j), we see that the two
modules are inequivalent.

Similarly, it is easy to see that if n is odd,
∧∗W is an irreducible Dn -

module.

If n = 2k ,

|Dn| = 22k = 22k−1 + (2k−1)2 + (2k−1)2 =

|Dn/{±I}|+ dimEnd
e∧
W + dimEnd

o∧
W.

Hence
∧eW and

∧oW are –up to equivalence– the only irreducible Dn -modules
of dimension > 1.

Similarly, if n = 2k + 1,

|Dn| = 22k + 22k = |Dn/{±I}|+ dimEnd

∗∧
W.

Hence
∧∗W is the only irreducible Dn -module of dimension > 1.

4. The Lie Algebra g(n)C

If n = 2k set hj = −i/2e2j−1 · e2j = −1/4(fj · gj − gj · fj) and let h = 〈hj : j ≤ k〉 .
Note that [hj, fl] = δj,lfl and [hj, gl] = −δj,lgl . Set n = 〈fj · fl, fj · gl : j < l ≤ k〉
and n = 〈gj · gl, gj · fl : j < l ≤ k〉 . If n = 2k , n and n are maximal nilpotent
Lie subalgebras of g(n)C normalized by h , and g(n)C = n + h + n . In this case
we see that h is a Cartan subalgebra of g(n)C . Let εl ∈ h∗ be such that for
H =

∑k
j=1 zjhj , εj(H) = zj . Then, if Σ(ad) denotes the root system of g(n)C ,

we have Σ(ad) = {±εj ± εl : 1 ≤ j < l ≤ k} .

If n = 2k + 1, set ñ = n + 〈fj·e2k+1 : 1 ≤ j ≤ k〉 and
ñ = n + 〈gj·e2k+1 : 1 ≤ j ≤ k〉 .

In this case, ñ and ñ are maximal nilpotent Lie algebras normalized by h ,
g(n)C = ñ + h + ñ and

Σ(ad) = {±εj ± εl : 1 ≤ j < l ≤ k} ∪ {±εj : 1 ≤ j ≤ k} .
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We now examine the representation γ of g(n)C . If H =
∑k

j=1, zjhj and
I ⊂ S ,

γ(H)fI = 1/2(
∑
j∈I

zj −
∑

j∈S∼I

zj)fI .

Hence, the weights of γ are Σ(γ) = {1/2(±ε1± · · · ± εk)} . If n = 2k , γ = γe ⊕ γo

where γe and γo are the respective representations of g(n)C on
∧eW and

∧oW .
Then Σ(γe) consists of those weights in Σ(γ) that have an even number of plus
signs in their expansions, and Σ(γo) consists of the weights of Σ(γ) that have an
odd number of plus signs in their expansions.

Proposition 4.1. As a g(2k + 1)C -module, End
∧∗W ∼= ⊕k

l=0

∧l C2k+1 .

Proof. Consider the linear map Γ :
∧l Cn → End

∧∗W such that

Γ(ψ1 ∧ · · · ∧ ψl)ω = 1/l!
∑
σ∈Pl

(sgnσ)γ(ψσ(1)) · · · γ(ψσ(l))ω.

A simple calculation shows that Γ is an intertwining operator for any l . Using
the fact that as g(n)C -modules,

∧l Cn ∼=
∧n−l Cn , and noting that

dim(C⊕ · · · ⊕
k∧

C2k+1) = 22k = End
∗∧
W,

we have our result.

Since C2k+1 = C2k ⊕Ce2k+1 , we see that as g(2k)C -modules,

End
∗∧
W ∼= C⊕⊕k

l=1(
l∧

C2k ⊕
l−1∧

C2k).

Thus we obtain the following.

Proposition 4.2. If n = 2k , as a g(n)C -module,
End

∧∗W ∼= 2(⊕k
l=0(

∧l C2k))⊕
∧k C2k .

Recall that the g(2k)C -module,
∧l C2k , is irreducible for l 6= k , and∧k C2k = U! + U2 where U1 is the irreducible module with highest weight vector

f1∧· · ·∧fk , and U2 is the irreducible module with highest weight vector f1∧· · ·∧
fk−1 ∧ gk .

Proposition 4.3. The following are g(2k)C -module isomorphisms.

(α) If k = 2l + 1,

End
∧eW ∼= End

∧oW ∼=
⊕l

j=0

∧2j C2k ,

Hom(
∧eW,

∧oW ) ∼=
⊕l−1

j=0

∧2j+1 C2k ⊕ U1 ,
and

Hom(
∧oW,

∧eW ) ∼=
⊕l−1

j=0

∧2j+1 C2k ⊕ U2 .

(β) If k = 2l ,

End
∧eW ∼=

⊕k−1
j=0

∧2j C2k ⊕ U1 , End
∧oW ∼=

⊕k−1
j=0

∧2j C2k ⊕ U2 ,
and

Hom(
∧oW,

∧eW ) ∼= Hom(
∧eW,

∧oW ) ∼=
⊕l−1

j=0

∧2j+1 C2k .
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Proof. Note that Γ(f1 ∧ · · · ∧ fk) = 0 on
∧oW and

Γ(f1 ∧ · · · ∧ fk−1 ∧ gk) = 0 on
∧eW . If k is even, these operators preserve the

parity of a form and if k is odd they reverse the parity. Note also that Γ(f1∧· · · fr)
preserves parity if r is even and reverses parity if r is odd. Our proposition now
follows from proposition 4.2.

We have already seen that the space of g(2k+ 1)C -invariants in
∧∗W ⊗

∧∗W is
one dimensional. Suppose ω =

∑
I⊂S a(I, S ∼ I)fI ⊗ fS∼I

is an invariant. Then γ(fp·fq)(ω) = 0, and if J ∩ {p, q} = Ø and K = J ∪ {p, q} ,
we have

a(J, S ∼ J)fp ∧ fq ∧ fJ ⊗ fS∼J + a(K,S ∼ K)fK ⊗ fp ∧ fq ∧ fS∼K = 0.
Without loss of generality we may assume p < q , |{1, . . . , p − 1} ∩ J | = l and
|{1, . . . q − 1} ∩ J | = m . Then fp ∧ fq ∧ fJ = (−1)l+mfK and

fp ∧ fq ∧ fS∼K = (−1)p+q+l+m+1fS∼J .

Hence we have a(K,S ∼ K) = (−1)p+qa(J, S ∼ J). Similarly,
γ(fq·e2k+1)(ω) = 0.

So, if L = J ∪ {q} , we have a(L, S ∼ L) = (−1)q+|S|a(J, S ∼ J). Finally,
setting a(Ø, S) = 1 and σ(I) =

∑
j∈I j , we have a(I, S ∼ I) = (−1)σ(I)+k|I| where

k = |S| . Now σ(I) ∼= σ(S ∼ I) mod 2 if and only if k ∼= 0 mod 4 or k ∼= 3 mod 4,
and σ(I) ∼= −σ(S ∼ I) mod 2 if and only if k ∼= 1 mod 4 or k ∼= 2 mod 4.
Thus we have a(I, S ∼ I) = a(S ∼ I, I) if k ∼= 0 mod 4 or k ∼= 1 mod 4, and
a(I, S ∼ I) = −a(S ∼ I, I) if k ∼= 2 mod 4 or k ∼= 3 mod 4. Summarizing our
results, we have the following.

Proposition 4.4. For any k > 0 there is a unique, up to scalar multiple,

g(2k + 1)C -invariant ω ∈
∧∗W ⊗

∧∗W with the following properties.

1. ω is nondegenerate.

2. If k is odd,
∧eW and

∧oW are maximally isotropic spaces w.r.t. ω .

3. If k is even,
∧eW and

∧oW are mutually orthogonal.

4. If k ∼= 0 mod 4 or k ∼= 1 mod 4, ω is a symmetric form.

5. If k ∼= 2 mod 4 or k ∼= 3 mod 4, ω is a skew-symmetric form.

6. The form ω is the sum of two g(2k)C -invariant forms.

Corollary 4.5. 1. If k ∼= 0 mod 4 or 1 mod 4, g(2k + 1)C ⊂
∧2(

∧∗W ).

2. If k ∼= 2 mod 4 or 3 mod 4, g(2k + 1)C ⊂ S2(
∧∗W ).

3. If k ∼= 0 mod 4, g(2k)C may be considered as a subset of either
∧2(

∧eW )
or of

∧2(
∧oW ).

4. If k > 2 and k ∼= 2 mod 4, g(2k)C may be considered as a subset of either
S2(

∧eW ) or of S2(
∧oW ).

5. g(4)C is the direct sum of two ideals with one contained in S2(
∧eW ) and

the other contained in S2(
∧oW )

We conclude this section with another result about the group Dn .
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Proposition 4.6. If V1 , V2 , and V3 are irreducible Dn -modules,
dim HomDn(V3, V1 ⊗ V2) ≤ 1.

Proof. We prove this for n odd. If either V1 or V2 is one dimensional, the
result is obvious. If V1

∼= V2
∼=

∧∗W , the space V1 ⊗ V2 is the direct sum of
inequivalent one dimensional representations.

The proof for n even is similar.

5. General Results

Let k be a complex reductive Lie algebra with Lie bracket [, ]0 . Suppose ρ :
k → Endp is an irreducible representation and Φ :

∧2 p → k is a k intertwining
operator. Set g = k + p and define [, ] : g × g → g by setting

[x+ u, y + v] = [x, y]0 + ρ(x)v − ρ(y)u+ Φ(u ∧ v)
for x, y ∈ k and u, v ∈ p . Clearly, [, ] is skew symmetric and bilinear. For
α, β, γ ∈ g set

J(α, β, γ) = [[α, β], γ] + [[β, γ], α] + [[γ, α], β] .

Now g is a Lie algebra if and only if J = 0.

(i) If α, β, γ ∈ k , then J(α, β, γ) = 0.

(ii) If |{α, β, γ} ∩ k| = 2, J(α, β, γ) = 0 as ρ is a representation of k .

(iii) If |{α, β, γ} ∩ k| = 1, J(α, β, γ) = 0 as Φ intertwines k .
Hence we see that g is a Lie algebra if and only if J(α, β, γ) = 0 for any α, β, γ ∈ p .

For X ∈ k and α, β, γ ∈ p we have the identity

ρ(X)(J(α, β, γ)) = J(ρ(X)α, β, γ) + J(α, ρ(X)β, γ) + J(α, β, ρ(X)γ).

Suppose k = n∗ + h + n with h a Cartan subalgebra, h + n a Borel
subalgebra, and n∗ + h the opposite Borel.

Lemma 5.1. J = 0 if and only if J(α0, β, γ) = 0 where 0 6= α0 ∈ pn and β
and γ are arbitrary elements of p.

Proof. If J(αo, β, γ) = 0 for any β, γ ∈ p , it follows from the equation above
that J(ρ(X1)α0, β, γ) = 0 for any X1 ∈ n∗ and any β, γ ∈ p . By induction on
r , it follows that J(ρ(X1) · · · ρ(Xr)α0, β, γ) = 0 for any X1, . . . , Xr ∈ n∗ and any
β, γ ∈ p . Since p is an irreducible k-module, it follows that J = 0. The opposite
implication is trivial.

Fix 0 6= β0 ∈ pn∗

Theorem 5.2. J = 0 if and only if J(α0, β0, γ) = 0 for any γ ∈ p.

Proof. Suppose J(α0, β0.γ) = 0 for any γ ∈ p . For X ∈ n we have
J(α0, ρ(X)β0, γ) = −J(α0, β0, ρ(X)γ) = 0, an d so, for X1, . . . , Xr ∈ n we have

J(α0, ρ(X1) · · · ρ(Xr)β0, γ) = (−1)rJ(α0, β0, ρ(Xr) · · · ρ(X1)γ) = 0.
Since ρ(U(n))β0 = p , it follows from lemma 1 that J = 0.

The opposite implication is obvious.

Note that we may replace Φ by cΦ for any c 6= 0.
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6. The Complex Lie Algebra e8,C

In this section we will construct the complex Lie algebra e8,C . Although it is
apparent from Cartan’s list of symmetric spaces ( Helgason [6] ) that such a
construction exists, we will need the explicit construction given here in subsequent
sections. Suppose n = 2k and let g(n)C and

∧∗W be as in section 3. In order
to construct a Lie algebra on g(n)C +

∧eW as in section 4 with k = g(n)C and
p =

∧eW , since k is simple whenever k > 2, we must have k ⊂
∧2 ∧eW . Hence,

k = 4l for some integer l .

Since γ is an irreducible faithful representation of k not equivalent to ad ,
k + p must be a simple Lie algebra if it is a Lie algebra provided Φ :

∧2 p → k is
nontrivial. Moreover, if k + p is a Lie algebra, a Cartan subalgebra of k is also
a Cartan subalgebra of k + p , since 0 /∈ Σ(γ). So, if k + p = lk is a Lie algebra,
it is simple of rank k and dimension k(2k − 1) + 2k−1 . A simple examination of
dimensions and ranks shows that lk can be a simple Lie algebra only for k = 4 or
8. Apriori we may have either l4 = B4 or l4 = C4 , or l8 = e8 . By construction,
we see that l4 ∼= B4 . We devote the rest of this section to an examination of the
case k = 8.

For the rest of this section we take S = {1, . . . , 8} . For I ⊂ S with
I = {i1, . . . , ip} and i1 < · · · < ip set fI = fi1 ∧ · · · ∧ fip , f̃I = fi1 · · · fip , and
g̃I = gi1 · · · gip . Set I ′ = S ∼ I .

Suppose l8 has the structure of a Lie algebra. Let I, J ⊂ S with |I| and
|J | even and [fI , fJ ] 6= 0. Setting

µ = 1/2(
∑

j∈I∪J

εj −
∑

j∈I′∪J ′

εj)

we have µ ∈ Σ(ad) where Σ(ad) is the root system of k . Moreover, if µ ∈ Σ(ad),
µ = ±εj ± εr for j 6= r . An elementary calculation yields the following.

Lemma 6.1. Suppose I, J ⊂ S with I and J even. If [fI , fJ ] 6= 0, one of the
following holds.

1. |I ∩ J | = 2 and |I|+ |J | = 10, or equivalently, |I ′ ∩ J ′| = 0 and
|I ′|+ |J ′| = 6.

2. |I ∩ J | = 1 and |I|+ |J | = 8, or equivalently, |I ′ ∩ J ′| = 1 and
|I ′|+ |J ′| = 8.

3. I ′ = J .

4. |I ∩ J | = 0 and |I|+ |J | = 6, or equivalently, |I ′ ∩ J ′| = 2 and
|I ′|+ |J ′| = 10.

Lemma 6.2. Suppose I, J ⊂ S with I and J even and [fI , fJ ] 6= 0.

1. If |I ∩ J | = 2 and |I|+ |J | = 10, [fI , fJ ] = cf̃I∩J .

2. If |I ∩ J | = 1 and |I|+ |J | = 8, [fI , fJ ] = cfI∩J · gI′∩J ′ .

3. If J = I ′ , [fI , fJ ] ∈ h.
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4. If |I ∩ J | = 0 and |I|+ |J | = 6, [fI , fJ ] = cg̃I′∩J ′ .

The proof of this lemma follows immediately from an examination of the root
spaces of k .

Lemma 6.3. Suppose I, J,K ⊂ S with |I|, |J |, and |K| all even. If [fI , fJ ] 6=
0 and [fI , fK ] 6= 0, then [fJ , fK ] = 0.

Proof. If |I| = 0, lemma 6.1 guarantees that |J |+ |K| ≥ 12, and so by lemma
6.1, [fJ , fK ] = 0.

If |I| = 8, lemma 6.1 states that |J |+ |K| ≤ 4, and so again by lemma 6.1,
[fJ , fK ] = 0.

If |I| = 2, lemma 6.1 states that 4 ≤ |J |, |K| ≤ 8. From lemma 6.1
we need to consider only the cases (|J |, |K|) = (4, 4), (|J |, |K|) = (4, 6), and
(|J |, |K|) = (6, 4). If |J | = |K| = 4, I ∩ J = I ∩K = Ø and so |J ∩K| ≥ 2 and
hence the bracket is 0. If |J | = 4 and |K| = 6, we have I∩J = Ø and |I∩K| ≤ 1.
Then |J ∩K| ≥ 3 and the bracket again must be 0. The case (|J |, |K|) = (6, 4)
is clear.

If |I| = 4, lemma 6.1 states that 2 ≤ |J |, |K| ≤ 6. Since [fJ , fK ] = 0 if
|J | + |K| ≤ 4 or |J | + |K| ≥ 12 we need to consider the cases where (|J |, |K|) is
one of the pairs (2, 4), (2, 6), (4, 2), (4, 4), (4, 6), (6, 2) or (6, 4). For (|J |, |K|) =
(2, 4), |I ∩ J | = 0 and |I ∩ K| ≤ 1, and hence |J ∩ K| ≥ 1. Thus the bracket
is 0in this case and also if (|J |, |K|) = (4, 2). If (|J |, |K|) = (2, 6), we now have
|J ∩K| = 2, and hence the bracket is 0 in this case and also if (|J |, |K|) = (6, 2).
For (|J |, |K|) = (4, 4), we have |I ∩ J | ≤ 1 and |I ∩K| ≤ 1. This guarantees that
|J ∩ K| ≥ 2 and hence the bracket is 0. If (|J |, |K|) = (4, 6) or (6, 4), we have
|J ∩K| ≥ 3 and again the bracket is 0.

If |I| = 6, 0 ≤ |J |, |K| ≤ 4. Since the bracket is 0 if |J | + |K| ≤ 4,
we need now only consider the cases where (|J |, |K|) = (2, 4), (4, 2) or (4, 4). If
(|J |, |K|) = (2, 4), |I ∩J | ≤ 1 and |I ∩K| = 2. Thus |J ∩K| ≥ 1 and the bracket
is 0 in this case and in the case where (|J |, |K|) = (4, 2). Finally, if |J | = |K| = 4,
we have |I ∩ J | = |I ∩ K| = 2 and thus |J ∩ K| ≥ 2. This guarantees that the
bracket is 0 in the case.

We now proceed to define [, ] : p × p → k . From the simplicity of k we
know that [f1∧f2, fS] is a non zero multiple of f1 ·f2 . Setting [f1∧f2, fS] = f1 ·f2 ,
the intertwining condition now forces the remaining brackets.

Lemma 6.4. If |I| = 2, [fI , fS] = f̃I .

Proof. If I = {1, 2} we already have the result. Suppose I = {1, k} with
k > 2. Then we must have

−2f̃I = [fk · g2, f1 · f2]0 = [γ(fk · g2)(f1 ∧ f2), fS] + [f1 ∧ f2, γ(fk · g2)fS] =

[γ(fk · g2)f1 ∧ f2, fS] + 0 = −2[fI , fS].

Thus we have our result in this case. The proofs for I = {2, k} (2 < k) and
I = {k, l} (2 < k < l) are similar.

Recall that σ(I) =
∑

j∈I j .
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Lemma 6.5. [fI , fI′ ] = (−1)σ(I)(1/2)(
∑

j∈I hj −
∑

j∈I′ hj).

Proof. Clearly, [fØ, fS] =
∑8

j=1 ajhj for some a1, . . . , a8 . As

[fj · fk, [fØ, fS]] = [fj ∧ fk, fS] = −(aj + ak)fj · fk = fj · fk,

aj + ak = −1 for all j, k . Hence aj = −1/2 for all j , and
[fØ, fS] = −1/2(

∑8
j=1 hj).

Now

[gj · gk, [fj ∧ fk, fS]] = [−4fØ, fS] + 4(−1)j+k[fj ∧ fk, fS∼{j,k}] =

[gj · gk, fj · fk] = −2(fj · gj − gk · fk) = 4(hj + hk).

Hence

[fj ∧ fk, fS∼{j,k}] = (−1)j+k(hj + hk − (1/2)(
8∑

l=1

hl)),

and the result holds in this case. Moreover, since (−1)σ(I) = (−1)σ(I′) , the result
holds if |I| is 0, 2, 6 or 8, It remains only to consider the case where |I| = 4.

Suppose I = {a, b, c, d} where a < b < c < d . Since

[f{c,d}, f{c,d}′ ] = (−1)c+d(1/2)(hc + hd −
∑

j∈{c,d}′
hj),

we have after applying fa · fb that [fI , f{c,d}′ ] = (−1)c+dfa · fb . Thus, we have

[ga · gb, [fI , f{c,d}′ ]] = −4[f{c,d}, f{c,d}′ ] + 4(−1)a+b[fI , fI′ ] = (−1)c+d4(ha + hb).

After rearranging terms, our result also holds in this case.

The remaining brackets will be obtained as follows. Suppose u, v ∈ p with
[u, v] known and X ∈ k such that γ(X)u = 0. Then [u, γ(X)v] = [X, [u, v]] .

Lemma 6.6. Suppose |I| = 2, |J | = 6, and |I ∩ J | = 1, then
[fI , fJ ] = ±(1/2)fI∩J · gI′∩J ′ .

Proof. Suppose {a} = I ∩ J and {b} = I ′ ∩ J ′ . Then γ(fa · gb)fI′ = ±2fJ .
Thus [fI , fJ ] = ±1/2[fa · gb, [fI , fI′ ]] and our result now follows from lemma 6.5.

Lemma 6.7. Suppose |I| = 2, |J | = 4 and I ∩ J = Ø. Then [fI , fJ ] =
±(1/4)g̃(I∪J)′ .

Proof. Suppose {a, b} = (I ∪ J)′ . The proof follows from the identity

[fI , γ(ga · gb)fI′ ] = [ga · gb, [fI , fI′ ]].

We summarize the remaining possible brackets in the following lemma; the
proofs are similar to those above.
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Lemma 6.8. 1. If |J | = 6, [fØ, fJ ] = (−1)σ(J ′)+1(1/4)gJ ′ .

2. If |I| = 4, |J | = 6 and |I ∩ J | = 2, then [fI , fJ ] = ±fI∩J .

3. If |I| = 4, |J | = 4 and |I ∩ J | = 1, then [fI , fJ ] = ±(1/2)fa · gb where
{a} = I ∩ J and {b} = I ′ ∩ J ′ .
The remaining brackets are obtain from the skew symmetry of [, ] .

Theorem 6.9. The bracket operation turns k + p into a simple Lie algebra.

Proof. Since [, ] :
∧2 p → k is a k intertwining operator, we need only check

that the Jacobi identity J(u, v, w) = 0 holds for u, v, w ∈ p . From theorem 5.2 we
need only check that J(fS, fØ, fI) = 0 for any I ⊂ S with |I| even. For |I| = 0
or 8 the result is obvious.

For |I| = 2,

J(fS, fØ, fI) = [[fS, fØ], fI ] + [[fI , fS], fØ] =

γ(1/2
8∑

j=1

hj)fI + fI = 1/4(−2 + 4)fI + fI = 0.

For |I| = 4,

J(fS, fØ, fI) = [[fS, fØ], fI ] = γ(1/2
8∑

j=1

hj)fI = 0.

For |I| = 6,

J(fS, fØ, fI) = [[fS, fØ], fI ] + [[fØ, fI ]fS] = fI + [[fØ, fI ], fS].

If I ′ = {a, b} with a < b , [fØ, fI ] = (−1)a+b+11/4ga·gb . Hence

J(fS, fØ, fI) = fI + (−1)a+b+1(1/4)γ(ga · gb)fS = fI − fI = 0.

Thus we see that g = k + p has the structure of a Lie algebra. Since it is
simple of rank 8 and dimension 248, it must be e8,C .

7. Real Forms e8(8), e7(7) , e6(6) , and f4(4)

Throughout this section ej(j) will denote a real split Lie algebra of ej,C . Fix
kR = g(16) = spin(16). For I ⊂ S set

X(I) = 2|I
′|/2fI + (−1)σ(I)2|I|/2fI′

and
Y (I) = i(2|I

′|/2fI − (−1)σ(I)2|I|/2fI′).

Let pR = 〈X(I), Y (I) : I ⊂ S, |I| even 〉 . For convenience set
ε(I) = (−1)σ(I) . Note that X(I) = ε(I)X(I ′) and Y (I) = −ε(I)Y (I ′).

Suppose I ⊂ S , l /∈ I and J = I ∪ {l} . If |I ∩ {1, . . . , l− 1}| = p , we have
the following equations:

γ(e2l−1)X(I) = (−1)pX(J); γ(e2l−1)Y (I) = (−1)pY (J);

γ(e2l)X(I) = (−1)pY (J); and, γ(e2l)Y (I) = (−1)p+1X(J).

Since kR = 〈ej · el : j 6= l〉 , we have that [kR,pR] ⊂ pR .
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Theorem 7.1. gR = kR + pR is a Lie algebra.

Proof. Since [kR,pR] ⊂ pR , it remains only to prove [pR,pR] ⊂ kR . Since
pR is an irreducible kR -module, it suffices to prove [pR, u] ⊂ kR for a
0 6= u ∈ pR . Take u = X(Ø). Now [X(I), X(Ø)] = 0 unless |I| = 2 or |I| = 6.
Since X(I ′) = ε(I)X(I) we need only consider the case |I| = 2. In this case,

[X(I), X(Ø)] = 2|I
′|/2[fI , fS] + ε(I)2|I|/2+4[fI′ , fØ] = 23f̃I + ε(I)25[fI′ , fØ].

Applying 1 of lemma 9 we see

[X(I), X(Ø)] = 23f̃I + ε(I)25(1/4)ε(I)g̃I = 8(f̃I + g̃I) ∈ kR.

Similarly, for |I| = 2, we see that [Y (I), X(Ø)] = i8(f̃I − g̃I) ∈ kR . Finally,

[Y (Ø), X(Ø)] = 25i[fØ, fS] = −24i
8∑

j=1

hj ∈ kR.

Hence, gR is a Lie algebra.

Since gR ⊗C = g , we obtain the following.

Corollary 7.2. gR is a real form of e8,C .

We now construct a maximal abelian subalgebra a of pR . If I, J ⊂ S with
|I| = |J | = 4 and |I ∩ J | = 2 observe that [X(I), X(J)] = 0. Let

C = {Ø, {1, 2, 3, 4}, {1, 2.5.6}, {1, 2, 7, 8},

{1, 3, 5, 7}, {1, 3, 6, 8}, {1, 4, 5, 8}, {1, 4, 6, 7}}.
If a = 〈X(I) : I ∈ C 〉 , a is a maximal abelian subalgebra of pR . As dim a = 8,
the following is obvious.

Theorem 7.3. The Lie algebra gR is a real split form of e8,C . Thus gR =
e8(8) .

Suppose Tr : h → C is the map Tr(
∑8

j=1 zjhj) =
∑8

j=1 zj and
h0 = {H : Tr(H) = 0} . Setting k0 = h0 + 〈fj · gk : j 6= k〉 , we see that

k0
∼= sl(8,C). Now [k0,

∧l W ] =
∧l W and if p0 =

∧4W it follows from lemmas
7 and 10 that [p0,p0] ⊂ k0 . Hence g0 = k0 + p0 is a Lie algebra. As p0 is an
irreducible k0 -module and k0 is simple, g0 is a simple Lie algebra. Moreover,
since rank(g0) = 7 and dimg0 = 133, g0 = e7,C . Now g0,R = g0 ∩ gR is a real
form of g0 , and g0,R = k0,R + p0,R where k0,R = k0 ∩ kR and p0,R = p0 ∩ pR .
If C0 = C ∼ Ø, a0 = 〈XI : I ∈ C0 〉 is a maximal abelian subalgebra of p0,R of
dimension 7. Hence we have

Theorem 7.4. The Lie algebra g0,R is the split Lie algebra e7(7) .

We now construct the lie algebra e6(6) .

Let
Ω = f1 ∧ f2 + f3 ∧ f4 + f5 ∧ f6 + f7 ∧ f8

and
Ω∗ = g1 ∧ g2 + g3 ∧ g4 + g5 ∧ g6 + g7 ∧ g8.

Set k00 = {X ∈ k0 : X(Ω) = 0} and p00 = {u ∈ p0 : ι(Ω∗)u = 0} . Since Ω is a
non degenerate 2-form, we obtain the following.
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Proposition 7.5. k00 is the Lie algebra sp(4,C).

It is an elementary exercise to see that

k00 = 〈h2j−1 − h2j : j ≤ 4〉+

〈f2j−1 · g2j, f2j · g2j−1 : j ≤ 4〉+ 〈f2j−1 · g2k−1 − f2k · g2j : j 6= k〉+

〈f2j−1 · g2k + f2k−1 · g2j, f2j · g2k−1 + f2k · g2j−1 : j < k〉.

Moreover, restricting ourselves only to I ⊂ S with |I| = 4, we have

p00 = 〈fI : |I ∩ {2j − 1, 2j}| = 1, 1 ≤ j ≤ 4〉+

〈fI − fJ : |I ∩ J | = 2, |I ∩ J ∩ {2j − 1, 2j}| ≤ 1, 1 ≤ j ≤ 4, {2k − 1, 2k} ⊂ I,

{2k − 1, 2k} ∩ J = Ø, {2l − 1, 2l} ⊂ J, {2l − 1, 2l} ∩ I = Ø for some k, l ≤ 4〉+

〈aXJ + bXK +cXL : J = {1, 2, 3, 4}, K = {1, 2, 5, 6}, L = {1, 2, 7, 8}, a+ b+c = 0〉.

Now an elementary calculation yields

Proposition 7.6. g00 = k00 + p00 is a Lie algebra.

Now g00 is easily seen to be simple of dimension 78 with Cartan subalgebra

〈h2j−1 − h2j : j ≤ 4〉+

〈aXJ + bXK + cXL : a+ b+ c = o, J = {1, 2, 3, 4}, K = {1, 2, 5, 6}, L = {1, 2, 7, 8}〉.

As rank g00 = 6, we see that g00 = e6,C . If we set g00,R = g00 ∩ gR , we have
g00,R is a real form of e6,C . Since

a00 = 〈XI : I = {1, 3, 5, 7}, {1, 3, 6, 8}, {1, 4, 5, 8}, {1, 4, 6, 7}〉+

〈aXJ + bXK + cXL : a, b, c ∈ R, a+ b+ c = 0,

J = {1, 2, 3, 4}, K = {1, 2, 5, 6}, L = {1, 2, 7, 8}〉

is a maximal abelian subalgebra of p00,R , and is of dimension 6, g00,R is a split
real form of e8,C . In other words

Theorem 7.7. g00,R = e6(6) .

Suppose Ω0 = f3∧f4 +f5∧f6 +f7∧f8 and Ω0∗ = g3∧g4 +g5∧g6 +g7∧g8 .
Set k000 = {X ∈ k00 : XΩ0 = Ω0} and p000 = {u ∈ p00 : ι(Ω0∗)u = 0} .

Proposition 7.8. k000
∼= sl(2,C)⊕ sp(3,C)
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Proof. A direct calculation we have:

k000 = 〈h1 − h2, f1 · g2, f2 · g1〉⊕

(〈h2j−1 − h2j : 2 ≤ j ≤ 4〉+ 〈f2j−1 · g2j, f2j · g2j−1 : 2 ≤ j ≤ 4〉+
〈f2j−1 · f2k−1 − f2k · g2j : j, k > 1, j 6= k〉+

〈f2j−1 · g2k + f2k−1 · g2j, f2j · g2k−1 + f2k · g2j−1 : 1 < j < k〉).
Note that the first direct summand is sl(2,C) and the second is sp(3,C).

Similarly, we have

p000 = 〈fI : |I ∩ {2j − 1, 2j}| = 1, 1 ≤ j ≤ 4〉+

〈fI − fJ : |I ∩ J | = 2, |I ∩ {1, 2}| = 1, I ∩ {1, 2} = J ∩ {1, 2}, {2j − 1, 2j} ⊂ I,

{2j − 1, 2j} ∩ J = Ø, {2k − 1, 2k} ⊂ J, {2k − 1, 2k} ∩ I = Ø for some j, k >

Now g000 = k000 + p000 is a simple Lie algebra of rank 4 and dimension 52.
Setting g000,R = g000 ∩ g00,R we have

a000 = 〈XI : I = {1, 3, 5, 7}, {1, 3, 6, 8}, {1, 4, 5, 8}, {1, 4, 6, 7}〉

is a maximal abelian subalgebra of, p000,R . Thus we have

Theorem 7.9. g000 = f4,C , and g000,R = f4(4) .

8. The Groups Ẽ6(6), Ẽ7(7) , Ẽ8(8) , and F̃4(4)

From Bourbaki [4], we know that Z(E6,C) = Z3 , Z(E7,C) = Z2 , and
Z(E8,C) = {I} . Since Z(Ẽ8(8)) = {1, e1 · · · e16} ∼= Z2 , Ẽ8(8) is not a linear

group. However, Ẽ8(8)/Z(Ẽ8(8)) = E8(8) is a linear group and hence so are all
of its subgroups. Also, note from [4] that Z(F4,C) = {1} .

Proposition 8.1. The analytic subgroup of Ẽ8(8) with Lie algebra e7(7) is

Ẽ7(7) .

Proof. Let G0 be the analytic subgroup of Ẽ8(8) with Lie algebra e7(7) . Now

the maximal compact subgroup of Ẽ7(7) is SU(8), and the center of Ẽ7(7) is

Z4 . If uj = (1 + e2j−1 · e2j)/
√

2 and z = u1 · · ·u8 , we have z·fj·z−1 = ifj and
z·gj·z−1 = −igj and so z centralizes e7(7) . As z2 = e1· · ·e16 , it suffices to show
z ∈ G0 . Since exp(πi/2)hj = uj , u

4
j = 1, and

h0 = {H ∈ h : Tr(H) = 0} is a Cartan sualgebra of e7(7) , it follows that

u−1
1 uj ∈ G0 for any j ≤ 8. Hence (u−1

1 ·u2) · · · (u−1
1 u8) = z ∈ G0 and so G0 = Ẽ7(7) .

Note that since Z(Ẽ7(7)) = Z4 and Z(E7,C) = Z2 , Ẽ7(7) is not a linear
group.

Proposition 8.2. The analytic subgroup of Ẽ7(7) with Lie algebra e6(6) is

Ẽ6(6) .
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Proof. Let G00 be the analytic subgroup of Ẽ7(7) with Lie algebra e6(6) . Since

the maximal compact subgroup of Ẽ6(6) is Sp(4), Z(Ẽ6(6)) = Z2 . It thus suffices
to show that z2 ∈ G00 . Since 〈h2j−1 − h2j : j ≤ 4〉 ⊂ k00,R ,

exp(πi)
∑4

j=1(h2j−1 − h2j) = z2 ∈ G00 and hence G00 = Ẽ6(6) .

Again since Z(E6,C) = Z3 , Ẽ6(6) is not a linear group.

Remark. We have Z(Ẽ8(8)) ⊂ Ẽ6(6) ⊂ Ẽ7(7) ⊂ Ẽ8(8) with no Ẽj(j) linear. How-

ever, all Ẽj(j)/Z(Ẽ8(8)) are linear. As Z(F̃4(4)) ∼= Z2 , F̃4(4) is not a linear group.

Since Z(F̃4(4)) = Z(Ẽ8(8)), F̃4(4)/Z(Ẽ8(8)) = F4(4) is a linear group.

Since
∑4

j=1 i(h2j−1 − h2j) ∈ f4(4) and exp π
∑4

j=1 i(h2j−1 − h2j) = e1 · · · e16 ,

the analytic subgroup of Ẽ6(6) having Lie algebra f4(4) , is F̃4(4) . We state the
following.

Proposition 8.3. The analytic subgroup of Ẽ6(6) having Lie algebra f4(4) is

F̃4(4) .

9. The Group M̃j for the Groups Ẽj(j) and F̃4(4)

Recall a , a0 ,a00 , and a000 from section 7. For convenience set a8 = a , a7 = a0 ,
a6 = a00 and a4 = a000 . Let K̃j be the maximal compact subgroup of Ẽj(j) for

j = 6, 7 or 8 or of F̃4(4) for j = 4; set M̃j = K̃j ∩ Z(aj). We now give an explicit

description of the groups M̃j . Recall from [10] that M̃j/Z(Ẽ8(8)) ∼= (Z2)
j and

hence |M̃j| = 2j+1 .

Consider the element ∗ = e1·e3· · ·e15 of K̃8 = Spin(16) and note that
∗2 = 1. A simple calculation yields the following.

Proposition 9.1. If I ⊂ S , γ(∗)fI = (−1)σ(I)+|I|2(|I|−|I′|)/2fI′

Corollary 9.2. ∗ ∈ M̃8 .

Recall that

C = {Ø, {1, 2, 3, 4}, {1, 2.5.6}, {1, 2, 7, 8},

{1, 3, 5, 7}, {1, 3, 6, 8}, {1, 4, 5, 8}, {1, 4, 6, 7}}

and a = 〈XI : I ∈ C 〉 . Note that for I ∈ C , σ(I) = 1 and so XI = 4(fI + fI′).
We first give an explicit description of M̃7 . If P8 denotes the permutation group
on 8 elements P8 ⊂ U(8) and the elements of even order are in SU(8).Suppose

P = {(12)(34)(56)(78), (13)(24)(57)(68), (14)(23)(58)(67), (15)(26)(37)(48),
(16)(25)(38)(47), (17)(28)(35)(46), (18)(27)(36)(45), I} ⊂ P8 .

It is easy to see that P is an abelian group of order 8 with every element
other than the identity of order 2.

Now let Q be the group generated by the following elements:
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ω1 = iI , ω2 = diag(−1,−1, 1, 1, 1, 1,−1,−1),

ω3 = diag(−1,−1, 1, 1,−1,−1, 1, 1), and ω4 = diag(−1, 1,−1, 1,−1, 1,−1, 1).

Proposition 9.3. M̃7 = PQ and [M̃7, M̃7] = Z(Ẽ8(8)). It has precisely two
inequivalent irreducible representations of dimension 8, and all other irreducible
representations are one dimensional.

Proof. If ωk1
1 ω

k2
2 ω

k3
3 ω

k4
4 = 1, the (4,4)-entry is 1 and so it follows that ωk1

1 = 1.
Now, since the (3,3)-entry is 1, ωk4

4 = 1. Finally, since the (8,8)-entry is 1,
ωk2

2 = 1 and hence ωk3
3 = 1. Thus Q is a an abelian group of order 32. Now

ω2
1 = e1 · · · e16 = −I , and observe that for p ∈ P and q ∈ Q , pq = ±qp . Now
P ⊂ M̃7 and Q ⊂ M̃7 and hence PQ = {pq : p ∈ P, q ∈ Q} is a subgroup of
M̃7 . Since |PQ| = |M̃7| = 28 , PQ = |M̃7| . Now M̃7 is a subgroup of SU(8) and
both W ∼= C8 and

∧7W ∼= (C8)∗ are irreducible inequivalent M̃7 -modules. As
|χ(M̃7)| = 27 and |M̃7| = 82 +82 +27 = 28 , these are the only irreducible modules
of M̃7 of dimension > 1.

We now describe M̃8 .

Proposition 9.4. M̃8 = M̃7 ∪ ∗M̃7 and [M̃8, M̃8] = Z(Ẽ8(8)). It has –up to
equivalence– precisely one irreducible representation of dimension 16, and all other
irreducible representations are one dimensional.

Proof. Now M̃7 ⊂ M̃8 and ∗ ∈ M̃8 . Since |M̃8| = 29 , we have M̃8 = M̃7∪∗M̃7 .
Moreover, since M̃8/Z(Ẽ8(8)) ∼= (Z2)

8 and M̃8 is not abelian, we have [M̃8, M̃8] =

{1, e1· · ·e16} . Since ∗ :
∧r W →

∧8−r W and W and
∧7W are inequivalent

irreducible M̃7 -modules, W +
∧7W is an irreducible 16-dimensional M̃8 -module.

As |χ(M̃8)| = 28 and |M̃8| = 29 = 28 + (16)2 we see that this –up to equivalence–
is the only irreducible M̃8 -module of dimension > 1. Observe that for p ∈ P with
p(1) = j that

γ(∗p)(f1) = γ(∗)(fj) = (−1)j+12−3f{j}′

and
γ(p∗)(f1) = 2−3γ(p)f{1}′ = 2−3(−1)j+1f{j}′ .

Hence [∗, p] = 1 for any p ∈ P . Similarly, we obtain [∗, ωj] = 1 for 2 ≤ j ≤ 4, and
[∗, ω1] = −I = e1· · ·e16 . The remaining commutation relations in M̃8 are easy to
compute.

Proposition 9.5. M̃6 = {m ∈ M̃7 : ∧2γ(m)Ω = Ω}, and – up to equivalence
– M̃6 has exactly one irreducible representation of dimension > 1.

Proof. Let F = {m ∈ M̃7 : ∧2γ(m)Ω = Ω} . Clearly, F is a subgroup of M̃6 .
Now

P ′ = F ∩ P = {(13)(24)(57)(68), (15)(26)(37)(48), (17)(28)(35)(46), 1}

a subgroup of order 4, and Q′ = F ∩ Q a subgroup of Q generated by ω2
1, ω2, ω3

and ω1ω4 and the order of Q′ is 16. So P ′Q′ is a subgroup of F of order 26 .
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Setting τ = (12)(34)(56)(78), we see that τω1 ∈ F . Thus P ′Q′ ∪ τω1P
′Q′ is a

subgroup of F of order 27 . Hence we must have P ′Q′ ∪ τω1P
′Q′ = F = M̃6 .

Moreover, up to equivalence, W is the only irreducible M̃6 -module of dimension
> 1.

We now construct the group M̃4 . Let L = {m ∈ M̃6 : ∧2γ(m)Ω∗ = Ω∗} .
Clearly, L ⊂ M4 and so to prove L = M̃4 , it suffices to prove |L| = 25 . Now
τω1, τω4, ω2, ω3 ∈ L with (τω1)

2 = (τω4)
2 = −1 and ω2

2 = ω2
3 = 1. It is easy to

see that the group 〈τω1, ω2 , ω3〉 is a subgroup of L of order 16. Since τω4 is not
in this group we have that |L| = 32.

Proposition 9.6. M̃4 = L, [M̃4, M̃4] = {±I} and M̃4 has – up to equivalence
– 4 irreducible inequivalent representations of degree 2. The remaining represen-
tations are one dimensional.

Proof. The fact that M̃4 = L and [M̃4, M̃4] = {±1} are clear. It remains
only to exhibit 4 inequivalent irreducible modules of dimension 2. The spaces
〈f1, f2〉 , 〈f3, f4〉 ,〈f5, f6〉 , and 〈f7, f8〉 are all M̃4 -modules. Note that Z(M̃4) =
{±1,±ω2,±ω3,±ω2ω3} acts on each of these spaces with a different character.
Therefore these modules are inequivalent M̃4 -modules.

Remark. It is easy to see that M̃j 6= Dj+1 for j = 4, 6, 7, or 8.

10. The Construction of g2(2) and G̃2(2)

Let

k′ =
4⊕

j=1

〈f2j−1 · g2j, f2j · g2j−1, h2j−1 − h2j〉

and
p′ = 〈fI : |I| = 4, |I ∩ {2j − 1, 2j}| = 1, 1 ≤ j ≤ 4〉.

Now k′ ⊂ k000 and p′ ⊂ p000 . It is easy to see that g′ = k′ + p′ is a
simple Lie subalgebra of f4,C and, in fact, g′ ∼= so(8,C). Consider the linear map
σ : g′ → g′ defined as follows:

f1 · g2 → f1 · g2 ,f2 · g1 → f2 · g1 , h1 − h2 → h1 − h2 ,

f3 · g4 → f5 · g6 → f7 · g8 → f3 · g4 , f4 · g3 → f6 · g5 → f8 · g7 → f4 · g3 ,

h3 − h4 → h5 − h6 → h7 − h8 → h3 − h4 ,

and for 1 ≤ j ≤ 2

f{j,3,5,7} → f{j,3,5,7} , f{j,4,6,8} → f{j,4,6,8} ,

f{j,4,5,7} → −f{j,3,6,7} → f{j,3,5,8} → f{j,4,5,7} ,

f{j,3,6,8} → −f{j,4,5,8} → f{j,4,6,7} → f{j,3,6,8} .

Proposition 10.1. The map σ : g′ → g′ is a Lie algebra automorphism.

Proof. Clearly, σ : k′ → k′ is a Lie algebra homomorphism, and it is also
easy to see that σ : p′ → p′ intertwines the action of k′ . It suffices to show that
σ([fI , fJ ]) = [σ(fI), σ(fJ)] for any fI , fJ ∈ p′ . We recall the following identities:

[f{1,3,5,7}, f{2,4,6,8}] = 1/2
∑4

j=1(h2j−1 − h2j),
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[f{1,3,5,7}, f{1,4,6,8}] = 1/2f1 · g2 ,

[f{1,3,5,7}, f{2,3,6,8}] = −1/2f3 · g4 ,

[f{1,3,5,7}, f{2,4,5,8}] = 1/2f5 · g6 ,

[f{1,3,5,7}, f{2,4,5,7}] = −1/2f7 · g8 .

It follows that [σ(f{1,3,5,7}), σ(fJ)] = σ([f{1,3,5,7}, fJ ]) for any fJ ∈ p′ . Thus,
if we fix u = f{1,3,5,7} , we have [u, σ(v)] = [σ(u), σ(v)] = σ([u, v]) for any v ∈ p′ .
From the Jacobi identity and the facts that σ is a Lie algebra automorphism of k′

and a k′ intertwining operator on p′ we have [σ([x, u]), σ(v)] = σ([[x, u], v]) for
any x ∈ k′ and any v ∈ p′ , and the proof follows.

Our above discussion yields the following result.

Proposition 10.2. g′σ = k′σ + p′σ is a Lie algebra.

Now k′σ = 〈f1·g2, f2 · g1, h1 − h2〉 ⊕ 〈ζ, η, ω〉 where

ζ =
4∑

j=2

f2j−1 · g2j, η
∑
j=2

·f2j · g2j−1, and ω =
4∑

j=2

(h2j−1 − h2j).

The following elements are a basis for p′σ .
f{1,3,5,7} ,f{1,4,5,7} − f{1,3,6,7} + f{1,3,5,8} , f{1,3,6,8} − f{1,4,5,8} + f{1,4,6,7} ,f{1,4,6,8} ,
f{2,3,5,7} ,f{2,4,5,7} − f{2,3,6,7} + f{2,3,5,8} , f{2,3,6,8} − f{2,4,5,8} + f{2,4,6,7} ,f{2,4,6,8}.

So g′σ is a Lie algebra of rank 2 and dimension 14. Since it is clearly simple
we have a direct proof of the folowing.

Theorem 10.3. g′σ = g2,C .

Let L be the analytic subgroup of F̃4(4) having Lie algebra
g2(2) = g2.C ∩ f4(4) . Since Z(G2,C) = {1} , Z(G2(2)) ∼= Z2 , and

e1 · · · e16 ∈ Z(L), we see that L = G̃2(2) and Z(G̃2(2)) = Z(Ẽ8(8)).

If g2(2) = k2 + p2 is the corresponding Cartan decomposition of g2(2) ,

a2 = 〈X{1,3,5,7}, X{1,3,6,8} −X{1,4,5,8} +X{1,4,6,7}〉

is a maximal abelian subalgebra of p2 . Let K̃2 be the maximal compact subgroup
of G̃2(2) , and set M̃2 = Z(a2) ∩ K̃2 . Recall that M̃4 = 〈τω1, τω4, ω2, ω3〉 . If G′ is

the analytic subgroup of F̃4(4) having Lie algebra g′∩ f4(4) , we have that M̃4 ⊂ G′ ,

and so M̃σ
4 is a subgroup of M̃2 . It is easy to see that σ(ω2) = ω3 ,σ(ω3) = ω2ω3 ,

σ(τω1) = τω1 , and σ(τω4) = τω4 . Hence M̃σ
4 = 〈τω1, τω4〉 .

Proposition 10.4. M̃2 = M̃σ
4 is a nonabelian group with one – up to equiva-

lence – irreducible representation of degree 2.

Proof. Since M̃σ
4 is of order 8, we have our equality. Since τω1τω4 = −τω4τω1 ,

M̃2 is not abelian. Moreover, as M̃2/Z(G̃2(2)) ∼= Z2 × Z2 , our result follows.

Remark. It is easy to see that M̃2 = D3 .

This concludes our examination of the universal covering groups of the split
simple exceptional groups.
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11. e8(−24) and Ẽ8(−24)

Recall e8,C = so(16,C) +
∧eW , e7,C = sl(8,C) +

∧4W , and
sl(2,C) = 〈

∑8
j=1 hj, fØ, fS〉 . Set

k̂C = e7,C ⊕ sl(2,C), and p̂C = F + G +
∧2W +

∧6W , where
F = 〈fj · fk : j < k〉 , G = 〈gj · gk : j < k〉 .
We now have the following commutation relations.

[F,F] = 0, [F,
∧j W ] ⊂

∧j+2W , [F,G] ⊂ sl(8,C), [G,G] = 0,

[G,

j∧
W ] ⊂

j−2∧
W, [

2∧
W,

2∧
W ] = 0, [

6∧
W,

6∧
W ] = 0,

and

[
2∧
W,

6∧
W ] ⊂ sl(2,C)⊕ sl(8,C).

Thus [p̂C, p̂C] ⊂ k̂C , and [k̂C, p̂C] ⊂ p̂C . Hence (k̂C, p̂C) is a symmetric

pair for e8,C . Finally, if k̂ = k̂C ∩ (kR + ipR) and p̂ = p̂C ∩ (ikR + pR), the Lie

algebra ĝ = k̂+p̂ is a real form of e8,C . If Ĝ is the simply connected analytic group

with Lie algebra ĝ , Ĝ has maximal compact subgroup K̂ = E7(−133)×SU(2). Thus

e8(−24) = ĝ and Ĝ = Ẽ8(−24) . The subgroup of SU(2) having Lie algebra 〈ih0〉
where h0 =

∑8
j=1 hj is

〈exp tih0 : t ∈ R〉/〈ω2
1〉(ω1 = exp πih0),

and the subgroup of E7(−133) having Lie algebra su(8) is SU(8)/{±I} . Now
Z(SU(2)) ∼= Z2 and Z(E7(−133)) ∼= Z2 (see [4]). A simple calculation thus shows
that

Z(SU(2)) = 〈ω1〉/〈ω2
1〉 = {±I2}, Z(E7(−133)) = 〈iI8〉/{±I8},

and
Z(Ẽ8(−24)) = 〈(iI8, ω1)〉/〈(−I8, ω2

1)〉 ∼= Z2.

Thus Ẽ8(−24) is not a linear group.

If â = 〈X{1,2}, X{3,4}, X{5,6}, X{7,8}〉 , â is a maximal abelian subalgebra of

p̂ . Then k̂∩ z(â) = k′ + ip′ ∼= so(8) where k′ and p′ are as defined in section 10.

Set M̂ = K̂ ∩ Z(â) and let M̂0 be the connected component of the identity. It is

easy to see that the subgroup M̂0 of K̂ or of K̂/Z(Ĝ) having Lie algebra k̂∩z(â)

is Spin(8). Hence from [10] we see that if M̂ = Z(â) ∩ K̂ , |M̂/M̂0| = 8. Clearly,

Z(Ẽ8(−24)) ⊂ M̂ and Z(Ẽ8(−24))∩ M̂0 = {1} . To analyze the group M̂ further we
recall some results from [7] and [10].

Suppose Σr is the set of restricted roots and let Φr be the set of simple
restricted roots. Then from [7] we have that M̂/Z(Ĝ) = Z1 · M̂0 where

Z1 = 〈exp 2πiHα/|α|2 : α ∈ Σr〉 = 〈exp 2πiHα/|α|2 : α ∈ Φr〉.

Moreover, since the Satake diagram of e8(−24) has four white dots and only two
white dots are not adjacent to any black dots, we have from [10] that Z1 =
〈exp 2πiHα/|α|2 : α ∈ Φr and α is long 〉 ∼= Z2 × Z2 .
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For j ≤ 4 let εj ∈ â∗ be the map

εj(a1X{1,2} + a2X{3,4} + a3X{5,6} + a4X{7,8}) = aj.

An elementary but tedious calculation shows that

Σr = {± 4εj ± 4εk : j < k ≤ 4} ∪ {±8εj : j ≤ 4} ∪ {±4ε1 ± 4ε2 ± 4ε3 ± 4ε4}

and Φr = {4ε1 − 4ε2 − 4ε3 − 4ε4, 8ε4, 4ε3 − 4ε4, 4ε2 − 4ε3} .

The 24 long restricted roots are all of multiplicity 1, and the 24 short
restricted roots are all of multiplicity 8. Setting α1 = 4ε1−4ε2−4ε3−4ε4 another
routine calculation yields Hα1/|α1|2 = 1/16(X{1,2} −X{3,4} −X{5,6} −X{7,8}) and
H4ε4/|4ε4|2 = 1/8X{7,8} . If x is in the preimage of exp(1/8)πi(X{1,2} − X{3,4} −
X{5,6} − X{7,8}) in M̂ and y is in the preimage of exp(1/4)πiX{7,8}, we have
that Ad(x) and Ad(y) are both non trivial on sl(2,C). Hence x2 = y2 is the
nontrivial element of Z(Ẽ8(−24)), and x4 = y4 = 1. Since Ad(x)16fØ = −fS ,
Ad(x)fS = −16fØ , Ad(y)fØ = −fØ and Ad(y)fS = −fS , we have xyx−1 = y−1 .

If Ẑ1 is the preimage of Z1 in Ẽ8(−24) Ẑ1 = 〈x, y〉 is a nonabelian group of order

8 centralized by M̂0 , and so we have the following proposition.

Proposition 11.1. M̂ = Ẑ1 · M̂0 and Ẑ1 ∩ M̂0 = {1}.

Corollary 11.2. M̂ = Ẑ1 × M̂0 .

Remark. Note that Ẑ1
∼= D3 is the quaternionic group.

12. The real form e7(−5) and Ẽ7(−5)

Recall e7,C = sl(8,C)+
∧4W . Fix W1 = 〈f1, f2, f3, f4, f5, f6〉 , W2 = 〈f7, f8〉 , and

let gl(6,C) be the Lie subalgebra of sl(8,C) generated by all elements of the form
fj · gk where j 6= k ≤ 6, and all sums of the form

∑8
j=1 ajhj where a7 = a8 and∑8

j=1 aj = 0. Now

4∧
W =

4∧
W1 ⊕ (

3∧
W1 ⊗W2)⊕ (

2∧
W1 ⊗

2∧
W2).

If we now set

k0,C = gl(6,C) +
4∧
W1 +

2∧
W1 ⊗

2∧
W2,

we have that k0,C is a simple Lie algebra of dimension 66 and rank 6. Hence
k0,C = so(12,C). Set also

sl(2,C) = 〈f7 · g8, f8 · g7, h7 − h8〉,kC = k0,C ⊕ sl(2,C),

and

pC = 〈fj · gk : j ≤ 6 < k or j > 6 ≥ k > +
3∧
W1 ⊗W2.

Then (kC,pC) is a symmetric decomposition of e7,C , and if g = k + p is
the corresponding real form, g = e7(−5) . Let Ẽ7(−5) be the corresponding real Lie
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group with maximal compact subgroup K = Spin(12)×SU(2). Now Z(K) = Z3
2

and by examining the representation of K on p , we see Z(E7(−5) = Z2
2 . Thus

E7(−5) is not a linear group.

Setting

H1 = X{1,3,5,7}, H2 = X{1,3,6,8}, H3 = X{1,4,5,8}, H4 = X{1,4,6,7},

a = 〈H1, H2, H3, H4〉 is easily seen to be a maximal abelian subalgebra of p . For
j ≤ 4 let εj ∈ a∗ be the map

εj(a1H1 + a2H2 + a3H3 + a4H4) = aj

Then, if Σr is the set of restricted roots and Φr is a set of simple restricted
roots, Σr and Φr are exactly as in section 11; this time the short roots are all of
multiplicity 4.

If I ⊂ S , set hI =
∑

j∈I hj −
∑

j∈I′ hj . Then, if |I| = 4, Tr(hI) = 0. We
now see that

mC = 〈f{1,2,3,4}, f{5,6,7,8}, h{1,2,3,4}〉⊕

〈f{1,2,5,6}, f{3,4,7,8}, h{1,2,5,6}〉 ⊕ 〈f{1,2,7,8}, f{3,4,5,6}, h{1,2,7,8}〉.

Let M̂ = K ∩Z(a) and let M̂0 be the connected component of the identity

of M̂ . Setting x1 = exp(πi/2)h{1,2,3,4} , x2 = exp(πi/2)h{1,2,5,6} , and
x3 = exp(πi/2)h{1,2,7,8} ,we see that

M̂0 = (SU(2)× SU(2)× SU(2))/L

where L is a finite subgroup of

Z(SU(2)× SU(2)× SU(2)) = 〈x1, x2, x3〉.

A simple calculation on
∧4W shows that L is trivial. Furthermore, since the

representation of M̂0 on any short restricted root space is the tensor pruduct
of two irreducible 2-dimensional repesentations of two of the SU(2) factors of

M̂0 , (−I2,−I2,−I2) ∈ Z(E7(−5)). Hence M̂0 ∩ Z(E7(−5)) = Z2 . Setting α1 =
4(ε1 − ε2 − ε3 − ε4), we have

Hα1/|α1|2 = 1/16(H1 −H2 −H3 −H4) and H8ε4/|8ε4|2 = (1/8)H4.

If x is a preimage of exp(πi/8)(H1 − H2 − H3 − H4) in K and y is a preimage

of exp(πi/4)(H4) in K , we have that M̂ = Ẑ1 · M̂0 where Ẑ1 = 〈x, y〉 is a
group of order 8. Now Ad(x)(f7 · g8) = −f8 · g7 , Ad(x)(f8 · g7) = −f7 · g8 ,
Ad(y)(f7 · g8) = −f7 · g8 , and Ad(y)(f8 · g7) = −f8 · g7 . Hence we have x2 = y2

x4 = y4 = 1 and xyx−1 = y−1 .Finally, M̂0 centralizes Ẑ1 , and we have the
following.

Proposition 12.1. M̂ = Ẑ1 · M̂0 and M̂0 ∩ Ẑ1 = {1}.

Corollary 12.2. M̂ = Ẑ1 × M̂0 .

Remark. As in section 11, Ẑ1
∼= D3 is the quaternionic group.
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13. e6(2) and Ẽ6(2)

Set

sl(2,C) = 〈f7 · g8, f8 · g7, h7 − h8〉 and sl(6,C) = 〈fi · gj : i 6= j ≤ 6〉+ h0

where h0 = {
∑6

j=1 ajhj :
∑6

j=1 aj = 0} . If W1 = 〈fj : 1 ≤ j ≤ 6〉 and

W2 = 〈f7, f8〉 , pC =
∧3W1⊗W2 is an irreducible kC = sl(6,C)⊕sl(2,C)-module.

As before (kC,pC) is a symmetric pair for e6,C . Now e6(2) is the corresponding

real form of e6,C . Let Ẽ6(2) be the real connected Lie group with Lie algebra
e6(2)and maximal compact subgroup K = SU(6)× SU(2).

Now p has a maximal abelian subalgebra a = 〈Hj : 1 ≤ j ≤ 4〉 is the
same a as in section 12. Then m0 = 〈h1 + h2 − h3 − h4, h1 + h2 − h5 − h6〉 , and

M̂0 = S1 × S1 . Moreover, if M̂ = K ∩ Z(a) and Ẑ1 is the quaternionic group in
section 12 we have the following result.

Proposition 13.1. M̂ = Ẑ1 ∩ M̂0 and M̂0 ∩ Ẑ1 = {1}.

Corollary 13.2. M̂ = Ẑ1 × M̂0.

Remarks.

1. Since Z(Ẽ6(2)) = 〈(ωI6, εI2) : ω3ε = 1, ω6 = ε2 = 1〉 ∼= Z6 , Ẽ6(2) is not a
linear group.

2. A simple calculation shows that M̂0 ∩ Z(E6(2)) = Z3

3. The short restricted roots are all of multiplicity 2.

14. The Hermitian real form e7(−25) and the group Ẽ7(−25)

Recall from sections 12 and 13 that e7,C = sl(8,C) +
∧4W and

e6,C = sl(6,C) + sl(2,C) +
3∧
W1 ⊗W2.

If W ∗
1 = 〈g1, g2, g3, g4, g5, g6〉 , W ∗

2 = 〈g7, g8〉 and h0 =
∑6

j=1 hj − 3(h7 + h8),

e7,C = e6,C + 〈h0〉+ (W1 ·W ∗
2 +

4∧
W1) + (W ∗

1 ·W2 +
2∧
W1 ⊗

2∧
W2)

where all the sums are direct as vector spaces. If

kC = e6,C + Ch0,p+ = (W1 ·W ∗
2 +

4∧
W1),p− = (W ∗

1 ·W2 +
2∧
W1 ⊗

2∧
W2),

ad(h0) is 0 on kC , 4 on p+ and -4 on p− . It follows immediately that kC is a
Lie algebra, [p±,p±] = 0 and [p+,p−] ⊂ kC . If pC = p+ + p− , (kC,pC) is a
symmetric pair for e7,C . If g = k+p is the corresponding real form, g = e7p(−25) .

Now Ẽ7(−25) is the simply connected analytic group with Lie algebra e7(−25) .

Let Φ : Ẽ7(−25) −→ E7(−25) be the covering homomorphism. The maximal
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compact subgroup of E7(−25) is K = E6(−78) · S1 ,and the pullback of K is

K̃ = Φ−1(K) = E6(−78) ×R . For (x, τ) ∈ K̃ , Φ(x, τ) = x · exp(iτh0).

Using the fact that Z3
∼= Z(E6(−78)) ⊂ SU(6) · SU(2), we see that

Z(Ẽ7(−25)) ⊂ SU(6) · SU(2)×R , and a direct calculation yields

Z(Ẽ7(−25)) = {(ωI6, εI2, τ) : ω3ε = 1, ω6 = 1, ω4 exp 4iτ = 1}/{±(I6, I2, 0)}.

If ω0 is a primitive sixth root of unity, we have that Z(E7(−25)) is generated by

(ω0I6,−I2, π/6) and so Z(Ẽ7(−25)) ∼= Z . Now
a = 〈X{1,2,3,4}, X{1,2,5,6}, X{1,2,7,8}〉 is a maximal abelian subalgebra of p , and from

[10] we have that M̂ = K̃ ∩Z(a) is generated by M̂0 = Spin(8) and the pullback
of Ad(exp(πi/4)X{1,2,7,8}). Since

Ad(exp(πi/4)X{1,2,7,8}) = Ad(diag(1, 1,−1,−1,−1,−1, 1, 1))

and diag(1, 1,−1,−1,−1,−1, 1, 1) ∈ Spin(8), we have the following.

Proposition 14.1. M̂ = M̂0 · Z(Ẽ7(−25)) ∼= M̂0 × Z.

Remark. From [10] and [13] we have that Φ(M̂) ∼= M̂0 × Z2 .

15. The Hermitian real form e6(−14) and group Ẽ6(−14)

Now
so(10,C) ∼= 〈fi · fj, gi · gj, fi · gj : i, j ≤ 5, i 6= j〉+ 〈hj : j ≤ 5〉,

and if h0 = h6−h7−h8 , kC = so(10,C)⊕Ch0 is a reductive Lie algebra. Setting
V = 〈f1, f2, f3, f4, f5〉 , p+ =

∧o V · f6 , p− =
∧e V · f7 · f8 , and pC = p+ +p− , we

have that kC + pC = e6,C and (kC,pC) is a symmetric pair. The Lie algebra
corresponding to the real form of this symmetric pair is e6(−14) . Now K =

Spin(10) ·S1 is the maximal compact subgroup of E6(−14) and K̃ = Spin(10)×R

is the pullback of K in Ẽ6(−14) . Note that ad(h0) = ±3/2 on p± .

Now a = 〈X{1,2,5,6}, X{1,2,7,8}〉 is a maximal abelian subalgebra of p . If

M̂ = Z(a)∩K̃ , we have from [10] and [12], that the image of M̂ in K is connected
and m = su(4)⊕ 〈H0〉 where H0 = h5 − 1/3h0 . A simple calculation shows that
Z(Ẽ6(−14)) ∼= Z and has a generator the pullback of

exp πi(h1 + h2 + h3 + h4 + h5 − 1/3h0).

Since h1 + h2 + h3 + h4 ∈ su(4), we have the following.

Proposition 15.1. The group M̂ = M̂0
∼= SU(4)×R.

16. The groups E6(−26) and F4(−20)

The groups E6(−26) and F4(−20) are both simply connected linear groups with

trivial centers. From [10] we see that for E6(−26) the group M̂ is Spin(8), and for

F4(−20) the group M̂ is Spin(7). This concludes our analysis of the exceptional
groups.
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17. The Classical Groups

Throughout this section we will use the notation (G,K) to denote a pair where
G is a simply connected real simple Lie group and K is the pullback in G of a
maximal compact subgroup of Ad(G).

1. (S̃L(n,R), Spin(n)): Now p is the space of real n×n symmetric matrices
of trace 0. If a is the space of diagonal matrices in p , a is a maximal abelian
subalgebra of p . We then have the following.

Proposition 17.1. M̂ = Z(a) ∩ Spin(n) = Dn .

Remark. If P is a non minimal parabolic subgroup of S̃L(n,R), an easy calcu-
lation shows that {±I} = [Dn, Dn] ⊂ P0 .

2. (SU∗(2n), Sp(n)): Since SU∗(2n) is a linear group we have the following
proposition.

Proposition 17.2. M̂ = (Sp(1))n .

3. (S̃U(p, q), SU(p)×SU(q)×RH) with 1 ≤ p < q and H =

(
qIp O
0 −pIq

)
,

and the map of K onto S(U(p)× U(q)) sends tH to exp(itH):
Then a = 〈Ej,p+j + Ep+j,j : 1 ≤ j ≤ p〉 is a maximal abelian subalgebra of p .

Setting M̂ = K ∩ Z(a) we now state.

Proposition 17.3. M̂ ∼= (S1)p−1 × SU(q − p)×R.

Proof. By a simple calculation, we have

M̂ = 〈(α, β, θH) : α = diag(a1, . . . , ap), β =

(
β1 0
0 β2

)
,

β1 = diag(b1, . . . , bp), β2 ∈ U(q − p), a1 · · · ap = 1, b1 · · · bp · detβ2 = 1,

|a1| = . . . = |ap| = 1, bj = aje
i(p+q)θ)〉 ∼=

〈(b1, . . . , bp, β2, θ) : b1, . . . , bp ∈ C, |b1| = . . . = |bp| = 1, β2 ∈ U(q − p),

b1 · · · bp = eip(p+q)θ = (detβ2)
−1〉 ∼=

〈(b1, . . . , bp, β2, θ) : |b1| = . . . = |bp| = 1, β2 ∈ SU(q − p),

b1 · · · bp = eip(p+q)θ〉 ∼=

〈(b1, . . . , bp−1, β2, θ) : |b1| = . . . = |bp| = 1, β2 ∈ SU(q − p), θ ∈ R〉 ∼=

(S1)p−1 × SU(q − p)×R.

4. (S̃U(p, p), SU(p)× SU(p)×RH), H = diag(Ip,−Ip): Taking a is as in
3, we obtain:

Proposition 17.4. M̂ ∼= (S1)p−1 × Z



Johnson 313

Proof. : A simple calculation yields

M̂ = 〈(a1, g . . . , ap, b1, . . . , bp, θ) : |a1| = . . . = |ap| = 1, bj = aje
2iθ,

a1 · · · ap = b1 · · · bp = 1, e2piθ = 1〉 ∼=
〈(b1, . . . , bp−1, θ) : |b1| = . . . = |bp| = 1, θ ∈ (π/p)Z〉 ∼=

(S1)p−1 × Z.

Remarks. Note that Z(G) ∼= 〈(z, (k/p)π) : zp = 1, k ∈ Z〉 , and the kernel of the
map of K onto S(U(p)× U(p)) is isomorphic to

〈(exp(−2πi/p), 2π/p)〉 ∼= Z.

Then the image of M̂ in S(U(p)×U(p)) is (S1)p−1 ×Z2 , and the image of M̂ in
AdG is (S1)p−1 .

5. ( ˜Spin0(p, q), Spin(p) × Spin(q)), where 1 ≤ p ≤ q , p 6= 2, and q 6= 2:
Taking a as in 3, and keeping our notation we obtain the following.

Proposition 17.5. M̂ = Dp × Spin(q − p)

Note that D1 and Spin(1) are trivial.

a. If p = 1, ˜Spin0(p, q) is a linear group and M̂ = Spin(q − 1).

b. If q = p or if q = p+ 1, M̂ = Dp .

6. ( ˜Spin0(2, q),R × Spin(q)) with q 6= 2: We have a map φ : R −→
Spin(q + 2) where φ(t) = exp(te1 · e2). If a is as in 3, then M̂ = Z̃1 · M̂0 where

M̂0 = Spin(q − 2) and

Z̃1 = {(kπ/2,±e3 · e4) : k odd} ∪ {(kπ/2,±1) : k even}.

With addition in the first variable and multiplication in the second variable, Z̃1 is
easily seen to be a group. Since (0,−1) ∈ M̂0 , if q > 3,this product is not direct.

If Ẑ1 = {(kπ/2, (e3 · e4)k) : k ∈ Z} , Ẑ1 is a group isomorphic to Z . Note that

Z̃1
∼= Ẑ1 × 〈(0,±1)〉 ∼= Z× Z2 .

Proposition 17.6. If q > 3, M̂ ∼= Z× M̂0 . If q = 3, M̂ ∼= Z× Z2

Remarks. (a) Note that ˜Spin0(2, 3) ∼= S̃p(2,R).

(b) The image of Ẑ1 in Spin(q + 2) is 〈e1 · e2 · e3 · e4〉 ∼= Z2 .

(c) If q > 3, the image of M̂ in Spin(q + 2) is isomorphic to Z2 × Spin(q − 2).

(d) If q = 3, the image of M̂ in Spin(5) is isomorphic to Z2 × Z2 .

(e) The image of M̂ in Ad( ˜Spin0(2, q)) is connected if and only if q is even.

(f) If p = q = 2, ˜Spin0(2, 2) ∼= S̃L(2,R)× S̃L(2,R) is not a simple group.

7. (S̃p(n,R), SU(n)×RH), where H =

(
0 I
−1 0

)
: Then

p = {
(
A B
B −A

)
: AT = A,BT = B} , with

a = {diag(x1, . . . , xn,−x1, . . . ,−xn) : x1, . . . , xn ∈ R}

is a maximal abelian subalgebra of p .
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Proposition 17.7. M̂ ∼= (Z2)
n−1 × Z.

Proof. Since the image of M̂ in U(n) is

M = 〈diag(ε1, . . . , εn) : εj = ±1〉 ∼= (Z2)
n,

M̂ ∼= 〈(A, θ) : A ∈ SU(n), θ ∈ R, A exp(iθ) ∈M〉.

Hence M̂ ∼= (M ∩ SU(n))×M where M ∩ SU(n) ∼= Zn−1
2 and

M = {(A, θ) : A ∈ SU(n), θ ∈ R, A exp(iθ) = diag(±1, 1, . . . , 1)} =

{(diag((−1)k, 1, . . . , 1) exp(−ikπ/n), kπ/n) : k ∈ Z} ∼= Z.

Thus the result holds.

8. (S̃O
∗
(2n), SU(n)×RH), H =

(
0 I
−I 0

)
: Now

p = {i
(
A B
B −A

)
: A,B ∈Mn(R), AT = −A,BT = −B}.

If a is the set

{i
(
X 0
0 −X

)
∈ p : X =

[n/2]∑
k=1

xk(E2k−1,2k − E2k,2k−1), xk ∈ R},

a is a maximal abelian subalgebra of p .

A simple calculation shows that

(
A B
−B A

)
× θH ∈ M̂ if and only if ZeiθX =

XZe−iθ and XZeiθ = Ze−iθX where Z = A+ iB .

a. If n = 2k + 1, Z = diag (Z(1), . . . , Z(k), eiφ) where
Z(1), . . . , Z(k) ∈M2(C),

Z(j) =

(
z(j)11 z(j)12

−z(j)12e
−2iθ z(j)11e

−2iθ

)
,

and detZ(1) · · · detZ(k) eiφ = 1. Setting Zo(j) =

(
z(j)11 z(j)12

−z(j)12 z(j)11

)
, we have

detZo(1) = · · · = detZo(k) = 1

and exp(iφ− 2kiθ) = 1. Hence we obtain the following.

Proposition 17.8. If n = 2k + 1,then M̂ ∼= SU(2)k ×R.

b. If n = 2k , Z = diag(Z(1), . . . , Z(k)) where Z(1), . . . , Z(k) ∈M2(C),

Z(j) =

(
z(j)11 z(j)12

−z(j)12e
−2iθ z(j)11e

−2iθ

)
,

and detZ(1) · · · detZ(k) = 1. Setting Zo(j) =

(
z(j)11 z(j)12

−z(j)12 z(j)11

)
, we have

detZo(1) = · · · = detZo(k) = 1

and exp(−2kiθ) = 1.
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Proposition 17.9. If n = 2k , then M̂ ∼= SU(2)k × Z.

Remarks. For n = 2k the image of M̂ in Spin∗(4k) is

SU(2)k × Z2 . The image of M̂ in SO∗(4k) is SU(2)k , and the image of M̂ in
Ad(SO∗(4k)) is SU(2)k/{±I} .

9. (Sp(p, q), Sp(p)×Sp(q)) with p ≤ q : Then Sp(p, q) is a simply connected

linear group and M̂ = Sp(1)p × Sp(q − p).

18. Summary

Suppose G is a connected real simple Lie group with Lie algebra g contained in a
simply connected group GC having Lie algebra gC . Let G̃ be the universal cover
of G . Fix K , a maximal compact subgroup of G and denote the pullback of K
in G̃ by K̃ . Fixing a as in the previous sections, set M̂ = Z(a) ∩ K̃ and let M

denote the image of M̂ in K .

1. Then M̂ = Ẑ1 × M̂0 where Ẑ1 is a discrete group and M̂0 is the identity
component of M̂ .

2. The group Ẑ1 is infinite if and only if G/K is a tube type domain.

3. Since, as topological spaces, K̃/M̂ = K/M ,

π1(K/ M) ∼= π0(M̂) ∼= Ẑ1.

Hence K/M is simply connected if and only if M̂ is connected. From the

homotopy exact sequence, it follows that M̂ is connected if and only if M
is connected.

4. Suppose l is the number of white dots of the Satake diagram of G that are
not adjacent to a black dot nor connected to another white dot by an arrow.

(a) The group M̂ is connected if and only if l = 0.

(b) If l = 1, G/K is a tube type domain and Z1 = Z .

(c) If l > 1 and G/K is a tube type domain, G = S̃p(l,R) and

M̂ = Z1 = Zl−1
2 × Z.

(d) If l > 1 and G/K is a not tube type domain, Ẑ1 is a non abelian group
of order 2l+1 .

5. If G is a split group, M̂ = Ẑ1 .
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