
Journal of Lie Theory
Volume 14 (2004) 215–226
c© 2004 Heldermann Verlag

Asymptotic Products and Enlargibility
of Banach-Lie Algebras

Daniel Beltiţă
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Abstract. The paper provides a “standard” proof of a local theorem on
enlargibility of Banach-Lie algebras. A particularly important special case

of that theorem is that a Banach-Lie algebra is enlargible provided it has a

dense locally finite subalgebra. The theorem is due to V. Pestov, who proved
it by techniques of nonstandard analysis. The present proof uses a theorem

concerning enlargibility of asymptotic products of contractive Banach-Lie

algebras.
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1. Introduction

The present paper provides a “standard” proof of an enlargibility criterion (see
Corollary 4.4 below) discovered by V. Pestov in [Pe88] and [Pe92], where it is
proved by techniques of nonstandard analysis. A particularly important special
case of this criterion is the fact that a real Banach-Lie algebra is enlargible (i.e.,
it is the Lie algebra of some Banach-Lie group) whenever it has a dense locally
finite subalgebra; see Corollary 1 in [Pe88] and Remark 4.5 below. The latter
fact turns out to play an essential role in connection with the very existence of
groups corresponding to pseudo-restricted Lie algebras, eventually leading to a
class of Banach-Lie groups which possess quite natural complex homogeneous
spaces (see [Be02]). Other interesting applications of the enlargibility criterion
of [Pe88] and [Pe92] can be found in [Pe93].

The main ingredients in the present proof of the aforementioned criterion
are a slight sharpening of a result in [GN01] concerning quotient Banach-Lie
groups, the notion of enlargibility radius (see Definition 2.1 below), and the
asymptotic products. Thus, these three ingredients allow us to give a new
example of the general principle that the use of nonstandard analysis is equivalent
to the ultraproduct approach (see e.g., page 27 in [HM83]). We note that the
idea of ultraproduct had been previously exploited in connection with the Lie
algebras. See e.g., [Fr82] (or §20 in [BS01]), as well as [CGM].
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The structure of the paper is as follows. In §2 we introduce the notion of
enlargibility radius of a Banach-Lie algebra with respect to a closed subalgebra
(Definition 2.1), and prove an important property in the case when the subalgebra
is actually an ideal (Theorem 2.6).

In §3 we are concerned with lower estimates for the enlargibility radius of
an asymptotic product of Banach-Lie algebras (Theorem 3.1). As a consequence,
we get an enlargibility criterion for asymptotic products (Corollary 3.9).

In §4, we use Theorems 2.6 and 3.1 to prove lower estimates for the
enlargibility radius of a Banach-Lie algebra g in terms of a local system of closed
subalgebras whose union is dense in g (Theorem 4.3). As a special case (see
Corollary 4.4), we then recover the Local Theorem on Enlargibility of [Pe88] and
[Pe92].

We now introduce some notation and terminology. For any Banach-Lie
group G , we denote its Lie algebra by L(G). If ϕ:G→ H is a homomorphism
of Banach-Lie groups, then L(ϕ):L(G) → L(H) denotes the corresponding
homomorphism of Banach-Lie algebras. By contractive Banach-Lie algebra we
mean a real Banach-Lie algebra g equipped with a fixed norm ‖ ·‖ which defines
the topology of g and has the property that ‖[x, y]‖ ≤ ‖x‖ · ‖y‖ for all x, y ∈ g .
In this case, for every R > 0 we denote Bg(0, R) = {x ∈ g | ‖x‖ < R} .

Now let J be a directed set and {gj}j∈J a family of Banach spaces over
K ∈ {R,C} . Then

`∞
(
{gj}j∈J

)
:=

{
x = (xj)j∈J ∈

∏
j∈J

gj | ‖x‖ := sup
j∈J

‖xj‖ <∞
}

(with componentwise defined addition and scalar multiplication) is in turn a
Banach space over K , and

c0
(
{gj}j∈J

)
:=

{
(xj)j∈J ∈ `∞

(
{gj}j∈J

)
| lim

j∈J
‖xj‖ = 0

}
is a closed subspace of `∞

(
{gj}j∈J

)
. Thus the quotient

g := `∞
(
{gj}j∈J

)
/c0

(
{gj}j∈J

)
is a Banach space over K (with the quotient norm), and we call it the asymptotic
product of the family {gj}j∈J . If moreover gj is a contractive Banach-Lie algebra
for each j ∈ J , then it is clear that `∞

(
{gj}j∈J

)
is a contractive Banach-Lie

algebra (with componentwise defined bracket) and c0
(
{gj}j∈J

)
is a closed ideal

of `∞
(
{gj}j∈J

)
, so that the asymptotic product g has a natural structure of

contractive Banach-Lie algebra.
For later reference, we now recall a simple result which allows us to

compute the norms of elements in asymptotic products.

Lemma 1.1. Let J be a directed set and {V}j∈J a family of Banach spaces
over K ∈ {R,C} . Denote Ṽ = `∞

(
{Vj}j∈J

)
, Ṽ0 = c0

(
{Vj}j∈J

)
and V =

Ṽ/Ṽ0 . Then for all ã = (aj)j∈J ∈ Ṽ the norm of ã+ Ṽ0 ∈ V can be computed
by

‖ã+ Ṽ0‖ = lim sup
j∈J

‖aj‖ = inf
i∈J

sup
i≤j∈J

‖aj‖.

Proof. The proof of Proposition A.6.1 (at page 343) in [ER00] extends word
by word.
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Also for later reference, we state a well-known property of the Baker-
Campbell-Hausdorff series H(·, ·).

Lemma 1.2. For every ε > 0 there exists δ ∈ (0, ε) such that for every
contractive Banach-Lie algebra g and every x, y ∈ Bg(0, δ) we have

‖H(x, y)‖ < ε.

Proof. Use e.g., Lemma 1 and formula (13) in no. 2 in §7 in Chapter II in
[Bo72].

2. Enlargibility radii

Definition 2.1. Let g be a contractive Banach-Lie algebra. If h is a closed
subalgebra of g , we define the enlargibility radius of g with respect to h as the
supremum rh(g) of the set of all real numbers R > 0 such that there exist a real
Banach-Lie group G with L(G) = g and a subgroup H of G such that

expG |Bg(0,R) is injective and expG

(
h ∩Bg(0, R)

)
= H ∩ expG

(
Bg(0, R)

)
,

where the supremum of an empty set is defined to be 0.
If h = {0} , we denote simply rh(g) = r(g) and call it the enlargibility

radius of g .

Definition 2.2. Let G be a connected real Banach-Lie group such that
L(G) = g is equipped with a norm making it into a contractive Banach-Lie
algebra. For every R > 0 such that expG |Bg(0,R) is injective (that is, 0 < R ≤
r(g) in the terminology of Definition 2.1), we denote

VG,R = expG

(
Bg(0, R)

)
and define

logG,R:G→ g ∪ {∞}

by

logG,R a =

{ (
expG |Bg(0,R)

)−1(a) if a ∈ VG,R,

∞ if a ∈ G \ VG,R.

Furthermore, we extend the norm of g to a function ‖ · ‖: g∪{∞} → [0,∞] with
‖∞‖ = ∞ .

It is clear that, if 0 < R1 ≤ R < r(g), then logG,R1
= logG,R on VG,R1 .
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Remark 2.3. (a) A contractive Banach-Lie algebra g is enlargible if and only
if r(g) > 0. Moreover, let us denote by Π(g) the period group of g and

δ := inf{‖γ‖ | 0 6= γ ∈ Π(g)}.

We recall that Π(g) is an additive subgroup of the center of g and, if G̃ is a
simply connected Banach-Lie group whose Lie algebra is g , then Π(g) equals
the set of all elements x in the center of g with exp

G̃
x = 1 . Now, Lemma III.11

and the remark following it in [GN01] show that

min{π, r(g)} = min{π, δ/2}.

In fact, that lemma implies that min(π, δ/2) ≤ r(g). In particular, if δ/2 ≥ π ,
then r(g) ≥ π . Actually, the aforementioned facts from [GN01] show that, if
δ/2 ≤ π , then δ/2 is the supremum of the set of all real numbers R > 0 such
that exp

G̃
|Bg(0,R) is injective. Thus, if δ/2 ≤ π , then Remark 2.4 bellow shows

that r(g) = δ/2. Consequently, min{π, r(g)} = min{π, δ/2} as claimed.
(b) In connection with Definition 2.1, we note that, if G is a Banach-Lie

group with L(G) = g (a contractive Banach-Lie algebra), h is a closed subalgebra
of g and H is a subgroup of G such that for some real number R > 0 we have

expG |Bg(0,R) is injective and expG

(
h ∩Bg(0, R)

)
= H ∩ expG

(
Bg(0, R)

)
,

then H is actually a Lie subgroup of G in the sense of Definition I.4 (b) in
[GN01]. In fact, H is locally closed (since h∩Bg(0, R) is closed in Bg(0, R) and
H is a subgroup), hence it is closed by Proposition 2.1 in Chapter I in [Ho65].
Now the assumption expG

(
h ∩ Bg(0, R)

)
= H ∩ expG

(
Bg(0, R)

)
easily implies

that
h = {x ∈ g | expG(Rx) ⊆ H},

and then H is a Lie subgroup of G (see Remark I.5 in [GN01]).
(c) It follows by Proposition 2.5 in [LT66] that for every finite-dimensional

contractive Banach-Lie algebra g we have r(g) ≥ 2π .

Remark 2.4. If g is a contractive Banach-Lie algebra, 0 < R < r(g) and G̃ is a
connected simply connected Banach-Lie group with L(G̃) = g , then exp

G̃
|Bg(0,R)

is injective. In fact, by the very definition of r(g) (see Definition 2.1), there exists
a Banach-Lie group G with L(G) = g and expG |Bg(0,R) injective. Now let G0

be the connected 1-component of G . Since L(G0) = g , we have a covering map
p: G̃ → G0 such that p ◦ exp

G̃
= expG . Since expG |Bg(0,R) is injective, it then

follows that exp
G̃
|Bg(0,R) is in turn injective.

Remark 2.5. If g1 and g2 are contractive Banach-Lie algebras and there exists
an injective homomorphism of Banach-Lie algebras ϕ: g1 → g2 with ‖ϕ‖ ≤
1, then we have r(g2) ≤ r(g1). (This is a slight improvement of assertion
(∗∗∗) at page 22 in [EK64]). Using Lemma II.1 in [GN01] and the preceding
Remark 2.3 (b), one can actually prove that rh(g2) ≤ rϕ−1(h)(g1) provided h is
a closed subalgebra of g2 .

The next statement is, in some respects, a slight sharpening of Theo-
rem II.2 in [GN01], expressed in terms of enlargibility radii.
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Theorem 2.6. For every real number ε > 0 there exists another real number
η > 0 such that the following assertion holds: If g is a contractive Banach-Lie
algebra and h is a closed ideal of g such that rh(g) ≥ ε , then r(g/h) ≥ η .

Proof. Let R0 be an arbitrary real number with

0 < R0 < min{ε, (1/2) log 2},

so that the Baker-Campbell-Hausdorff series H(x, y) is convergent whenever
x, y ∈ Bk(0, R0) and k is a contractive Banach-Lie algebra (see Proposition 1
in no. 2 in §7 in [Bo72]).

Then for every contractive Banach-Lie algebra g and every closed ideal
h of g with rh(g) ≥ ε we have rh(g) > R0 . It then follows by Remark 2.3 (b)
that there exists a Banach-Lie group G with a Lie subgroup H such that
L(G) = g , L(H) = h , expG |Bg(0,R0) is injective and expG

(
h ∩ Bg(0, R0)

)
=

H ∩ expG

(
Bg(0, R0)

)
. Clearly we may assume that H is connected. Since h is

an ideal of g , it then follows that H is a normal subgroup of G . On the other
hand, since g/h is equipped with the quotient norm, it follows that for all R > 0
we have Q

(
Bg(0, R)

)
= Bg/h(0, R), where Q: g → g/h is the quotient map.

Now denote V = Bg/h(0, R0) and W = Bg/h(0, η), where η stands for
the value of δ given by Lemma 1.2 for ε = R0 . Also denote U = Bg(0, R0)
and A = Bg(0, η), so that H(A × A) ⊆ U according to the choice of η . Also,
Q(A) = W . It then follows as in the proof of Theorem II.2 in [GN01] that the
mapping

E:Bg/h(0, η) → G/H, E
(
Q(X)

)
:= q(expGX),

is correctly defined and an analytic homomorphism of local analytic groups. Here
q:G→ G/H stands for the quotient map, and we think of Bg/h(0, η) as a local
analytic group with the Baker-Campbell-Hausdorff multiplication. Thus, in view
of the theorem on extension of analytic structure (see [Sw65], page 213), it follows
that there exists a Banach-Lie group K with L(K) = g/h and expK |Bg/h(0,η)

injective, hence η ≤ r(g/h) according to Definition 2.1.

3. Enlargibility of asymptotic products

Here is the main result of the present section.

Theorem 3.1. For every real number ε > 0 there exists another real number
η > 0 such that the following assertion holds: If J is a directed set and {gj}j∈J

is a family of contractive Banach-Lie algebras with the asymptotic product g and
such that inf

j∈J
r(gj) ≥ ε , then r(g) ≥ η .

We now establish some notation needed in the proof of Theorem 3.1.

Notation 3.2. In the present section, until the proof of Theorem 3.1, we keep
the notation in its statement, assuming that inf

j∈J
r(gj) ≥ ε . We fix an arbitrary

real number R0 with 0 < R0 < ε .
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For each j ∈ J , it then follows by Remark 2.3 (a) that the Banach-Lie
algebra gj is enlargible, and we denote by Gj a connected simply connected
Banach-Lie group with L(Gj) = gj .

Remark 3.3. It follows by Proposition III.12 (ii)–(iii) in [GN01] and the pre-
ceding Remark 2.3 (a) that there exist a connected Banach-Lie group G and a
group homomorphism ψ:G→

∏
j∈J

Gj such that, if

πk: `∞({gj}j∈J) → gk and pk:
∏
j∈J

Gj → Gk

are the canonical projection maps whenever k ∈ J , then the following assertions
hold.

(i) We have L(G) = `∞({gj}j∈J) := g̃ .
(ii) The homomorphism ψ is injective and continuous.
(iii) For every k ∈ J we have L(pk ◦ ψ) = πk .
(iv) For every x = (xj)j∈J ∈ g̃ we have ψ(expG x) = (expGj

xj)j∈J .

Notation 3.4. Until the proof of Theorem 3.1 we shall keep the notation of
Remark 3.3. Using Definition 2.2, we introduce the following subset of G :

H := {h ∈ G | lim
j∈J

‖(logGj ,R ◦pj ◦ ψ)(h)‖ = 0},

where 0 < R ≤ R0 . Note that the definition of H does not depend on the choice
of R (see the remark concluding Definition 2.2).

We also denote
h := c0({gj}j∈J).

Remark 3.5. We recall from the Introduction that h = c0({gj}j∈J) is a closed
ideal of the contractive Banach-Lie algebra g̃ = `∞({gj}j∈J . In this connection,
we shall eventually see from Lemmas 3.6–8 that H is a normal Lie subgroup of
G corresponding to the ideal h of g̃ = L(G).

Lemma 3.6. The set H is a subgroup of G .

Proof. Let h1, h2 ∈ H and fix δ > 0 given by Lemma 1.2 for ε = R0 . We may
suppose that 0 < δ < R0 . It then follows by Notation 3.4 that, for i ∈ {1, 2} ,
we have lim

j∈J
‖(logGj ,δ ◦pj ◦ ψ)(hi)‖ = 0, hence there exists j0 ∈ J such that

(∀j ∈ J, j ≥ j0) ‖(logGj ,δ ◦pj ◦ ψ)(hi)‖ < δ for i ∈ {1, 2}.

Then for all j ∈ J with j ≥ j0 we have

(logGj ,R0
◦pj ◦ ψ)(h1h2) = logGj ,R0

(
(pj ◦ ψ)(h1) · (pj ◦ ψ)(h2)

)
= H

(
(logGj ,δ ◦pj ◦ ψ)(h1), (logGj ,δ ◦pj ◦ ψ)(h2)

)
,
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where the latter equality follows in view of the choice of δ . Now, since

lim
j∈J

‖(logGj ,δ ◦pj ◦ ψ)(hi)‖ = 0

for i ∈ {1, 2} , it easily follows by Lemma 1.2 that lim
j∈J

‖(logGj ,R0
◦pj◦ψ)(h1h2)‖ =

0. Thus h1h2 ∈ H .
Finally, note that for every h ∈ G and j ∈ J we have

(logGj ,R0
◦pj ◦ ψ)(h−1) =

{ −(logGj ,R0
◦pj ◦ ψ)(h) if h ∈ VG,R0 ,

∞ if h ∈ G \ VG,R0 ,

which implies at once that h ∈ H is equivalent to h−1 ∈ H , and the proof ends.

Lemma 3.7. The subgroup H of G is normal.

Proof. Since the group G is connected, it clearly suffices to show that
gHg−1 ⊆ H whenever g ∈ VG,R0 . Let us fix such an element g and denote
x := logG,R0

g , so that x ∈ B
g̃
(0, R0) and expG x = g . Also denote gj :=

(pj ◦ ψ)(g) ∈ Gj whenever j ∈ J . By Remark 3.3 (iii)–(iv) we then have
gj ∈ VGj ,R0 , hence denoting xj := logGj ,R0

gj we get xj ∈ Bgj
(0, R0) and

expGj
xj = gj .

Now let h ∈ H arbitrary, so that lim
j∈J

‖(logGj ,R0
◦pj ◦ ψ)(h)‖ = 0. For

each j ∈ J we have

(logGj ,R0/eR0 ◦pj ◦ ψ)(ghg−1)

= logGj ,R0/eR0

(
(pj ◦ ψ)(g) · (pj ◦ ψ)(h) · (pj ◦ ψ)(g)−1

)
= logGj ,R0/eR0

(
gj · (pj ◦ ψ)(h) · g−1

j

)
= logGj ,R0/eR0

(
(expGj

xj) · (pj ◦ ψ)(h) · (expGj
xj)−1

)
= ead gj

xj logGj ,R0

(
(pj ◦ ψ)(h)

)
.

For the latter equality, see Notation 3.4 and note that, since the Banach-Lie
algebra gj is contractive, we have ‖ad gjxj‖ ≤ ‖xj‖ < R0 , hence ‖e−ad gj

xj‖ ≤
e‖ad gj

xj‖ ≤ eR0 , which in turn implies e−ad gj
xj

(
Bgj

(0, R0/eR0)
)
⊆ Bgj

(0, R0).
Using the inequality ‖ead gj

xj‖ ≤ eR0 , it follows from the above equalities
that

(∀j ∈ J) ‖(logGj ,R0/eR0 ◦pj ◦ ψ)(ghg−1)‖ ≤ eR0 · ‖(logGj ,R0
◦pj ◦ ψ)(h)‖.

Now, since h ∈ H , we get ghg−1 ∈ H (see Notation 3.4) as desired.

Lemma 3.8. For every R ∈ (0, R0] we have

expG |B
g̃
(0,R) injective and expG

(
h ∩B

g̃
(0, R)

)
= H ∩ VG,R.
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Proof. The fact that expG |B
g̃
(0,R) is injective follows by Remark 3.3 (i), (ii),

(iv), along with the fact that expGj
|Bgj

(0,R) is injective for all j ∈ J (according
to the choice of R0 ).

The proof of the other assertion has two steps.
1◦ We first prove that expG(h) ⊆ H . To this end, let x = (xj)j∈J ∈

h = c0({gj}j∈J). Then

(1) lim
j∈J

‖xj‖ = 0,

hence there exists j0 ∈ J such that

(2) (∀j ∈ J, j ≥ j0) ‖xj‖ < R.

On the other hand, for every j ∈ J , we have (pj ◦ ψ)(expG x) = expGj
xj by

Remark 3.3 (iv). Then (2) implies that

(3) (∀j ∈ J, j ≥ j0) (logGj ,R ◦pj ◦ ψ)(expG x) = xj .

It then follows by (1), (3) and Notation 3.4 that expG x ∈ H .
2◦ It follows by Step 1◦ that expG

(
h ∩Bg(0, R)

)
⊆ H ∩ VG,R .

To prove the converse inclusion, take h ∈ H ∩ VG,R arbitrary. Since
h ∈ VG,R , there exists a unique x = (xj)j∈J ∈ B

g̃
(0, R) such that h = expG x

(see the beginning of the present proof, and also Remark 3.3 (i)). The fact that
x ∈ B

g̃
(0, R) shows that for every j ∈ J we have ‖xj‖ < R .
Now note that, in Step 1◦ , we actually proved that (2) ⇒ (3), more

precisely that (logGj ,R ◦pj ◦ ψ)(expG x) = xj provided ‖xj‖ < R . This fact
shows that, in the present situation, we have

(∀j ∈ J) (logGj ,R ◦pj ◦ ψ)(h) = xj .

But h ∈ H , so by Notation 3.4 we have lim
j∈J

‖xj‖ = 0, that is, x ∈ h . Thus

h = expG x with x ∈ h ∩ B
g̃
(0, R), which concludes the proof of the desired

equality.

Proof of Theorem 3.1. For R0 as in in Notation 3.2, we get by Re-
mark 3.3, Notation 3.4, and Lemmas 3.6–8 that there exist a Banach-Lie group
G and a subgroup H of G such that L(G) = g̃ := `∞({gj}j∈J), the func-
tion expG |B

g̃
(0,R0) is injective and expG

(
h∩B

g̃
(0, R0)

)
= H ∩expG

(
B

g̃
(0, R0)

)
,

where h = c0({gj}j∈J) as in Notation 3.4.
Thus R0 ≤ rh(g̃) by Definition 2.1. It then follows by Theorem 2.6 that

there exists η > 0 depending only on R0 such that η ≤ r(g̃/h). But g̃/h = g
(see the definition of asymptotic products in the Introduction), hence η ≤ r(g),
as desired.

Corollary 3.9. If J is a directed set and {gj}j∈J is a family of contractive
Banach-Lie algebras such that inf

j∈J
r(gj) > 0 , then the asymptotic product of the

family {gj}j∈J is an enlargible Banach-Lie algebra.

Proof. Use Theorem 3.1 and Remark 2.3 (a).
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4. The local theorem on enlargibility

In the present section, we make use of the previous results on asymptotic products
to prove the Local Theorem on Enlargibility of V. Pestov (see [Pe88] and [Pe92]).
The next two lemmas claim their origins from a typical ultraproduct method of
proof. (For this method, see the comments following the proof of Proposition 6.2
in [He80].)

Lemma 4.1. Let g be a contractive Banach-Lie algebra, J a directed set and
{gj}j∈J a family of closed subalgebras of g such that the following conditions
hold.

(j) If j1, j2 ∈ J and j1 ≤ j2 , then gj1 ⊆ gj2 .
(jj) We have g =

⋃
j∈J

gj .

If ĝ stands for the asymptotic product of the family {gj}j∈J , then there exists
an isometric homomorphism of Banach-Lie algebras ψ: g → ĝ .

Proof. Let a ∈ g . According to the hypothesis (jj), there exists j0 ∈ J with
a ∈ gj0 . Define

aj =
{
a if j ≥ j0,

0 otherwise.

Then (aj)j∈J ∈ `∞({gj}j∈J), and it is easy to see that

ψ(a) := (aj)j∈J + c0({gj}j∈J) ∈ ĝ

does not depend on the choice of j0 and moreover ‖ψ(a)‖ = ‖a‖ (see Lemma 1.1).
Furthermore, it is clear that ψ: g → ĝ is a Lie algebra homomorphism.

Lemma 4.2. Let g be a contractive Banach-Lie algebra, I a directed set and
{hi}i∈I a family of closed subalgebras of g such that the following hypotheses
hold.

(i) If i1, i2 ∈ I and i1 ≤ i2 then hi1 ⊆ hi2 .
(ii) We have g =

⋃
i∈I

hi .

Then there exist a directed set J and a family {gj}j∈J of closed subalgebras of
g such that the following conditions hold.

(j) If j1, j2 ∈ J and j1 ≤ j2 , then gj1 ⊆ gj2 .
(jj) We have g =

⋃
j∈J

gj .

(jjj) For every j ∈ J there exists a sequence i0(j) ≤ i1(j) ≤ · · · in I such
that, if ĥj stands for the asymptotic product of the family {hin(j)}n∈N ,
then there exists an isometric homomorphism of Banach-Lie algebras
ϕj : gj → ĥj .

Proof. The proof has several stages.
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1◦ We define J := {j: N → I | j(0) ≤ j(1) ≤ · · · } endowed with the
partial ordering

j1 ≤ j2 ⇐⇒ (∀n ∈ N) j1(n) ≤ j2(n).

It is easy to check that J is a directed set, since I is directed.
For each j ∈ J we define

gj := {a ∈ g |
(
∃ (an)n∈N ∈

∏
n∈N

hj(n)

)
lim

n→∞
‖an − a‖ = 0}.

Since hj(0) ⊆ hj(1) ⊆ · · · , it is easy to check that

gj =
⋃
n∈N

hj(n)

which implies at once that gj is a closed subalgebra of g .
2◦ We now show that the family {gj}j∈J satisfies conditions (j) and (jj).

Condition (j) is straightforward. To check condition (jj), let a ∈ g arbitrary.
By hypothesis (ii), there exist i0, i1, i2, . . . ∈ I and a0 ∈ hi0 , a1 ∈ hi1 , . . .

such that lim
n→∞

‖an − a‖ = 0. To construct j ∈ J with a ∈ gj , first define

j(0) = i0 . Then pick j(1) ∈ I such that j(1) ≥ j(0) and j(1) ≥ i1 , so that
a1 ∈ hi1 ⊆ hj(1) . If j(0) ≤ · · · ≤ j(k) have been constructed, let j(k + 1) ∈ I
with j(k + 1) ≥ j(k) and j(k + 1) ≥ ik+1 , so that ak+1 ∈ hik+1 ⊆ hj(k+1) , and
so on. Since lim

n→∞
‖an − a‖ = 0 and an ∈ hj(n) for all n ∈ N , we get a ∈ gj

according to the definition of gj at stage 1◦ .
Consequently, g =

⋃
j∈J

gj , which is just condition (jj).

3◦ To check condition (jjj), let j ∈ J be arbitrary, and define in(j) =
j(n) for all n ∈ N . If ĥj denotes the asymptotic product of the family
{hj(n)}n∈N , we define

ϕ: gj → ĥj = `∞({hj(n)}n∈N)/c0({hj(n)}n∈N)

in the following way: for arbitrary a ∈ gj , there exists (an)n∈N ∈
∏

n∈N
hj(n) with

lim
n→∞

‖an − a‖ = 0. Then (an)n∈N ∈ `∞({hj(n)}n∈N), so that we may define

ϕj(a) := (an)n∈N + c0({hj(n)}n∈N) ∈ ĥj .

Then it is clear that ϕj(a) does not depend on the choice of the sequence
(an)n∈N , and Lemma 1.1 shows that

‖ϕj(a)‖ = lim sup
n→∞

‖an‖ = lim
n→∞

‖an‖ = ‖a‖.

Also, it is clear that ϕj : gj → ĥj is a Lie algebra homomorphism.

Concerning the equality gj =
⋃

n∈N
hj(n) in stage 1◦ of the proof of

Lemma 4.2, it is noteworthy that a related fact is noted in Remark 1.2 in [Me71].
We now come to the main result of the present paper.
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Theorem 4.3. For every real number ε > 0 there exists another real number
η > 0 such that r(g) ≥ η provided g is a contractive Banach-Lie algebra, I
is a directed set and {hi}i∈I is a family of closed subalgebras of g such that
inf
i∈I

r(hi) ≥ ε and the following conditions hold:

(i) If i1, i2 ∈ I and i1 ≤ i2 then hi1 ⊆ hi2 .
(ii) We have g =

⋃
i∈I

hi .

Proof. Let J and {gj}j∈J given by Lemma 4.2. By Theorem 3.1, condi-
tion (jjj) in Lemma 4.2 and Remark 2.5 we get ε1 ≤ inf

j∈J
r(gj), where the real

number ε1 > 0 depends only on ε .
On the other hand, by Theorem 3.1, Lemma 4.1 and Remark 2.5 again,

we have η ≤ r(g), for some real number η > 0 depending only on ε1 , that is, on
ε .

The following result is just the Local Theorem on Enlargibility proved
in [Pe92].

Corollary 4.4. A contractive Banach-Lie algebra g is enlargible if and only
if there exist a directed set I and a family {hi}i∈I of closed subalgebras of g
satisfying the following conditions:

(i) If i1, i2 ∈ I and i1 ≤ i2 then hi1 ⊆ hi2 .
(ii) We have g =

⋃
i∈I

hi .

(iii) We have inf
i∈I

r(hi) > 0 .

Proof. If g is enlargible, we may let the family {hi}i∈I consist in g alone.
For the converse assertion, use Theorem 4.3 and Remark 2.3 (a).

For the sake of completeness, we conclude by mentioning the result
contained in Corollary 3.5 in [Pe92] (or Corrolaire 1 in [Pe88]).

Remark 4.5. It follows by Remark 2.3 (c) that condition (iii) in Corollary 4.4
is satisfied if each hi is finite dimensional. Consequently a Banach-Lie algebra
is enlargible provided it has a dense locally finite subalgebra.
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