The Automorphisms of Generalized Witt Type Lie Algebras

Naoki Kawamoto, Atsushi Mitsukawa, Ki-Bong Nam, and Moon-Ok Wang

Communicated by E. Vinberg

Abstract. We find the Lie automorphisms of generalized Witt type Lie algebras $W[x, e^x]$ and $W[x, e^{\pm x}]$.

1. Introduction

Simplicity of several generalized Witt type Lie algebras have been considered by many authors over a field F of characteristic zero. Kac [3] studied the generalized Witt algebra on the F-algebra in the formal power series algebra $F[[x_1, \dots, x_n]]$. There exist many generalized Witt type simple Lie algebras using the algebras stable under the action of derivations ([1], [3], [4], [6]). We consider one-variable cases based on using the exponential functions. Let $\partial = \frac{d}{dx}$, $F[x^{\pm 1}, e^{\pm x}] = F[x, x^{-1}, e^x, e^{-x}]$, and let $F[a_1, \dots, a_n]$ be a subalgebra of $F[x^{\pm 1}, e^{\pm x}]$ generated by a_1, \dots, a_n . If $F[a_1, \dots, a_n]$ is ∂ -stable we put $W[a_1, \dots, a_n] = \{f\partial \mid f \in F[a_1, \dots, a_n]\}$. Then $W[a_1, \dots, a_n]$ is a Lie algebra over F with the usual product

$$[f\partial, g\partial] = f\partial \circ g\partial - g\partial \circ f\partial = (f(\partial g) - (\partial f)g)\partial \quad (f, g \in F[a_1, ..., a_n]).$$

The Lie algebras W[x], $W[x^{\pm 1}]$, $W[e^{\pm x}]$, $W[x, e^{\pm x}]$, and $W[x^{\pm 1}, e^{\pm x}]$ are simple, while $W[x, e^x]$ and $W[x^{\pm 1}, e^x]$ are not simple. The automorphisms of W[x] is considered in [7] (cf. also [2]). The automorphisms of generalized Witt type Lie algebras of Laurent polynomials are considered in [1], [5]. In this paper we find the Lie automorphisms of $W[x, e^x]$ and $W[x, e^{\pm x}]$ containing polynomials and exponential functions. The automorphism group of $W[x, e^x]$ is isomorphic to $F^* \times$ F, while the automorphism group of $W[x, e^{\pm x}]$ is isomorphic to $\mathbb{Z}/2\mathbb{Z} \ltimes (F^* \times F)$.

2. Preliminaries

Let \mathbb{Z} be the set of integers, \mathbb{Z}_+ the set of positive integers, \mathbb{Z}_- the set of negative integers, and \mathbb{N} the set of non-negative integers. For the field F we denote by

ISSN 0949–5932 / \$2.50 © Heldermann Verlag

$$\begin{split} F^* & \text{the set of non-zero elements of } F. & \text{Recall that } W[x,e^x] = \bigoplus_{n \in \mathbb{N}} W_n \text{ and } \\ W[x,e^{\pm x}] = \bigoplus_{n \in \mathbb{Z}} W_n \text{ are graded Lie algebras, where } W_n = \{fe^{nx}\partial \mid f \in F[x]\} \text{ is a homogeneous component of degree } n. \text{ Let } \alpha = \alpha_n + \alpha_{n-1} + \dots + \alpha_m, \text{ where } \alpha_i \in W_i \text{ and } \alpha_n, \alpha_m \neq 0. \text{ Then we denote by } \overline{\alpha} \text{ the non-zero homogeneous component of lowest degree } \alpha_m. \text{ Hence } \alpha = \overline{\alpha} + \dots + \underline{\alpha}. \text{ Let } W_+ = \bigoplus_{n \in \mathbb{Z}_+} W_n \text{ and } W_- = \bigoplus_{n \in \mathbb{Z}_-} W_n. \text{ Then } W[x,e^{\pm x}] = W_+ + W_0 + W_-, \text{ and } \alpha = \alpha_+ + \alpha_0 + \alpha_- \text{ for some } \alpha_+ \in W_+, \\ \alpha_0 \in W_0, \text{ and } \alpha_- \in W_-. \text{ For } \alpha, \dots, \beta \in W[x,e^{\pm x}] \text{ we denote by } sp\{\alpha,\dots,\beta\} \text{ the subalgebra of } W[x,e^{\pm x}] \text{ generated by } \alpha,\dots,\beta. \text{ We denote by } sp\{\alpha,\dots,\beta\} \text{ the subspace of } W[x,e^{\pm x}] \text{ spanned by } \alpha,\dots,\beta. \text{ Hence, } \langle \alpha \rangle = sp\{\alpha\} = F\alpha. \text{ For } a \in F^*, b \in F \text{ we define } \end{split}$$

$$\begin{aligned}
\varphi_a : & x^n e^{mx} \partial \longmapsto a^m x^n e^{mx} \partial, \\
\psi_b : & x^n e^{mx} \partial \longmapsto (x+b)^n e^{mx} \partial, \\
\tau : & x^n e^{mx} \partial \longmapsto (-1)^{n-1} x^n e^{-mx} \partial.
\end{aligned}$$
(1)

Then it is easy to see that φ_a , $\psi_b \in \operatorname{Aut}_F W[x, e^x]$, and that φ_a , ψ_b , $\tau \in \operatorname{Aut}_F W[x, e^{\pm x}]$. Here we use the same symbols to denote the same type of the automorphisms in (1). Note that $W[x, e^x] = \langle \partial, x^3 \partial, e^x \partial \rangle$ and $W[x, e^{\pm x}] = \langle \partial, x^3 \partial, e^x \partial \rangle$, $e^x \partial \langle e^{-x} \partial \rangle$.

Note 2.1. Let φ be a Lie automorphism of $W[x, e^x]$ (resp. $W[x, e^{\pm x}]$). If $\varphi(x^n\partial) = x^n\partial$ $(n \in \mathbb{N})$ and $\varphi(e^{mx}\partial) = e^{mx}\partial$ $(m \in \mathbb{N} \text{ (resp. }\mathbb{Z}))$, then $\varphi = 1_{W[x,e^x]}$ (resp. $1_{W[x,e^{\pm x}]}$).

Note 2.2. The Lie algebra $W[x, e^{\pm x}]$ is self-centralizing, that is, if $[\alpha, \beta] = 0$ and α, β are non-zero elements of $W[x, e^{\pm x}]$, then $\langle \alpha \rangle = \langle \beta \rangle$.

Note 2.3. Let $\beta \in W[x, e^{\pm x}]$. If $[\partial, \beta] = a\beta$ for some $a \in F^*$, then $\beta \in \langle e^{ax} \partial \rangle$ where $a \in \mathbb{Z}$.

Note 2.4. Let I be one of \mathbb{N} , $\mathbb{N} \cup \{-1\}$, and \mathbb{Z} . Let $a_n \in F^*$ $(n \in I)$ satisfy the condition $a_{n+m} = a_n a_m$ for any $n \neq m$. Then $a_n = a_1^n$ for any $n \in I$.

3. Stabilizers

We determine the elements α, β satisfying the condition $[\alpha, \beta] = \beta$ in some generalized Witt type Lie algebras.

Proposition 3.1. Let α , β be non-zero elements of W[x] such that $[\alpha, \beta] = \beta$. Then $\alpha - \frac{1}{n-1}(x+c)\partial$, $\beta \in \langle (x+c)^n \partial \rangle$ for some $c \in F$ and $n \in \mathbb{N} \setminus \{1\}$.

Proof. Let $\alpha = f\partial$, $\beta = g\partial$ and let $f = a_m x^m + \dots + a_0$, $g = b_n x^n + \dots + b_0$, where $m, n \ge 0$ and $a_m, b_n \ne 0$. If $m \ne n$, then from $[\alpha, \beta] = \beta$ we have m = 1and

$$f = \frac{1}{n-1}(x+c), \quad g = b_n(x+c)^n$$

for some $c \in F$. If m = n, then it follows by taking h = f - ag, where $a = \frac{a_n}{b_n} \neq 0$, that $f = a_n(x+c)^n + \frac{1}{n-1}(x+c)$, $g = b_n(x+c)^n$.

Proposition 3.2. Let α, β be non-zero elements of $W[x, e^x]$ and $[\alpha, \beta] = \beta$. Then $\beta_+ = 0$ or $\beta_0 = 0$ and one of the following statements holds: (1) $\alpha - \frac{1}{n-1}(x+c)\partial$, $\beta \in \langle (x+c)^n \partial \rangle$ for some $c \in F$ and $n \in \mathbb{N} \setminus \{1\}$, or (2) $\alpha - \frac{1}{n}\partial$, $\beta \in \langle e^{nx} \partial \rangle$ for some $n \in \mathbb{Z}_+$.

Proof. Let $\alpha = (f_m e^{mx} + \dots + f_0)\partial$, $\beta = (g_n e^{nx} + \dots + g_0)\partial$, where f_m, \dots, f_0 , $g_n, \dots, g_0 \in F[x], f_m, g_n \neq 0$, and $m, n \in \mathbb{N}$. If $m \neq n$, then by some computation we deduce from $[\alpha, \beta] = \beta$ that m = 0, n > 0 and that

$$\alpha = \frac{1}{n}\partial, \quad \beta = b_n e^{nx}\partial \quad (b_n \neq 0).$$

Let m = n. If n = 0, then we can apply Proposition 3.1. If n > 0, then we have $f_n g'_n - f'_n g_n = 0$, $(\frac{f_n}{g_n})' = 0$, and $g_n = cf_n$ for some constant $c \neq 0$, where we write simply f' instead of ∂f . From $[\alpha - \frac{1}{c}\beta, \beta] = \beta$ we have $\alpha = ae^{nx}\partial + \frac{1}{n}\partial$, $\beta = be^{nx}\partial$ for some $a, b \in F$.

We continue to characterize the elements α, β satisfying the condition $[\alpha, \beta] = \beta$ in $W[x, e^{\pm x}]$.

Lemma 3.3. Let α, β be non-zero elements of $W[x, e^{\pm x}]$ and $[\alpha, \beta] = \beta$. Then (1) For $\overline{\alpha}$ and $\overline{\beta}$ we have either (i) $\overline{\alpha - k\beta} - \frac{1}{n-1}(x+c)\partial$, $\overline{\beta} \in \langle (x+c)^n \partial \rangle$ for some $k, c \in F$, $n \in \mathbb{N} \setminus \{1\}$, or (ii) $\overline{\alpha - k\beta} = \frac{1}{n}\partial$ and $\overline{\beta} \in \langle e^{nx}\partial \rangle$ for some $k \in F$, $n \in \mathbb{Z} \setminus \{0\}$. (2) For $\underline{\alpha}$ and $\underline{\beta}$ we have either (i) $\underline{\alpha - l\beta} - \frac{1}{m-1}(x+d)\partial$, $\underline{\beta} \in \langle (x+d)^m \partial \rangle$ for some $l, d \in F$, $m \in \mathbb{N} \setminus \{1\}$, or (ii) $\underline{\alpha - l\beta} = \frac{1}{m}\partial$ and $\underline{\beta} \in \langle e^{mx}\partial \rangle$ for some $l \in F$, $m \in \mathbb{Z} \setminus \{0\}$.

Proof. We show Case (1), since Case (2) will be proved similarly. Since $[\alpha - k\beta, \beta] = \beta$ for any $k \in F$, if necessary we can replace α with $\alpha - k\beta$. Hence we may assume $\langle \overline{\alpha} \rangle \neq \langle \overline{\beta} \rangle$. Then by Note 2.2 we have $[\overline{\alpha}, \overline{\beta}] \neq 0$. Therefore $[\overline{\alpha}, \overline{\beta}] = \overline{\beta}$ and $\overline{\alpha} \in W_0 = W[x]$ since $W[x, e^{\pm x}]$ is \mathbb{Z} -graded. We determine $\overline{\alpha}$ and $\overline{\beta}$. Apply the automorphism τ if necessary. Then by Proposition 3.2 we have $\overline{\alpha} - \frac{1}{n-1}(x+c)\partial, \ \overline{\beta} \in \langle (x+c)^n \partial \rangle$ for some $c \in F, \ n \in \mathbb{N} \setminus \{1\}, \text{ or } \overline{\alpha} - \frac{1}{n}\partial, \ \overline{\beta} \in \langle e^{nx} \partial \rangle$ for some $n \in \mathbb{Z} \setminus \{0\}$. In the later case $\overline{\alpha} = \frac{1}{n}\partial + be^{nx}\partial$ for some $b \in F$, and $\overline{\alpha} = \frac{1}{n}\partial$ since $\overline{\alpha}$ is homogeneous.

Lemma 3.4. Let α, β be non-zero elements of $W[x, e^{\pm x}]$ and $[\alpha, \beta] = \beta$. Then we have the following statments: (1) If $\alpha_+ \neq 0$, then $\beta_+ \neq 0$, $\langle \overline{\alpha} \rangle = \langle \overline{\beta} \rangle \subseteq W_n$ for some $n \in \mathbb{Z}_+$, and also $\beta = \frac{1}{k}\alpha_+ + \frac{1}{k}\left(\alpha_0 - \frac{1}{n}\partial\right) + \beta_-$ for some $k \in F^*$. (2) If $\alpha_- \neq 0$, then $\beta_- \neq 0$, $\langle \underline{\alpha} \rangle = \langle \underline{\beta} \rangle \subseteq W_m$ for some $m \in \mathbb{Z}_-$, and $\beta = \beta_+ + \frac{1}{l}\left(\alpha_0 - \frac{1}{m}\partial\right) + \frac{1}{l}\alpha_-$ for some $l \in F^*$. (3) If $\alpha_+, \alpha_- \neq 0$, then $\beta \in sp\{\alpha_+, \alpha_-, \alpha_0, \partial\}$. **Proof.** (1) Let $\alpha_{+} \neq 0$. Then $\overline{\alpha} \in W_{n}$ for some $n \in \mathbb{Z}_{+}$. Assume that $[\overline{\alpha}, \overline{\beta}] \neq 0$. Then $[\overline{\alpha}, \overline{\beta}] = \overline{\beta}$. If $\overline{\beta} \in W_{m}$, then $\overline{\beta} = [\overline{\alpha}, \overline{\beta}] \in W_{n+m}$, a contradiction. Hence $[\overline{\alpha}, \overline{\beta}] = 0$, and by Note 2.2 we have $\langle \overline{\alpha} \rangle = \langle \overline{\beta} \rangle$ and $\beta_{+} \neq 0$. Hence $\overline{\beta} \in W_{n}$, and we have $\overline{\alpha - k\beta} = \frac{1}{n}\partial$ for some non-zero $k \in F$ by Lemma 3.3. Then $\alpha - k\beta = \frac{1}{n}\partial + \alpha_{-} - k\beta_{-}$ and $\beta = \frac{1}{k}\alpha_{+} + \frac{1}{k}(\alpha_{0} - \frac{1}{n}\partial) + \beta_{-}$.

(2) Let $\alpha_{-} \neq 0$. Then $\langle \underline{\alpha} \rangle \in W_{m}$ for some $m \in \mathbb{Z}_{-}$, and we have $\beta = \beta_{+} + \frac{1}{l} \left(\alpha_{0} - \frac{1}{m} \partial \right) + \frac{1}{l} \alpha_{-}$ for some $l \in F^{*}$.

(3) Let $\alpha_+, \alpha_- \neq 0$. Then from (1) and (2) we have

$$\beta = \frac{1}{k}\alpha_{+} + \frac{1}{k}\left(\alpha_{0} - \frac{1}{n}\partial\right) + \beta_{-} = \beta_{+} + \frac{1}{l}\left(\alpha_{0} - \frac{1}{m}\partial\right) + \frac{1}{l}\alpha_{-}$$

for some $k, l \in F^*$, $n \in \mathbb{Z}_+$, $m \in \mathbb{Z}_-$. Thus $\beta \in sp\{\alpha_+, \alpha_-, \alpha_0, \partial\}$.

Lemma 3.5. Let α be a non-zero element of $W[x, e^{\pm x}]$, and let $\{\beta_i \mid i \in I\}$ be an infinite and linearly independent subset of $W[x, e^{\pm x}]$. If $[\alpha, \beta_i] = a_i\beta_i$ and $a_i \neq 0$ for any $i \in I$, then $\alpha_0 \neq 0$ and either $\alpha_+ = 0$ or $\alpha_- = 0$.

Proof. Assume that $\alpha_{+} \neq 0$ and $\alpha_{-} \neq 0$. Since $[\frac{1}{a_{i}}\alpha, \beta_{i}] = \beta_{i}$, by Lemma 3.4(3) the set $\{\beta_{i} \mid i \in I\}$ is contained in the finite dimensional subspace $sp\{\alpha_{+}, \alpha_{-}, \alpha_{0}, \partial\}$, a contradiction. Hence $\alpha_{+} = 0$ or $\alpha_{-} = 0$. If both $\alpha_{+} = 0$ and $\alpha_{-} = 0$, then clearly $\alpha_{0} \neq 0$. Let $\beta = \beta_{i}$. If $\alpha_{-} \neq 0$, then we apply the automorphism τ . Hence we may assume that $\alpha = \alpha_{+} + \alpha_{0}$. By Lemma 3.4 we have

$$\beta = \frac{1}{ka_i}\alpha_+ + \frac{1}{k}\left(\frac{1}{a_i}\alpha_0 - \frac{1}{n}\partial\right) + \beta_-$$

for some $k \in F^*$ and $n \in \mathbb{Z}_+$ such that $\overline{\beta} \in W_n$. Hence $\beta_+ \neq 0$. If $\beta_- = 0$, then by Proposition 3.2 we have $\frac{1}{a_i}\alpha_0 - \frac{1}{n}\partial = k\beta_0 = 0$ and $\alpha_0 \neq 0$. If $\beta_- \neq 0$, then $[\frac{1}{a_i}\underline{\alpha},\underline{\beta}] = \underline{\beta}$ since $\langle\underline{\alpha}\rangle \neq \langle\underline{\beta}\rangle$. Hence $\alpha_0 = \underline{\alpha} \neq 0$.

4. Automorphisms

We determine the automorphisms of $W[x, e^x]$ and $W[x, e^{\pm x}]$ in this section.

Lemma 4.1. Let φ be an injective homomorphism of W[x]. Then $\varphi(x^n \partial) = a^{n-1}(x+b)^n \partial$ $(n \in \mathbb{N})$ for some $a \in F^*$, $b \in F$.

Proof. Let φ be an injective homomorphism of W[x]. Since

$$[\varphi(x^m\partial),\varphi(x^n\partial)] = (n-m)\varphi(x^{m+n-1}\partial), \qquad (2)$$

we have $\left[\frac{1}{n-1}\varphi(x\partial),\varphi(x^n\partial)\right] = \varphi(x^n\partial) \ (n \neq 1)$. Since $\varphi(x^n\partial) \ (n \in \mathbb{N})$ are linearly independent it follows easily from Proposition 3.1 that

$$\varphi(x^n\partial) = a_{n-1}(x+b)^n\partial \quad (n \in \mathbb{N})$$

for some $a_{n-1} \in F^*$, $b \in F$. Then from (2) we have $a_{m-1}a_{n-1} = a_{m+n-2} = a_{m-1+n-1}$ $(n, m \in \mathbb{N}, n \neq m)$, that is, $a_m a_n = a_{n+m}$ $(n, m \in \mathbb{N} \cup \{-1\}, n \neq m)$. By Note 2.4, $a_n = a_1^n$ and $\varphi(x^n \partial) = a^{n-1}(x+b)^n \partial$, where $a = a_1 \in F^*$. Let $\rho_a : x^n \partial \longmapsto a^{n-1} x^n \partial$. Then it is easy to see that ρ_a $(a \in F^*)$ is an automorphism of W[x]. By Lemma 4.1 we note that the automorphism group of W[x] is isomorphic to $F^* \ltimes F$, where F^* is the multiplicative group and F is the additive group (cf. [2],[7]).

Proposition 4.2. Let φ be an automorphism of $W[x, e^x]$ or $W[x, e^{\pm x}]$. Then $\varphi(W[x]) \subseteq W[x]$.

Proof. It holds that $[\varphi(x\partial), \varphi(x^n\partial)] = (n-1)\varphi(x^n\partial) \ (n \in \mathbb{N})$. Let $\alpha = \varphi(x\partial)$. Then by Lemma 3.5 we have $\alpha_0 \neq 0$, and $\alpha_+ = 0$ or $\alpha_- = 0$. Let $\beta = \varphi(\partial)$. Then similary from $[\varphi(\partial), \varphi(e^{mx}\partial)] = m\varphi(e^{mx}\partial) \ (m \in \mathbb{N})$ we have $\beta_0 \neq 0$, and $\beta_+ = 0$ or $\beta_- = 0$. Assume that $\alpha_+ \neq 0$. Then from $[-\alpha, \beta] = \beta$ and Lemma 3.4(1) we have $\beta_+ \neq 0$ and $\alpha, \beta \in W[x, e^x]$. Hence $\beta_0 \neq 0$ and $\beta_+ \neq 0$, but this contradicts to Proposition 3.2. Assume that $\alpha_- \neq 0$. Then applying τ we have a contradiction similar to the above. Therefore $\alpha = \alpha_0 \in W[x]$. Then the case $\beta_+ \neq 0$ and the case $\beta_- \neq 0$ cause similar contradictions. Thus $\beta = \beta_0 \in W[x]$. From $[\beta, \varphi(x^n\partial)] = (n-1)\varphi(x^{n-1}\partial)$ we have $\varphi(x^n\partial) \in W[x]$ $(n \in \mathbb{N})$ by induction.

Theorem 4.3. Let φ be an automorphism of $W[x, e^x]$. Then φ is a product of φ_a and ψ_b for some $a \in F^*$, $b \in F$.

Proof. Let φ be an automorphism of $W[x, e^x]$. Then by Proposition 4.2 and Lemma 4.1 we have $\varphi(\partial) = a^{-1}\partial$ and $\varphi(x^n\partial) = a^{n-1}(x+b)^n\partial$ for some $a \in F^*$, $b \in F$. Since $[\varphi(\partial), \varphi(e^{mx}\partial)] = m\varphi(e^{mx}\partial)$, we have $[\partial, \varphi(e^{mx}\partial)] = am\varphi(e^{mx}\partial)$. Then by Note 2.3 we have $\varphi(e^{mx}\partial) \in \langle e^{amx}\partial \rangle$ and $am \in \mathbb{N}$. Since φ is surjective, it follows that a = 1, $\varphi(x^n\partial) = (x+b)^n\partial$ $(n \in \mathbb{N})$, and $\varphi(e^{mx}\partial) = c_m e^{mx}\partial$ $(m \in \mathbb{N})$. Then from $[\varphi(e^{mx}\partial), \varphi(e^{kx}\partial)] = (k-m)\varphi(e^{(m+k)x}\partial)$ $(m, k \in \mathbb{N})$ and Note 2.4, we have $c_m = c^m$ for some $c \in F^*$. Thus $\varphi(e^{mx}\partial) = c^m e^{mx}\partial$. Hence $(\varphi_c \circ \psi_b)^{-1} \circ \varphi = 1_{W[x,e^x]}$ by Note 2.1, and therefore $\varphi = \varphi_c \circ \psi_b$.

Corollary 4.4. The automorphism group of $W[x, e^x]$ is isomorphic to $F^* \times F$.

Proof. This is clear from $\varphi_a \circ \psi_b = \psi_b \circ \varphi_a$ for any $a \in F^*$, $b \in F$.

Theorem 4.5. An automorphism of $W[x, e^{\pm x}]$ is a product of φ_a , ψ_b , and τ for some $a \in F^*$, $b \in F$.

Proof. Let φ be an automorphism of $W[x, e^{\pm x}]$. Then as in the proof of Theorem 4.3 $\varphi(x^n\partial) = a^{n-1}(x+b)^n\partial$ $(n \in \mathbb{N})$ and $\varphi(e^{mx}\partial) = c_m e^{amx}\partial$ $(m \in \mathbb{Z})$. Since φ is surjective, we have $a = \pm 1$, and applying τ if necessary we may assume a = 1. Then it follows that $\varphi(e^{mx}\partial) = c^m e^{mx}\partial$ for some $c \in F^*$ and that $(\varphi_c \circ \psi_b)^{-1} \circ \varphi = 1_{W[x,e^{\pm x}]}$.

Corollary 4.6. The automorphism group of $W[x, e^{\pm x}]$ is isomorphic to $\mathbb{Z}/2\mathbb{Z} \ltimes (F^* \times F)$.

Proof. This is clear from $\varphi_a \circ \psi_b = \psi_b \circ \varphi_a$, $\tau \circ \varphi_a \circ \tau = \varphi_{a^{-1}}$, and $\tau \circ \psi_b \circ \tau = \psi_{-b}$.

References

- Doković, D. Ż., and K. Zhao, Derivations, isomorphisms, and second cohomology of generalized Witt algebras, Trans. Amer. Math. Soc., 350 (1998), 643–664.
- [2] Grabowski, J., Isomorphisms and ideals of the Lie algebras of vector fields, Invent. Math., **50** (1978), 13–33.
- Kac, V. G., Description of filtered Lie algebra with which graded Lie algebras of Cartan type are associated, Izv. Akad. Nauk SSSR Ser. Mat., 38 (1974), 801–835.
- [4] Kawamoto, N., Generalizations of Witt algebras over a field of characteristic zero, Hiroshima Math. J., **16** (1986), 417–426.
- [5] —, On G-graded automorphisms of generalized Witt algebras, Contemp. Math., **184** (1995), 225–230.
- [6] Nam, K-B., Generalized W and H type Lie algebras, Algebra Colloq., 6 (1999), 329–340.
- [7] Rudakov, A. N., Subalgebras and automorphisms of Lie algebras of Cartan type, Functional Anal. Appl., **20** (1986) 72–73.

Naoki Kawamoto Japan Coast Guard Academy 5-1 Wakaba Kure 737-8512 Japan kawamoto@jcga.ac.jp Atsushi Mitsukawa Department of Management Information Fukuyama Heisei University 117-1 Miyuki Fukuyama 720-0001 Japan mitukawa@fuhc.fukuyama-u.ac.jp

Moon-Ok Wang Department of Mathematics Hanyang University

Ki-Bong Nam Department of Mathematics and Computer Science University of Wisconsin-Whitewater 800 West Main Street Whitewater WI 53190 USA namk@mail.uww.edu

Kyunggi 425-791 Korea wang@mail.hanyang.ac.kr

Ansan

Received September 28, 2002 and in final form March 3, 2003