The Automorphisms of Generalized Witt Type Lie Algebras

Naoki Kawamoto, Atsushi Mitsukawa, Ki-Bong Nam, and Moon-Ok Wang

Communicated by E. Vinberg

Abstract

We find the Lie automorphisms of generalized Witt type Lie algebras $W\left[x, e^{x}\right]$ and $W\left[x, e^{ \pm x}\right]$.

1. Introduction

Simplicity of several generalized Witt type Lie algebras have been considered by many authors over a field F of characteristic zero. Kac [3] studied the generalized Witt algebra on the F-algebra in the formal power series algebra $F\left[\left[x_{1}, \cdots, x_{n}\right]\right]$. There exist many generalized Witt type simple Lie algebras using the algebras stable under the action of derivations ([1], [3], [4], [6]). We consider one-variable cases based on using the exponential functions. Let $\partial=\frac{d}{d x}, F\left[x^{ \pm 1}, e^{ \pm x}\right]=$ $F\left[x, x^{-1}, e^{x}, e^{-x}\right]$, and let $F\left[a_{1}, \ldots, a_{n}\right]$ be a subalgebra of $F\left[x^{ \pm 1}, e^{ \pm x}\right]$ generated by a_{1}, \ldots, a_{n}. If $F\left[a_{1}, \ldots, a_{n}\right]$ is ∂-stable we put $W\left[a_{1}, \ldots, a_{n}\right]=\left\{f \partial \mid f \in F\left[a_{1}, \ldots, a_{n}\right]\right\}$. Then $W\left[a_{1}, \ldots, a_{n}\right]$ is a Lie algebra over F with the usual product

$$
[f \partial, g \partial]=f \partial \circ g \partial-g \partial \circ f \partial=(f(\partial g)-(\partial f) g) \partial \quad\left(f, g \in F\left[a_{1}, \ldots, a_{n}\right]\right) .
$$

The Lie algebras $W[x], W\left[x^{ \pm 1}\right], W\left[e^{ \pm x}\right], W\left[x, e^{ \pm x}\right]$, and $W\left[x^{ \pm 1}, e^{ \pm x}\right]$ are simple, while $W\left[x, e^{x}\right]$ and $W\left[x^{ \pm 1}, e^{x}\right]$ are not simple. The automorphisms of $W[x]$ is considered in [7] (cf. also [2]). The automorphisms of generalized Witt type Lie algebras of Laurent polynomials are considered in [1], [5]. In this paper we find the Lie automorphisms of $W\left[x, e^{x}\right]$ and $W\left[x, e^{ \pm x}\right]$ containing polynomials and exponential functions. The automorphism group of $W\left[x, e^{x}\right]$ is isomorphic to $F^{*} \times$ F, while the automorphism group of $W\left[x, e^{ \pm x}\right]$ is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \ltimes\left(F^{*} \times F\right)$.

2. Preliminaries

Let \mathbb{Z} be the set of integers, \mathbb{Z}_{+}the set of positive integers, \mathbb{Z}_{-}the set of negative integers, and \mathbb{N} the set of non-negative integers. For the field F we denote by
F^{*} the set of non-zero elements of F. Recall that $W\left[x, e^{x}\right]=\bigoplus_{n \in \mathbb{N}} W_{n}$ and $W\left[x, e^{ \pm x}\right]=\bigoplus_{n \in \mathbb{Z}} W_{n}$ are graded Lie algebras, where $W_{n}=\left\{f e^{n x} \partial \mid f \in F[x]\right\}$ is a homogeneous component of degree n. Let $\alpha=\alpha_{n}+\alpha_{n-1}+\cdots+\alpha_{m}$, where $\alpha_{i} \in$ W_{i} and $\alpha_{n}, \alpha_{m} \neq 0$. Then we denote by $\bar{\alpha}$ the non-zero homogeneous component of α of highest degree α_{n}, and by $\underline{\alpha}$ the non-zero homogeneous component of lowest degree α_{m}. Hence $\alpha=\bar{\alpha}+\cdots+\underline{\alpha}$. Let $W_{+}=\bigoplus_{n \in \mathbb{Z}_{+}} W_{n}$ and $W_{-}=\bigoplus_{n \in \mathbb{Z}_{-}} W_{n}$. Then $W\left[x, e^{ \pm x}\right]=W_{+}+W_{0}+W_{-}$, and $\alpha=\alpha_{+}+\alpha_{0}+\alpha_{-}$for some $\alpha_{+} \in W_{+}$, $\alpha_{0} \in W_{0}$, and $\alpha_{-} \in W_{-}$. For $\alpha, \ldots, \beta \in W\left[x, e^{ \pm x}\right]$ we denote by $\langle\alpha, \ldots, \beta\rangle$ the subalgebra of $W\left[x, e^{ \pm x}\right]$ generated by α, \ldots, β. We denote by $s p\{\alpha, \ldots, \beta\}$ the subspace of $W\left[x, e^{ \pm x}\right]$ spanned by α, \ldots, β. Hence, $\langle\alpha\rangle=s p\{\alpha\}=F \alpha$. For $a \in F^{*}, b \in F$ we define

$$
\begin{align*}
\varphi_{a} & : x^{n} e^{m x} \partial \longmapsto a^{m} x^{n} e^{m x} \partial, \\
\psi_{b}: & x^{n} e^{m x} \partial \longmapsto(x+b)^{n} e^{m x} \partial, \\
\tau: & x^{n} e^{m x} \partial \longmapsto(-1)^{n-1} x^{n} e^{-m x} \partial . \tag{1}
\end{align*}
$$

Then it is easy to see that $\varphi_{a}, \psi_{b} \in \operatorname{Aut}_{F} W\left[x, e^{x}\right]$, and that $\varphi_{a}, \psi_{b}, \tau \in$ $\operatorname{Aut}_{F} W\left[x, e^{ \pm x}\right]$. Here we use the same symbols to denote the same type of the automorphisms in (1). Note that $W\left[x, e^{x}\right]=\left\langle\partial, x^{3} \partial, e^{x} \partial\right\rangle$ and $W\left[x, e^{ \pm x}\right]=$ $\left\langle\partial, x^{3} \partial, e^{x} \partial, e^{-x} \partial\right\rangle$.

Note 2.1. Let φ be a Lie automorphism of $W\left[x, e^{x}\right]$ (resp. $W\left[x, e^{ \pm x}\right]$). If $\varphi\left(x^{n} \partial\right)=x^{n} \partial(n \in \mathbb{N})$ and $\varphi\left(e^{m x} \partial\right)=e^{m x} \partial(m \in \mathbb{N}($ resp. $\mathbb{Z}))$, then $\varphi=$ $1_{W\left[x, e^{x}\right]}\left(\right.$ resp. $\left.1_{W\left[x, e^{ \pm x]}\right]}\right)$.

Note 2.2. The Lie algebra $W\left[x, e^{ \pm x}\right]$ is self-centralizing, that is, if $[\alpha, \beta]=0$ and α, β are non-zero elements of $W\left[x, e^{ \pm x}\right]$, then $\langle\alpha\rangle=\langle\beta\rangle$.

Note 2.3. Let $\beta \in W\left[x, e^{ \pm x}\right]$. If $[\partial, \beta]=a \beta$ for some $a \in F^{*}$, then $\beta \in\left\langle e^{a x} \partial\right\rangle$ where $a \in \mathbb{Z}$.

Note 2.4. Let I be one of $\mathbb{N}, \mathbb{N} \cup\{-1\}$, and \mathbb{Z}. Let $a_{n} \in F^{*}(n \in I)$ satisfy the condition $a_{n+m}=a_{n} a_{m}$ for any $n \neq m$. Then $a_{n}=a_{1}^{n}$ for any $n \in I$.

3. Stabilizers

We determine the elements α, β satisfying the condition $[\alpha, \beta]=\beta$ in some generalized Witt type Lie algebras.

Proposition 3.1. Let α, β be non-zero elements of $W[x]$ such that $[\alpha, \beta]=\beta$. Then $\alpha-\frac{1}{n-1}(x+c) \partial, \beta \in\left\langle(x+c)^{n} \partial\right\rangle$ for some $c \in F$ and $n \in \mathbb{N} \backslash\{1\}$.

Proof. Let $\alpha=f \partial, \beta=g \partial$ and let $f=a_{m} x^{m}+\cdots+a_{0}, g=b_{n} x^{n}+\cdots+b_{0}$, where $m, n \geq 0$ and $a_{m}, b_{n} \neq 0$. If $m \neq n$, then from $[\alpha, \beta]=\beta$ we have $m=1$ and

$$
f=\frac{1}{n-1}(x+c), \quad g=b_{n}(x+c)^{n}
$$

for some $c \in F$. If $m=n$, then it follows by taking $h=f-a g$, where $a=\frac{a_{n}}{b_{n}} \neq 0$, that $f=a_{n}(x+c)^{n}+\frac{1}{n-1}(x+c), g=b_{n}(x+c)^{n}$.

Proposition 3.2. Let α, β be non-zero elements of $W\left[x, e^{x}\right]$ and $[\alpha, \beta]=\beta$. Then $\beta_{+}=0$ or $\beta_{0}=0$ and one of the following statements holds: (1) $\alpha-\frac{1}{n-1}(x+$ c) $\partial, \beta \in\left\langle(x+c)^{n} \partial\right\rangle$ for some $c \in F$ and $n \in \mathbb{N} \backslash\{1\}$, or (2) $\alpha-\frac{1}{n} \partial$, $\beta \in\left\langle e^{n x} \partial\right\rangle$ for some $n \in \mathbb{Z}_{+}$.

Proof. Let $\alpha=\left(f_{m} e^{m x}+\cdots+f_{0}\right) \partial, \beta=\left(g_{n} e^{n x}+\cdots+g_{0}\right) \partial$, where f_{m}, \ldots, f_{0}, $g_{n}, \ldots, g_{0} \in F[x], f_{m}, g_{n} \neq 0$, and $m, n \in \mathbb{N}$. If $m \neq n$, then by some computation we deduce from $[\alpha, \beta]=\beta$ that $m=0, n>0$ and that

$$
\alpha=\frac{1}{n} \partial, \quad \beta=b_{n} e^{n x} \partial \quad\left(b_{n} \neq 0\right) .
$$

Let $m=n$. If $n=0$, then we can apply Proposition 3.1. If $n>0$, then we have $f_{n} g_{n}^{\prime}-f_{n}^{\prime} g_{n}=0,\left(\frac{f_{n}}{g_{n}}\right)^{\prime}=0$, and $g_{n}=c f_{n}$ for some constant $c \neq 0$, where we write simply f^{\prime} instead of ∂f. From $\left[\alpha-\frac{1}{c} \beta, \beta\right]=\beta$ we have $\alpha=a e^{n x} \partial+\frac{1}{n} \partial, \beta=b e^{n x} \partial$ for some $a, b \in F$.

We continue to characterize the elements α, β satisfying the condition $[\alpha, \beta]=\beta$ in $W\left[x, e^{ \pm x}\right]$.

Lemma 3.3. Let α, β be non-zero elements of $W\left[x, e^{ \pm x}\right]$ and $[\alpha, \beta]=\beta$. Then (1) For $\bar{\alpha}$ and $\bar{\beta}$ we have either
(i) $\overline{\alpha-k \beta}-\frac{1}{n-1}(x+c) \partial, \bar{\beta} \in\left\langle(x+c)^{n} \partial\right\rangle$ for some $k, c \in F, n \in \mathbb{N} \backslash\{1\}$, or
(ii) $\overline{\alpha-k \beta}=\frac{1}{n} \partial$ and $\bar{\beta} \in\left\langle e^{n x} \partial\right\rangle$ for some $k \in F, n \in \mathbb{Z} \backslash\{0\}$.
(2) For $\underline{\alpha}$ and $\underline{\beta}$ we have either
(i) $\underline{\alpha-l \beta}-\frac{1}{m-1}(x+d) \partial, \underline{\beta} \in\left\langle(x+d)^{m} \partial\right\rangle$ for some $l, d \in F, m \in \mathbb{N} \backslash\{1\}$, or
(ii) $\underline{\alpha-l \beta}=\frac{1}{m} \partial$ and $\underline{\beta} \in\left\langle e^{m x} \partial\right\rangle$ for some $l \in F, m \in \mathbb{Z} \backslash\{0\}$.

Proof. We show Case (1), since Case (2) will be proved similarly. Since $[\alpha-k \beta, \beta]=\beta$ for any $k \in F$, if necessary we can replace α with $\alpha-k \beta$. Hence we may assume $\langle\bar{\alpha}\rangle \neq\langle\bar{\beta}\rangle$. Then by Note 2.2 we have $[\bar{\alpha}, \bar{\beta}] \neq 0$. Therefore $[\bar{\alpha}, \bar{\beta}]=\bar{\beta}$ and $\bar{\alpha} \in W_{0}=W[x]$ since $W\left[x, e^{ \pm x}\right]$ is \mathbb{Z}-graded. We determine $\bar{\alpha}$ and $\bar{\beta}$. Apply the automorphism τ if necessary. Then by Proposition 3.2 we have $\bar{\alpha}-\frac{1}{n-1}(x+c) \partial, \bar{\beta} \in\left\langle(x+c)^{n} \partial\right\rangle$ for some $c \in F, n \in \mathbb{N} \backslash\{1\}$, or $\bar{\alpha}-\frac{1}{n} \partial, \bar{\beta} \in\left\langle e^{n x} \partial\right\rangle$ for some $n \in \mathbb{Z} \backslash\{0\}$. In the later case $\bar{\alpha}=\frac{1}{n} \partial+b e^{n x} \partial$ for some $b \in F$, and $\bar{\alpha}=\frac{1}{n} \partial$ since $\bar{\alpha}$ is homogeneous.

Lemma 3.4. Let α, β be non-zero elements of $W\left[x, e^{ \pm x}\right]$ and $[\alpha, \beta]=\beta$. Then we have the following statments:
(1) If $\alpha_{+} \neq 0$, then $\beta_{+} \neq 0,\langle\bar{\alpha}\rangle=\langle\bar{\beta}\rangle \subseteq W_{n}$ for some $n \in \mathbb{Z}_{+}$, and also $\beta=\frac{1}{k} \alpha_{+}+\frac{1}{k}\left(\alpha_{0}-\frac{1}{n} \partial\right)+\beta_{-}$for some $k \in F^{*}$.
(2) If $\alpha_{-} \neq 0$, then $\beta_{-} \neq 0,\langle\underline{\alpha}\rangle=\langle\beta\rangle \subseteq W_{m}$ for some $m \in \mathbb{Z}_{-}$, and $\beta=\beta_{+}+\frac{1}{l}\left(\alpha_{0}-\frac{1}{m} \partial\right)+\frac{1}{l} \alpha_{-}$for some $l \in \bar{F}^{*}$.
(3) If $\alpha_{+}, \alpha_{-} \neq 0$, then $\beta \in \operatorname{sp}\left\{\alpha_{+}, \alpha_{-}, \alpha_{0}, \partial\right\}$.

Proof. (1) Let $\alpha_{+} \neq 0$. Then $\bar{\alpha} \in W_{n}$ for some $n \in \mathbb{Z}_{+}$. Assume that $[\bar{\alpha}, \bar{\beta}] \neq 0$. Then $[\bar{\alpha}, \bar{\beta}]=\bar{\beta}$. If $\bar{\beta} \in W_{m}$, then $\bar{\beta}=[\bar{\alpha}, \bar{\beta}] \in W_{n+m}$, a contradiction. Hence $[\bar{\alpha}, \bar{\beta}]=0$, and by Note 2.2 we have $\langle\bar{\alpha}\rangle=\langle\bar{\beta}\rangle$ and $\beta_{+} \neq 0$. Hence $\bar{\beta} \in W_{n}$, and we have $\overline{\alpha-k \beta}=\frac{1}{n} \partial$ for some non-zero $k \in F$ by Lemma 3.3. Then $\alpha-k \beta=\frac{1}{n} \partial+\alpha_{-}-k \beta_{-}$and $\beta=\frac{1}{k} \alpha_{+}+\frac{1}{k}\left(\alpha_{0}-\frac{1}{n} \partial\right)+\beta_{-}$.
(2) Let $\alpha_{-} \neq 0$. Then $\langle\underline{\alpha}\rangle \in W_{m}$ for some $m \in \mathbb{Z}_{-}$, and we have $\beta=\beta_{+}+\frac{1}{l}\left(\alpha_{0}-\frac{1}{m} \partial\right)+\frac{1}{l} \alpha_{-}$for some $l \in F^{*}$.
(3) Let $\alpha_{+}, \alpha_{-} \neq 0$. Then from (1) and (2) we have

$$
\beta=\frac{1}{k} \alpha_{+}+\frac{1}{k}\left(\alpha_{0}-\frac{1}{n} \partial\right)+\beta_{-}=\beta_{+}+\frac{1}{l}\left(\alpha_{0}-\frac{1}{m} \partial\right)+\frac{1}{l} \alpha_{-}
$$

for some $k, l \in F^{*}, n \in \mathbb{Z}_{+}, m \in \mathbb{Z}_{-}$. Thus $\beta \in \operatorname{sp}\left\{\alpha_{+}, \alpha_{-}, \alpha_{0}, \partial\right\}$.

Lemma 3.5. Let α be a non-zero element of $W\left[x, e^{ \pm x}\right]$, and let $\left\{\beta_{i} \mid i \in I\right\}$ be an infinite and linearly independent subset of $W\left[x, e^{ \pm x}\right]$. If $\left[\alpha, \beta_{i}\right]=a_{i} \beta_{i}$ and $a_{i} \neq 0$ for any $i \in I$, then $\alpha_{0} \neq 0$ and either $\alpha_{+}=0$ or $\alpha_{-}=0$.

Proof. Assume that $\alpha_{+} \neq 0$ and $\alpha_{-} \neq 0$. Since $\left[\frac{1}{a_{i}} \alpha, \beta_{i}\right]=\beta_{i}$, by Lemma 3.4(3) the set $\left\{\beta_{i} \mid i \in I\right\}$ is contained in the finite dimensional subspace $\operatorname{sp}\left\{\alpha_{+}, \alpha_{-}, \alpha_{0}, \partial\right\}$, a contradiction. Hence $\alpha_{+}=0$ or $\alpha_{-}=0$. If both $\alpha_{+}=0$ and $\alpha_{-}=0$, then clearly $\alpha_{0} \neq 0$. Let $\beta=\beta_{i}$. If $\alpha_{-} \neq 0$, then we apply the automorphism τ. Hence we may assume that $\alpha=\alpha_{+}+\alpha_{0}$. By Lemma 3.4 we have

$$
\beta=\frac{1}{k a_{i}} \alpha_{+}+\frac{1}{k}\left(\frac{1}{a_{i}} \alpha_{0}-\frac{1}{n} \partial\right)+\beta_{-}
$$

for some $k \in F^{*}$ and $n \in \mathbb{Z}_{+}$such that $\bar{\beta} \in W_{n}$. Hence $\beta_{+} \neq 0$. If $\beta_{-}=0$, then by Proposition 3.2 we have $\frac{1}{a_{i}} \alpha_{0}-\frac{1}{n} \partial=k \beta_{0}=0$ and $\alpha_{0} \neq 0$. If $\beta_{-} \neq 0$, then $\left[\frac{1}{a_{i}} \underline{\alpha}, \underline{\beta}\right]=\underline{\beta}$ since $\langle\underline{\alpha}\rangle \neq\langle\underline{\beta}\rangle$. Hence $\alpha_{0}=\underline{\alpha} \neq 0$.

4. Automorphisms

We determine the automorphisms of $W\left[x, e^{x}\right]$ and $W\left[x, e^{ \pm x}\right]$ in this section.
Lemma 4.1. Let φ be an injective homomorphism of $W[x]$. Then $\varphi\left(x^{n} \partial\right)=$ $a^{n-1}(x+b)^{n} \partial \quad(n \in \mathbb{N})$ for some $a \in F^{*}, b \in F$.

Proof. Let φ be an injective homomorphism of $W[x]$. Since

$$
\begin{equation*}
\left[\varphi\left(x^{m} \partial\right), \varphi\left(x^{n} \partial\right)\right]=(n-m) \varphi\left(x^{m+n-1} \partial\right), \tag{2}
\end{equation*}
$$

we have $\left[\frac{1}{n-1} \varphi(x \partial), \varphi\left(x^{n} \partial\right)\right]=\varphi\left(x^{n} \partial\right)(n \neq 1)$. Since $\varphi\left(x^{n} \partial\right)(n \in \mathbb{N})$ are linearly independent it follows easily from Proposition 3.1 that

$$
\varphi\left(x^{n} \partial\right)=a_{n-1}(x+b)^{n} \partial \quad(n \in \mathbb{N})
$$

for some $a_{n-1} \in F^{*}, b \in F$. Then from (2) we have $a_{m-1} a_{n-1}=a_{m+n-2}=$ $a_{m-1+n-1}(n, m \in \mathbb{N}, n \neq m)$, that is, $a_{m} a_{n}=a_{n+m}(n, m \in \mathbb{N} \cup\{-1\}, n \neq m)$. By Note 2.4, $a_{n}=a_{1}^{n}$ and $\varphi\left(x^{n} \partial\right)=a^{n-1}(x+b)^{n} \partial$, where $a=a_{1} \in F^{*}$.

Let $\rho_{a}: x^{n} \partial \longmapsto a^{n-1} x^{n} \partial$. Then it is easy to see that $\rho_{a}\left(a \in F^{*}\right)$ is an automorphism of $W[x]$. By Lemma 4.1 we note that the automorphism group of $W[x]$ is isomorphic to $F^{*} \ltimes F$, where F^{*} is the multiplicative group and F is the additive group (cf. [2],[7]).

Proposition 4.2. Let φ be an automorphism of $W\left[x, e^{x}\right]$ or $W\left[x, e^{ \pm x}\right]$. Then $\varphi(W[x]) \subseteq W[x]$.

Proof. It holds that $\left[\varphi(x \partial), \varphi\left(x^{n} \partial\right)\right]=(n-1) \varphi\left(x^{n} \partial\right)(n \in \mathbb{N})$. Let $\alpha=\varphi(x \partial)$. Then by Lemma 3.5 we have $\alpha_{0} \neq 0$, and $\alpha_{+}=0$ or $\alpha_{-}=0$. Let $\beta=\varphi(\partial)$. Then similary from $\left[\varphi(\partial), \varphi\left(e^{m x} \partial\right)\right]=m \varphi\left(e^{m x} \partial\right)(m \in \mathbb{N})$ we have $\beta_{0} \neq 0$, and $\beta_{+}=0$ or $\beta_{-}=0$. Assume that $\alpha_{+} \neq 0$. Then from $[-\alpha, \beta]=\beta$ and Lemma 3.4(1) we have $\beta_{+} \neq 0$ and $\alpha, \beta \in W\left[x, e^{x}\right]$. Hence $\beta_{0} \neq 0$ and $\beta_{+} \neq 0$, but this contradicts to Proposition 3.2. Assume that $\alpha_{-} \neq 0$. Then applying τ we have a contradiction similar to the above. Therefore $\alpha=\alpha_{0} \in W[x]$. Then the case $\beta_{+} \neq 0$ and the case $\beta_{-} \neq 0$ cause similar contradictions. Thus $\beta=\beta_{0} \in W[x]$. From $\left[\beta, \varphi\left(x^{n} \partial\right)\right]=(n-1) \varphi\left(x^{n-1} \partial\right)$ we have $\varphi\left(x^{n} \partial\right) \in W[x](n \in \mathbb{N})$ by induction.

Theorem 4.3. Let φ be an automorphism of $W\left[x, e^{x}\right]$. Then φ is a product of φ_{a} and ψ_{b} for some $a \in F^{*}, b \in F$.

Proof. Let φ be an automorphism of $W\left[x, e^{x}\right]$. Then by Proposition 4.2 and Lemma 4.1 we have $\varphi(\partial)=a^{-1} \partial$ and $\varphi\left(x^{n} \partial\right)=a^{n-1}(x+b)^{n} \partial$ for some $a \in F^{*}, b \in$ F. Since $\left[\varphi(\partial), \varphi\left(e^{m x} \partial\right)\right]=m \varphi\left(e^{m x} \partial\right)$, we have $\left[\partial, \varphi\left(e^{m x} \partial\right)\right]=a m \varphi\left(e^{m x} \partial\right)$. Then by Note 2.3 we have $\varphi\left(e^{m x} \partial\right) \in\left\langle e^{a m x} \partial\right\rangle$ and $a m \in \mathbb{N}$. Since φ is surjective, it follows that $a=1, \varphi\left(x^{n} \partial\right)=(x+b)^{n} \partial(n \in \mathbb{N})$, and $\varphi\left(e^{m x} \partial\right)=c_{m} e^{m x} \partial(m \in \mathbb{N})$. Then from $\left[\varphi\left(e^{m x} \partial\right), \varphi\left(e^{k x} \partial\right)\right]=(k-m) \varphi\left(e^{(m+k) x} \partial\right)(m, k \in \mathbb{N})$ and Note 2.4, we have $c_{m}=c^{m}$ for some $c \in F^{*}$. Thus $\varphi\left(e^{m x} \partial\right)=c^{m} e^{m x} \partial$. Hence $\left(\varphi_{c} \circ \psi_{b}\right)^{-1} \circ \varphi=$ $1_{W\left[x, e^{x}\right]}$ by Note 2.1, and therefore $\varphi=\varphi_{c} \circ \psi_{b}$.

Corollary 4.4. The automorphism group of $W\left[x, e^{x}\right]$ is isomorphic to $F^{*} \times F$.
Proof. This is clear from $\varphi_{a} \circ \psi_{b}=\psi_{b} \circ \varphi_{a}$ for any $a \in F^{*}, b \in F$.

Theorem 4.5. An automorphism of $W\left[x, e^{ \pm x}\right]$ is a product of φ_{a}, ψ_{b}, and τ for some $a \in F^{*}, b \in F$.

Proof. Let φ be an automorphism of $W\left[x, e^{ \pm x}\right]$. Then as in the proof of Theorem $4.3 \varphi\left(x^{n} \partial\right)=a^{n-1}(x+b)^{n} \partial(n \in \mathbb{N})$ and $\varphi\left(e^{m x} \partial\right)=c_{m} e^{a m x} \partial(m \in \mathbb{Z})$. Since φ is surjective, we have $a= \pm 1$, and applying τ if necessary we may assume $a=1$. Then it follows that $\varphi\left(e^{m x} \partial\right)=c^{m} e^{m x} \partial$ for some $c \in F^{*}$ and that $\left(\varphi_{c} \circ \psi_{b}\right)^{-1} \circ \varphi=1_{W\left[x, e^{ \pm x}\right]}$.

Corollary 4.6. The automorphism group of $W\left[x, e^{ \pm x}\right]$ is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \ltimes$ $\left(F^{*} \times F\right)$.

Proof. This is clear from $\varphi_{a} \circ \psi_{b}=\psi_{b} \circ \varphi_{a}, \tau \circ \varphi_{a} \circ \tau=\varphi_{a^{-1}}$, and $\tau \circ \psi_{b} \circ \tau=\psi_{-b}$.

References

[1] Đoković, D. Ž., and K. Zhao, Derivations, isomorphisms, and second cohomology of generalized Witt algebras, Trans. Amer. Math. Soc., 350 (1998), 643-664.
[2] Grabowski, J., Isomorphisms and ideals of the Lie algebras of vector fields, Invent. Math., 50 (1978), 13-33.
[3] Kac, V. G., Description of filtered Lie algebra with which graded Lie algebras of Cartan type are associated, Izv. Akad. Nauk SSSR Ser. Mat., 38 (1974), 801-835.
[4] Kawamoto, N., Generalizations of Witt algebras over a field of characteristic zero, Hiroshima Math. J., 16 (1986), 417-426.
[5] -, On G-graded automorphisms of generalized Witt algebras, Contemp. Math., 184 (1995), 225-230.
[6] Nam, K-B., Generalized W and H type Lie algebras, Algebra Colloq., 6 (1999), 329-340.
[7] Rudakov, A. N., Subalgebras and automorphisms of Lie algebras of Cartan type, Functional Anal. Appl., 20 (1986) 72-73.

Naoki Kawamoto
Japan Coast Guard Academy
5-1 Wakaba
Kure 737-8512
Japan
kawamoto@jcga.ac.jp

Ki-Bong Nam
Department of Mathematics and
Computer Science
University of Wisconsin-Whitewater
800 West Main Street
Whitewater
WI 53190
USA
namk@mail.uww.edu

Received September 28, 2002
and in final form March 3, 2003

Atsushi Mitsukawa
Department of Management Information
Fukuyama Heisei University
117-1 Miyuki
Fukuyama 720-0001
Japan
mitukawa@fuhc.fukuyama-u.ac.jp

Moon-Ok Wang
Department of Mathematics
Hanyang University
Ansan
Kyunggi 425-791
Korea
wang@mail.hanyang.ac.kr

