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Abstract. Explicit computations of the homology of some complex free nilpo-
tent Lie algebras of small rank r , as modules over the general linear group
GL(r,C), are presented. A GL(r,C)-Poincaré duality theorem and a stabiliza-
tion theorem for r →∞ are also proved.

The complex free N -step nilpotent Lie algebra of rank r , L(N, r), has a natural
polynomial structure as a GL(r,C)-module; this structure is induced to its homo-
logy groups. The description of these representations is an interesting problem.

The problem for the case of free 2-step nilpotent Lie algebras has been solved
in [8], even though the same description can be deduced from the classical paper of
Kostant [5] as shown in [4]. The GL(r,C)-structure of the second homology group
of any free nilpotent Lie algebra is also known, since it is isomorphic to H(N + 1),
the subspace of (N+1)-brackets of the free Lie algebra and the GL(r,C)-structure
of the free Lie algebra was determined in [9].

We present in this paper some basic results and a list of explicit compu-
tations as a contribution to get a better perspective of the general problem and
hoping they could inspire others to work on this problem. The computations have
been done using Maple V.

In §2 we first prove a GL(r,C)-version of the Poincaré duality for L(N, r),
for all N . Recall that Poincaré duality holds for any finite dimensional nilpotent
Lie algebra.

Next we investigate the relation between the homologies of two free N -step
nilpotent Lie algebras of different rank. If Fi(r) is the family of Young diagrams
describing the i-th homology group of L(N, r) as a GL(r,C)-representation, then
there are inclusions Fi(r) ↪→ Fi(r + 1) ↪→ Fi(r + 2) ↪→ . . . and moreover there is
an r0 such that Fi(r) ↪→ Fi(r + 1) is a bijection for all r ≥ r0 .

Further restrictions on the Young diagrams that can occur in Fi(r) are
deduced from a Gruenberg formula for Lie algebra homology.

In §3 we display all the homology groups computed as lists of Young dia-
grams. We computed the whole homology of the algebras L(III, 2,), L(IV, 2,),
L(V, 2) and L(III, 3) and the groups Hi(L(III, r)), i = 1, . . . , 4, for all r .

At the moment we cannot explain our results, but we are confident that by
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explaining these particular cases one will get a deeper understanding of the general
problem.

1. Preliminaries

Fix a natural number r ≥ 2, let X = {X1, . . . , Xr} and let Vr be the C-vector
space spanned by X . Consider the tensor algebra

T (Vr) = C⊕ Vr ⊕ V ⊗2
r ⊕ · · · ⊕ V ⊗Nr ⊕ · · ·

as a Lie algebra via the usual bracket for associative algebras.

The complex free Lie algebra of rank r is the Lie subalgebra L(r) of T (Vr)
generated by Vr . L(r) inherits the grading from T (Vr), so that

L(r) = H1(r)⊕H2(r)⊕ · · · ⊕HN(r)⊕ · · · (1)

The complex free N -step nilpotent Lie algebra of rank r is the Lie algebra

L(N, r) =
L(r)∑

i≥N+1 Hi(r)
.

By an abuse of notation we write this algebra as

L(N, r) = H1(r)⊕H2(r)⊕ · · · ⊕HN(r)

where the bracket of two homogeneous elements of degree i and j is 0 if i +
j > N . The elements of L(r) are sometimes called Lie polynomials. Several
characterizations can be found in [6]. The universal enveloping algebra of L(r) is
the tensor algebra T (Vr).

The subspace Hi(r) in (1) is the subspace of homogeneous Lie polynomials
of degree i , which is the sum of Hi1,i2,...,ir(r), the subspaces of homogeneous Lie
polynomials of multidegree (i1, i2, . . . , ir), with i1 + · · · + ir = i . If Mr(i) =
dimHi(r) and Mr(i1, i2, . . . , ir) = dimHi1,i2,...,ir(r), then

Mr(i) =
1

i

∑
d|i

µ(d)ri/d (2)

Mr(i1, i2, . . . , ir) =
1

i

∑
d|ik

µ(d)

(
i
d

)
!(

i1
d

)
! . . .

(
ir
d

)
!

(3)

Explicit basis can be constructed for Hi(r). One well known basis is the
Hall basis H(i), which is recursively defined (c.f. [7]); H(1) = X , H(2) is a subset
of [H(1),H(1)] and in general H(i) is a subset of ∪j+k=i[H(j),H(k)]. We take
H = ∪Nk=1H(k) as a basis for L(N, r).

Remark 1.1. All generators {X1, . . . , Xr} appear the same number of times,
if counted with multiplicity, in all the different Lie polynomials in H(i). In fact,
the number of times that Xk appears in H(i) is

Tk(i) =
i−1∑
j=1

j
∑

i1+···+ik−1+ik+1+···+ir=i−j

M(i1, . . . , ik−1, j, ik+1, . . . , ir).
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It is straightforward to check, using (3), that T1(i) = · · · = Tr(i). Since each
element in H(i) is an i-bracket, it is clear that this common number is T (i) =
Mr(i)i
r

.

We include here some background for the representation theory of GL(r,C),
we fix some notation and make some conventions. We assume all representations
to be of finite dimension. Proofs, as well as the general theory, can be found in
any standard book, e.g. [1].

From now on, we fix a basis B = {v1, . . . , vr} of Vr and we denote by
{Eij : i, j = 1, . . . , r} the canonical basis of End(Vr). Let gl(Vr) be the Lie algebra
of GL(r,C) and fix the triangular decomposition gl(Vr) = n−⊕h⊕n+ , where n− ,
h and n+ are the subalgebras consisting of endomorphisms whose matrices in
the basis B are respectively strictly lower-triangular, diagonal and strictly upper-
triangular. Now {E11, . . . , Err} is a basis of the Cartan subalgebra h . We will
denote the corresponding dual basis by {ε1, . . . , εr} . In particular {εi− εj : i < j}
is the set of positive roots corresponding to the triangular decomposition chosen
above.

A linear functional λ on h is called a weight if it takes integer values on
the vectors Eii − Ejj for all i < j . A weight is said to be a dominant weight if
λ(Eii − Ejj) ≥ 0. A partition of length r is an r -tuple of non-negative integers
λ = (λ1, . . . , λr) such that λ1 ≥ · · · ≥ λr . Any partition of length r defines a
dominant weight, which we will denote again by λ , given by

∑
λiεi .

By a polynomial representation we mean a finite dimensional representa-
tion of GL(r,C) such that the matrix entries are given by polynomial functions.
It is well known that every polynomial representation of GL(r,C) can be decom-
posed as a sum of irreducible polynomial subrepresentations. In each irreducible
polynomial representation W there is a unique (up to scalars) non-zero vector v
such that n+.v = 0 and H.v = λ(H)v where λ is a dominant weight. Such a
vector is called a highest weight vector of weight λ , and W is called an irreducible
representation of highest weight λ . In addition, W = U(n−).v , where U(n−) is
the enveloping algebra of n− .

The isomorphism classes of irreducible polynomial representations of GL(V )
are in one-to-one correspondence with the partitions of length r . Given λ , Wλ

will denote an irreducible representation of highest weight λ .

A partition λ = (λ1, . . . , λr) is often represented by its Young diagram
Y (λ), a graphical arrangement of λi boxes in the i-th row starting in the first
column. So, any polynomial representation of GL(r,C) can be described (up
to isomorphism) as a direct sum of Young diagrams with at most r rows. For
example, to the partition λ = (4, 2, 1, 0) it corresponds the Young diagram

.

2. General results

The group GL(r,C) acts naturally on Vr and thus acts on T (Vr), acting in each
coordinate. This action is polynomial. Since

g[x, y] = g(x⊗ y − y ⊗ x) = gx⊗ gy − gy ⊗ gx = [gx, gy],
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for any x, y ∈ T (Vr) and g ∈ GL(r,C), it follows that GL(r,C) acts on L(r)
preserving each one of the components in (1).

More generally, if W is a GL(r,C)-representation, then the exterior powers
of W , ΛpW , are also polynomial GL(r,C)-representations with GL(r,C) acting
in each coordinate. In this case the induced action of the Lie algebra gl(r,C) on
the exterior powers of W is given by

A(w1 ∧ . . . ∧ wp) =

p∑
i=1

w1 ∧ . . . ∧ Awi ∧ . . . ∧ wp,

for A ∈ gl(r,C) and wi ∈ W .

Recall that the homology of a Lie algebra g , with trivial coefficients, is the
homology of the complex

· · · // Λpg
∂p // Λp−1g // · · · // Λ2g

∂2 // g //
C

// 0 (4)

where

∂p(x1 ∧ . . . ∧ xp) =
∑
i<j

(−1)i+j+1[xi, xj] ∧ x1 ∧ . . . x̂i . . . x̂j . . . ∧ xp. (5)

The exterior algebra complex, that computes the homology of L(N, r), is
a GL(r,C)-module and it is easy to verify that the differential is a GL(r,C)-
morphism. Therefore, the homology groups Hp(g) = ker ∂p/ Im ∂p+1 inherit that
GL(r,C)-module structure.

2.1. Poincaré duality.

All complex finite dimensional nilpotent Lie algebras g enjoy Poincaré duality,
that is dimHi(g) = dimHdim g−i(g).

We prove here that for L(N, r) a stronger version of this duality holds. It
is not true that Hi(L(N, r)) and Hn−i(L(N, r)) (n = dimL(N, r)) are GL(r,C)-
isomorphic, but there is a simple formula relating these GL(r,C)-modules.

Theorem 2.1. Let L(N, r) be the complex free N -step nilpotent Lie algebra
of rank r and let n be its dimension. Let Mr(i) be the dimension of the i-th

homogeneous component of L(N, r) and set T =
∑N

i=1
Mr(i)i
r

. Then

Hn−i(L(N, r)) ' Hi(L(N, r))∗ ⊗ detT

as GL(r,C)-modules.

To prove this theorem we need some propositions.

From now on we set n = L(N, r), n = dimL(N, r) and we fix a Hall basis
for n , {e1, . . . , en} .

Consider the bilinear form B on Λn defined on homogeneous elements
v ∈ Λpn and w ∈ Λqn by

B(v, w) =

{
0, if p+ q 6= n;

λ, if p+ q = n;



Tirao 313

here in the second case λ is such that v ∧ w = λ(e1 ∧ . . . ∧ en). Let us take
{vi1...ip = ei1∧. . .∧eip : i1 < · · · < ip, p = 1 . . . n}∪{vØ = 1} as a basis of Λn . The
Hodge map ∗ : Λn −→ Λn is defined by ∗vi1...ip = cvi1...ip (c = ±1), where i1 . . . ip
is the ordered complement of {i1, . . . , ip} in {1, . . . , n} and vi1...ipi1...ip = cv1...n .
Since v ∧ ∗v = e1 ∧ . . . ∧ en , B(v, ∗v) = 1 and B is non-degenerate.

Lemma 2.2. If v, w ∈ Λn, then B(gv, gw) = (det g)TB(v, w) for any g ∈
GL(r,C).

Proof. We can assume that v ∈ Λpn and w ∈ Λqn with p + q = n . Let z be
a generator of Λnn and let g = SU be the (multiplicative) Jordan decomposition
of g ; there exist h ∈ GL(r,C) such that P = hUh−1 is upper-triangular with all
diagonal entries equal to 1. Since Pz = z , then also Uz = z . On the other hand,
because of Remark 1.1

Sz =

λ1

. . .

λr

 z = (λT1 . . . λ
T
r )z.

Therefore gz = (det g)T z and B(gv, gw) = gv ∧ gw = g(v ∧ w) = g(λz) =
λ(det g)T z = (det g)T (v ∧ w) = (det g)TB(v, w).

Proposition 2.3. Λn−in '
(
Λin
)∗ ⊗ detT as GL(r,C)-modules.

Proof. For each v ∈ Λn−in let αv ∈
(
Λin
)∗

be defined by αv(w) = B(v, w). Let

Ψ : Λn−in −→
(
Λin
)∗⊗C be defined by Ψ(v) = αv ⊗ 1, where C is the GL(r,C)-

module detT . Since B is non-degenerate, Ψ is a C-isomorphism. Moreover, Ψ is
a GL(r,C)-isomorphism. In fact,

Ψ(gv)(w) = (αgv ⊗ 1)(w) = B(gv, w) = B(gv, gg−1w)

= (det g)TB(v, g−1w)

and

gΨ(v)(w) = g(αv ⊗ 1)(w) = (gαv ⊗ (det g)T )(w)

= (det g)TB(v, g−1w).

Lemma 2.4. The square(
Λn−in

)∗ ⊗ C (
Λn−(i+1)n

)∗ ⊗ C−(∂n−i)t⊗idoo

Λin

Ψi

OO

Λi+1n
∂i+1

oo

Ψi+1

OO

is commutative if i is even and anti-commutative if i is odd.
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Proof. Take v ∈ Λi+1n and w ∈ Λn−in ; we may assume that v = aj1∧. . .∧aji+1

and w = bl1 ∧ . . . ∧ bln−i with ajp , blq ∈ {e1, . . . , en} . To make formulas easier to
read we will use the following notations

a(jp, jq) = aj1 ∧ . . . ∧ âjp ∧ . . . ∧ âjq ∧ . . . ∧ aji+1
;

b(lr, ls) = bl1 ∧ . . . ∧ b̂lr ∧ . . . ∧ b̂ls ∧ . . . ∧ bln−i .

By the definition of ∂ and Ψ we have

∂i+1v =
∑
p<q

(−1)p+q+1[ajp , ajq ] ∧ a(jp, jq);

Ψi(∂
i+1v)w =

∑
p<q

(−1)p+q+1[ajp , ajq ] ∧ a(jp, jq) ∧ bl1 ∧ . . . ∧ bln−i . (6)

On the other hand

−(∂n−i)t(Ψi+1v)w = −(Ψi+1v)(∂n−iw) = −v ∧ ∂n−iw

=
∑
r<s

(−1)r+saj1 ∧ . . . ∧ aji+1
∧ [blr , bls ] ∧ b(lr, ls). (7)

We can identify v and w with the sets {aj1 , . . . , aji+1
} and {bl1 , . . . , bln−i} respec-

tively. Thus, since #v = i+ 1 and #w = n− i it follows that #(v ∩ w) ≥ 1.

If #(v ∩ w) ≥ 3 then the sums in (6) and in (7) are both equal to 0.

If #(v ∩ w) = 2 we may assume that ajpo = blro = x and ajqo = blso = y .
Hence,

Ψi(∂
i+1v)w = (−1)p0+q0+1[x, y] ∧ a(jp0 , jq0) ∧ bl1 ∧ . . . ∧ bln−i

= (−1)p0+q0+r0+s0+2i−4[x, y] ∧ blr0 ∧ bls0 ∧ a(jp0 , jq0) ∧ b(lr0 , ls0)

− (∂n−i)t(Ψi+1v)w = (−1)r0+s0aj1 ∧ . . . ∧ aji+1
∧ [x, y] ∧ b(lr0 , ls0)

= (−1)r0+s0+p0+q0+i−2[x, y] ∧ ajp0 ∧ ajq0 ∧ a(jp0 , jq0) ∧ b(lr0 , lq0)

If #(v ∩ w) = 1 we may assume that ajp0 = blr0 = x . It turns out that
those summands in (6) with p 6= p0 and q 6= p0 are zero. Suppose p = p0 in (6),
then

Ψi(∂
i+1v)w =

∑
p0<q

(−1)p0+q+1 [ajp0 , ajq ] ∧ a(jp0 , jq) ∧ bl1 ∧ . . . ∧ bln−i︸ ︷︷ ︸
=cq

But cq 6= 0 if and only if the coefficient of ajq in the expansion of [ajpo , ajq ] , as an
element in n , is 6= 0. Since the homogeneous degree of [ajpo , ajq ] is greater than
that of ajp we conclude that cq = 0 for all q and then the sum in (6) is equal to
0. The case when q = p0 follows similarly.

In an analogous way we conclude that the sum in (7) is equal to 0.

Proof. [Proof of Theorem 2.1] The homology of n is the homology of the
complex
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· · · // Λi+1n
∂i+1

// Λin
∂i // Λi−1n // · · ·

and its cohomology is the homology of the complex

· · · (Λi+1n)
∗oo (Λin)

∗−(∂i+1)too (Λi−1n)
∗−(∂i)too · · ·oo

Consider the following diagram of GL(r,C)-modules and GL(r,C)-morphisms
with commutative or anti-commutative squares.

· · ·
(
Λi+1n

)∗ ⊗ C (
Λin
)∗ ⊗ C−(∂i+1)t⊗idoo

(
Λi−1n

)∗ ⊗ C · · ·−(∂i)t⊗idoo

· · ·Λn−(i+1)L

Ψ

OO

Λn−in
∂n−ioo

Ψ

OO

Λn−(i−1)n · · ·∂n−(i−1)
oo

Ψ

OO

Since the upper complex computes the cohomology of n it follows that Ψ induces
a GL(r,C)-isomorphism

Hn−i(n) ' H i(n)⊗ detT .

On the other hand the linear isomorphism α : H i(n) −→ Hi(n)∗ defined by
α([f ]) = f∗ for any [f ] ∈ H i(n), where f∗([z]) = [f(z)] (recall that Λin∗ ' (Λin)∗ ),
is a GL(r,C)-morphism. So we arrive to the desired GL(r,C)-isomorphism

Hn−i(n) ' Hi(n)∗ ⊗ detT

Remark 2.5. It follows that as GL(r,C)-modules Hn ' detT , for every r ≥ 2.

Remark 2.6. The previous isomorphism can be interpreted in terms of Young
diagrams as follows.

For each diagram Yλ that fits in the r×T rectangle let Y c
λ be the diagram

obtained by rotating 180 degrees the complementary arrangement of Yλ in the
r × T rectangle.

For example, if r = 4 we have T = 6, the diagram of the representation

detT is the 4×6 rectangle and for Yλ = the corresponding diagram

Y c
λ = .

Now, Yλ ∈ Hn−i if and only if Y c
λ ∈ Hi . This follows from the fact that λ

is a highest weight of a representation W of GL(r,C) if and only if (T, . . . , T )−λ
is a highest weight of W ∗ ⊗ detT .

2.2. Homology stabilization.

The inclusion {x1, . . . , xr} ↪→ {x1, . . . , xr, xr+1} induces a C-monomorphism T (Vr) ↪→
T (Vr+1), a Lie monomorphism L(N, r) ↪→ L(N, r + 1) and a C-monomorphism
ΛpL(N, r) ↪→ ΛpL(N, r + 1) for each 0 ≤ p ≤ n . Moreover, by considering
GL(r,C) as the subgroup of GL(r + 1,C) consisting of matrices ( A 0

0 1 ), with
A ∈ GL(r,C), all these maps are GL(r,C)-morphisms.

Let us denote n′ = L(N, r + 1) and consider the homology groups Hp(n)
and Hp(n

′), for 0 ≤ p ≤ n , as GL(r,C) and GL(r + 1,C)-modules respectively.
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Lemma 2.7. If 0 6= [v] ∈ Hp(n) is a highest weight vector, then 0 6= [v] ∈
Hp(n

′) is also a highest weight vector.

Proof. Let λ = (λ1, . . . , λr) be the weight of v ∈ ker ∂p . It is clear that
v ∈ ker ∂′p and since Er+1,r+1v = 0, then λ′ = (λ1, . . . , λr, 0) is the weight of
v ∈ ker ∂′p . In addition Eijv = 0 for 1 ≤ i < j = r+ 1 and therefore v is a highest
weight vector in ker ∂′p .

Suppose now that v = ∂′p+1(w) for some w ∈ Λp+1n′ . We may assume that
w is a weight vector since w = weight vector + cycle. Moreover the weight of
w is λ′ , because ∂′p+1 is a GL(r + 1,C)-morphism, and thus w ∈ Λp+1n . Being
∂p+1 = ∂′p+1|Λp+1n , it follows that v = ∂p+1(w) or 0 = [v] ∈ Hp(n).

Corollary 2.8. Each Young diagram, counted with multiplicity, in the decom-
position of Hp(n) is in the decomposition of Hp(n

′).

Proof. Let Yλ be a Young diagram in the decomposition of Hp(n) and take v a
highest weight vector of weight λ in Hp(n). By the previous Lemma v is a highest
weight vector in Hp(n

′) of weight λ′ + (λ1, . . . , λr, 0), so that the corresponding
Young diagram is Yλ .

Theorem 2.9. If r ≥ pN , then the Young diagram decompositions of the
homology groups Hp(L(N, r)) and Hp(L(N, r + 1)) are identical.

Proof. Let Yλ′ be a Young diagram in the decomposition of Hp(L(N, r + 1))
and take v a corresponding highest weight vector with weight λ′ = (λ1, . . . , λr+1).
Since v ∈ ΛpL(N, r+), then λ1 + · · · + λr+1 ≤ pN and therefore λr+1 = 0; this
means that v ∈ ΛpL(N, r) and finally Yλ′ = Yλ , with λ = (λ1, . . . , λr) and Yλ is
in the Young decomposition of Hp(L(N, r)).

Remark 2.10. The Young diagram decomposition of Hp(L(N, s)), if s ≤ r ,
can be read directly from that of Hp(L(N, r)). In fact, Hp(L(N, s)) decomposes
as the sum of all those Young diagrams in Hp(L(N, r)) with at most s rows.

Remark 2.11. Theorem 2.9 says that in order to compute Hp(L(N, r)) for all
r ’s it is enough to do it for r = pN . It turns out, in the cases treated here, that
a smaller r is enough as well.

2.3. Minimal weights.

Let 0 → h → L → g → 0 be a free presentation of g , an arbitrary Lie algebra
over C . Let F be the augmentation ideal of U(L) (universal enveloping algebra
of L) and R be the ideal of U(L) generated by i(h), where i : L → U(L) is the
canonical map. We have then a Gruenberg like formula for the homology of g .

Theorem 2.12. Let g, F and R be as above. Then

H2n+1(g) =
FRn ∩RnF
FRnF +Rn+1

,

H2n(g) =
Rn ∩ FRn−1F
RnF + FRn

.
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These formulas for Lie algebra homology are the analogous of those for
group homology given by Gruenberg in [2] and [3]. Since U(L) is a tensor algebra
the ideals F and R are free as left ideals. The proof is then almost identical as
Gruenberg’s proof.

Definition 2.13. Given a Young diagram Yλ we define its total weight as
|Yλ| = λ1 + · · ·+ λr , if λ = (λ1, . . . , λr).

Theorem 2.14. Let n be a complex free N -step nilpotent Lie algebra of any
rank. If Yλ is a Young diagram in the decomposition of Hi(n), then

nN + (n+ 1) ≤ |Yλ|, if i = 2n+ 1

nN + n ≤ |Yλ|, if i = 2n

Proof. In all cases U(L) is a tensor algebra, F is the ideal of polynomials
without constant term and R is the ideal generated by the Lie polynomials of
degree ≥ N + 1.

3. Explicit computations

To compute explicitly the homology of L(N, r) we can proceed directly with
the complex (4). The first step is the decomposition of the exterior powers of
L(N, r) as a sum of irreducible GL(r,C)-representations. Then we compute the
differential ∂ (see 5) on the highest weight vectors corresponding to the previous
decomposition to finally determine the homology groups.

On the other hand we can use a Laplacian ∆, as in [5]. Recall that two
linear operators ∂ and d on Λn such that ∂2 = d2 = 0 are disjoint if

1. d∂(x) = 0 =⇒ ∂(x) = 0;

2. ∂d(x) = 0 =⇒ d(x) = 0.

In this case there is a canonical isomorphism from the kernel of the Laplacian
∆ = d∂ + ∂d to the derived space of homology of Λn , ker d

Im d
. If ∂ = d∗ , the adjoint

of d with respect to an inner product defined on Λn , then d and ∂ are disjoint.

Proposition 3.1. There is a GL(r,C)-morphism d in Λn which is disjoint to
∂ .

Proof. Consider the unitary group U(r) ⊆ GL(r,C) and u(r) its Lie algebra.
There is on n a U(r)-invariant inner product. (It is unique, up to scalars, in each
irreducible component of n .) We extend this inner product to the exterior powers
of n , via the determinant, remaining U(r)-invariant. Let d = ∂∗ be the adjoint of
∂ . d is U(r)-equivariant and therefore also u(r)-equivariant. Since d is C-linear
and gl(r,C) is the complexification of u(r) it turns out to be a gl(r,C)-morphism
and then a GL(r,C)-morphism.
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Let dp = d|Λpn and let {f1, . . . , fn} be an orthonormal basis of n . Then

dp(x1 ∧ . . . ∧ xp) =

p∑
i=1

(−1)i+1d1(xi) ∧ x1 ∧ . . . x̂i . . . ∧ xp,

where d1(fk) =
∑

i<j c
k
ijfi ∧ fj and [fi, fj] =

∑
ckijfk . It is straightforward to

verify the equation 〈∂p+1v, w〉 = 〈v, dpw〉 on the induced orthonormal basis of Λn

(recall the definition of ∂p in (4)).

We used both methods in the cases of rank 2 algebras and L(III, 3) and
the direct computations in the case of L(III, r).

We may notice that some of the spaces involved are very big. For example,
the algebra L(III, 7) is of dimension 140, hence its fourth exterior power has
dimension 15329615 and its fifth exterior power has dimension 416965528. These
spaces are involved in the computation of H4(L(III, 7)).

3.1. Presentation of data.

In all cases the homology groups are displayed as lists of Young diagrams, that
is as sums of irreducible GL(r,C)-representations. The dimension of each group
and the total dimension are also given. We notice that in all cases H0 = C , so we
omit it. For large algebras we give the corresponding number T and therefore, by
virtue of Theorem 2.1 and Remark 2.6, we only show half of the homology groups.
We do not present the highest weight cycles corresponding to each Young diagram
because of the length of all this data. However, we can make them available to
the interested reader.

For the cases were a Laplacian has been used we include more information.
We write down Hall basis for these algebras and we give the U(r)-invariant inner
products and the corresponding d1 operators.

3.2. Rank 2 algebras.

Hall basis for the first 5 homogeneous components of the free Lie algebra L(2) are
listed below.

H1 = 〈x, y〉
= 〈r1, r2〉

H2 = 〈[xy]〉
= 〈t1〉

H3 = 〈[x[xy]], [y[xy]]〉
= 〈u1, u2〉

H4 = 〈[x[x[xy]]], [y[x[xy]]], [y[y[xy]]]〉
= 〈v1, v2, v3〉

H5 = 〈[x[x[x[xy]]]], [y[x[x[xy]]]], [y[y[x[xy]]]], [y[y[y[xy]]]], [[xy][x[xy]]],

[[xy][y[xy]]]〉
= 〈w1, w2, w3, w4, w5, w6〉

All the basis vectors are weight vectors. Since weight vectors of different
weights are orthogonal, we only compute the norms and the non-zero products.
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||r1|| = 1, ||r2|| = 1;

||t1|| = 1;

||u1|| = 1, ||u2|| = 1;

||v1|| = 1, ||v2|| =
1

2
, ||v3|| = 1;

||w1|| = 1, ||w2|| =
7

9
, ||w3|| =

4

9
, ||w4|| = 1, ||w5|| = 1, ||w6|| = 1,

< w2, w5 >= −2

3
, < w3, w6 >= −1

3
.

This inner product allows us to compute d1 (and hence d). We have,

d1(r1) = 0, d1 = (r2) = 0;

d1(t1) = r1 ∧ r2;

d1(u1) = r1 ∧ t1, d1(u2) = r2 ∧ t1;

d1(v1) = r1 ∧ u1, d1(v2) = 1
2
r1 ∧ u2 + 1

2
r2 ∧ u1, d1(v3) = r2 ∧ u2;

d1(w1) = r1 ∧ v1, d1(w2) = 2
9
r1 ∧ v2 + 7

9
r2 ∧ v1 − 2

3
t1 ∧ u1,

d1(w3) = 1
9
r1 ∧ v3 + 8

9
r2 ∧ v2 − 1

3
t1 ∧ u2, d1(w4) = r2 ∧ v3;

d1(w5) = 2
3
r1 ∧ v2 + t1 ∧ u1 − 2

3
r2 ∧ v1,

d1(w6) = 2
3
r1 ∧ v3 + t1 ∧ u2 − 2

3
r2 ∧ v2.

3.3. The homology of L(III, 2).

Group Young decomposition Dimension
H1 2
H2 3

H3 3

H4 2

H5 1

Total homology: 12

3.4. The homology of L(IV, 2).

Group Young decomposition Dimension
H1 2
H2 6

H3 13

H4 16

H5 13

H6 6

H7 2

H8 1

Total homology: 60

3.5. The homology of L(V, 2).
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Group Young decomposition Dim

H1 2

H2 9

H3 39

H4 85

H5 145

H6 206

H7 258
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detT = (T = 26) . Total homology: 1232

3.6. The homology of L(III, 3).

A Hall basis for L(III, 3) is given by

H1 = 〈x, y, z〉
= 〈r1, r2, r3〉

H2 = 〈[xy], [xz], [yz]〉
= 〈t1, t2, t3〉

H3 = 〈[x[xy]], [x[xz]], [y[xy]], [y[xz]], [y[yz]], [z[xy]], [z[xz]], [z[yz]]〉
= 〈u1, u2, . . . , u8〉

As in the case of rank 2 algebras all basis vectors are weight vectors and therefore
we only compute the norms and the non-zero products (vectors of different weights
are orthogonal).

||r1|| = 1, ||r2|| = 1, ||r3|| = 1;

||t1|| = 1, ||t2|| = 1, ||t3|| = 1;

||u1|| = 1, ||u2|| = 1, ||u3|| = 1, ||u5|| = 1, ||u7|| = 1, ||u8|| = 1,

||u4|| =
2

3
, ||u6|| =

2

3
;

< u4, u6 >=
1

3
.

This inner product allow us to compute d1 (and hence d). We have,

d1(r1) = 0, d1 = (r2) = 0, d1(r3);

d1(t1) = r1 ∧ r2, d1(t2) = r1 ∧ r3, d1(t3) = r2 ∧ r3;

d1(u1) = r1 ∧ t1, d1(u2) = r1 ∧ t2, d1(u3) = r2 ∧ t1;

d1(u5) = r2 ∧ t3, d1(u7) = r3 ∧ t2, d1(u8) = r3 ∧ t3;

d1(u4) = 1
3
r1 ∧ t3 + 2

3
r2 ∧ t2 + 1

3
r3 ∧ t1,

d1(u6) = −1
3
r1 ∧ t3 + 1

3
r2 ∧ t2 + 2

3
r3 ∧ t1 .

Group Young decomposition Dim

H1 3

H2 18

H3 70

H4 171

H5 327

H6 462
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H7 504

detT = (T = 11) . Total homology: 2608

3.7. The first homology groups of L(III, r).

Group Young decomposition Dim

H1 p1(r)

H2 p2(r)

H3 p3(r)

H4 p4(r)

The polynomials pi(r) are:

p1(r) = r,

p2(r) =
1

4
r2(r + 1)(r − 1) ∼ 1

4
r4 ,

p3(r) =
1

420
(10r4 + 14r3 + 31r2 − 56r − 74)r(r + 1)(r − 1) ∼ 1

42
r7 ,

p4(r) =
1

1209600
(1001r7 + 3975r6 + 18371r5 − 4635r4 − 54436r3

−100500r2 + 111744r + 120960)r(r + 1)(r − 1) ∼ 1001

1209600
r10 .
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