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Vanishing of the First Cohomologies
for Lattices in Lie Groups
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Abstract. We prove the following “maximal” theorem on vanishing of

the first cohomologies. Let G be a connected semisimple Lie group with a
lattice Γ . Assume that there is no epimorphism φ:G→H onto a Lie group H

locally isomorphic to SO(1,n) or SU(1,n) such that φ(Γ) is a lattice in H .

Then H1(Γ,ρ)=0 for any finite-dimensional representation ρ of Γ over R .
This generalizes Margulis’ Theorem on vanishing of the first cohomologies

for lattices in higher rank semisimple Lie groups. Some applications for
proving general results on the structure of lattices in arbitrary Lie groups,

are given.

Introduction

In his in-depth study of lattices in semisimple Lie groups, Margulis proved the
following theorem on vanishing of the first cohomologies:

Theorem 1. (See [4].) Let Γ be a lattice in a connected semisimple Lie
group G . Assume that

a) G has no compact factors,
b) G has finite center,
c) Γ is irreducible in G ,
d) rkRG ≥ 2 .
Then H1(Γ, ρ) = 0 for any finite-dimensional representation ρ of Γ over

local field of characteristic 0.
We will avoid the restrictions a)–c) and relax d) thus proving a general

result for representations over R (and hence over C). To formulate it, we give
a definition. Let G be a connected Lie group with a lattice Γ ⊂ G . Let us say
that the pair (G,Γ) satisfies condition (∗) if there is no epimorphism φ:G→ H
onto a Lie group H locally isomorphic to SO(1, n) or SU(1, n) such that φ(Γ)
is a lattice in H .
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Theorem 2. Let G be a connected semisimple Lie group with a lattice Γ .
Assume that the pair (G,Γ) satisfies condition (∗) . Then H1(Γ, ρ) = 0 for any
finite-dimensional representation ρ of Γ over R .

In a sense, this is the “maximal” theorem on vanishing of the first
cohomologies for lattices (see §4 for the discussion).

Theorem 2, in particular, claims vanishing of the first cohomologies for
lattices in rank one Lie groups Sp(1, n), n ≥ 2, and F−20

4 . This is a new result
which we derive from old papers of Raghunathan [6,7] in combination with more
recent Superrigidity and Arithmeticity Theorems obtained by Corlette [1] and
Gromov–Schoen [3].

The paper consists of four sections. In §1 we give definitions and some
immediate observations. Theorem 2 is reduced to the rank one case in §2. In §3
we study the rank one situation. In §4 we give some applications of the main
result. These include: a general form of Superrigidity Theorem, a general form
of the Levi–Mostow splitting of lattices in arbitrary Lie groups, and a criterion
for vanishing of the first cohomologies (modulo a still open Millson problem).

Acknowledgements. The work was done in the course of the author’s
visit to the University of Bielefeld in August 2000. It is a pleasure to thank the
University for excellent conditions. The author is very grateful to E. Vinberg,
H. Abels, G. Soifer and D. Witte for useful discussions. Special thanks are given
to T. Venkataramana for the idea of combining Raghunathan’s paper [6] with
Superrigidity Theorem of Corlette to handle uniform lattices in Sp(1, n) and
F−20

4 .

§1. Definitions and easy observations

In what follows, we work with the real field R . All linear representations
considered in this paper are assumed to be continuous and finite-dimensional.
Several standard results are included for the sake of completeness.

Let F be a topological group and ρ:F → GL(V ) be a representation on
a (real) vector space V . A continuous map α:F → V is said to be a cocycle
over ρ if

α(gg′) = α(g) + ρ(g)(α(g′)), g, g′ ∈ F.

A cocycle α is said to be a coboundary (or α ∼ 0) if there exists x ∈ V such
that α(g) = ρ(g)(x) − x . The additive group H1(F, ρ) of all cocycles modulo
coboundaries is called the first cohomology group of F over ρ .

Let τ1 stand for the trivial representation of F on R . Then H1(F, τ1)
is the additive group Hom(F,R) of all homomorphisms F → R .

Lemma 1.1. 1) Let α be a cocycle over ρ and let ρα(g) = α(g)ρ(g) . Then
ρα is a homomorphism of F to the affine group Aff(V ) = GL(V )·V , where the
multiplication in Aff(V ) is given by

gx = gxg−1g = g(x)g, g ∈ GL(V ), x ∈ V.



Starkov 451

2) Conversely, let π: Aff(V ) → GL(V ) be the natural epimorphism and
let ρ′:F → Aff(V ) be a homomorphism covering ρ (i.e., ρ = π ◦ ρ′ ). Then the
formula ρ′(g) = α(g)ρ(g) defines a cocycle over ρ .

3) Cocycle α is a coboundary iff ρ(F ) and ρα(F ) are conjugate by an
element of V .
Proof. 1) ρa(gg′) = α(gg′)ρ(gg′) = (α(g) + ρ(g)(α(g′)))ρ(gg′) =
α(g)ρ(g)α(g′)ρ(g′) = ρa(g)ρα(g′).

2) α(gg′)ρ(gg′) = ρ′(gg′) = ρ′(g)ρ′(g′) = α(g)ρ(g)α(g′)ρ(g′) =
(α(g) + ρ(g)(α(g′)))ρ(g)ρ(g′).

3) α ∼ 0 ⇐⇒ there exists x ∈ V such that α(g) = ρ(g)(x) − x =
x−1ρ(g)xρ(g)−1 ⇐⇒ ρα(g) = α(g)ρ(g) = x−1ρ(g)x .

Let G ⊂ GL(n,R) be a linear Lie group. We say that G is R -algebraic
group if there exists an algebraic group G ⊂ GL(n,C) defined over R with
G = GR . Clearly, given an n -dimensional vector space V , the group GL(V ) can
be identified with GL(n,R) (and hence becomes R -algebraic) after choosing a
basis in V . Also, Aff(V ) viewed as a subgroup of GL(n+ 1,R) is R -algebraic.

Given a subgroup G ⊂ GL(n,R) we will let A(G) ⊂ GL(n,R) denote
the algebraic hull of G , i.e. the smallest R -algebraic subgroup of GL(n,R) that
contains G .

Note that any R -algebraic group has finite number of connected com-
ponents. Intersection of two R -algebraic subgroups is R -algebraic. Factor-
group GR/HR of an R -algebraic group GR over its normal R -algebraic sub-
group HR is a finite index subgroup of the R -algebraic group (G/H)R (Example:
SL(2,R)/Z2 ' SO(1, 2)0 ⊂ SL(3,R)).

Lemma 1.2. Let F be a topological group. Then all the first cohomology groups
of F are trivial iff given any homomorphism φ from F to an R-algebraic group
H , the group A(φ(F )) is reductive.
Proof. ⇒ . Let A(φ(F )) = M ·U ⊂ H be a Levi decomposition, where
M is reductive and U is the unipotent radical. Let V = U/[U,U ] , and let
q:M → GL(V ) be the representation given by the action of M on U/[U,U ] by
conjugations. Take the composite homomorphism ρ:F →M ·U → q(M)·V . Let
π: q(M)·V → q(M) be the projection. Since H1(F, π ◦ ρ) = 0, it follows that
ρ(F ) is conjugate to π(ρ(F )) ⊂ q(M). But ρ(F ) is Zariski dense in q(M)·V .
We derive that V is trivial and hence so is U .

⇐ . Take ρ:F → GL(V ) and let ρ′:F → Aff(V ) be a covering homo-
morphism, i.e., ρ = π ◦ρ′ . The groups A(ρ′(F )) and A(ρ(F )) are reductive and
V is the unipotent radical of A(ρ′(F ))·V = A(ρ(F ))·V . Hence A(ρ′(F )) and
A(ρ(F )) are conjugate by an element of V .

Remark. In the statement of the Lemma one can say more about M =
A(φ(F )). It is either a finite group or a semisimple group (with finite number
of connected components). In fact, M is an almost direct product of semisimple
group L and abelian group A , i.e. L and A commute, M = LA , and the
intersection L ∩ A is discrete (hence finite). Note that the image of φ(Γ) in
M/L = A/A∩L is Zariski dense. On the other hand, it should be finite (otherwise
H1(Γ, τ1) 6= 0). Hence A is finite.
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Lemma 1.3. Let F be a topological group, F ′ ⊂ F be a subgroup of finite index
in F , and ρ:F → GL(V ) be a representation. Assume that H1(F ′, ρ) = 0 . Then
H1(F, ρ) = 0 .
Proof. Let φ:F → H be a homomorphism to an R -algebraic group. Note
that A(φ(F ′)) is of finite index in A(φ(F )). Now the claim follows from Lemma
1.2.

Remark . The converse statement is wrong. Take, for instance F = PSL(2,Z).
It is well known that F is the free product of finite groups Z2 and Z3 . Hence
H1(F, τ1) = 0. On the other hand, F contains a subgroup F ′ of index 6 which
is a free group with two generators. Hence H1(F ′, τ1) ' R2 .

Lemma 1.4. Let C be a finite normal subgroup in a topological group F , and
let F ′ = F/C . Then all the first cohomology groups of F ′ are trivial iff all the
first cohomology groups of F are trivial.
Proof. ⇒ . Let φ:F → H be a homomorphism to an R -algebraic group. The
group A(φ(F ))/φ(C) is a finite index subgroup of some R -algebraic group H ′ .
Since the image of F ′ in H ′ is Zariski dense, it follows that H ′ is reductive.
Since φ(C) is finite, it follows that A(φ(F )) is also reductive.

⇐ . Obvious.

Lemma 1.5. Let F be a product of two commuting subgroups F1 and F2 .
Assume that all the first cohomology groups of F1 and F2 are trivial. Then all
the first cohomology groups of F are trivial.
Proof. Let φ:F → H be a homomorphism to an R -algebraic group. Then
A(φ(F ) = A(φ(F1))A(φ(F2)). Since the groups A(φ(F1)) and A(φ(F2)) are
reductive and commute, it follows that A(φ(F )) is also reductive.

Lemma 1.6. Let Z be a central subgroup of F and let F ′ = F/Z . Assume
that all the first cohomology groups of F ′ are trivial and that H1(F, τ1) = 0 .
Then all the first cohomology groups of F are trivial.
Proof. Let φ:F → H be a homomorphism to an R -algebraic group. We
know that the group A(φ(F ))/A(φ(Z)) is a finite index subgroup of a reductive
R -algebraic group and hence is reductive itself. It follows that the unipotent
radical U of A(φ(F )) lies in A(φ(Z)). Hence A(φ(F )) is the direct product of
U with a reductive subgroup. Assume that U is nontrivial. The projection of
φ(F ) into U is Zariski dense therein, and hence is an infinite finitely generated
nilpotent group. This contradicts the equality H1(F, τ1) = 0.

§2. Reduction to the rank one case

Now we are ready to apply our observations to the study of the first cohomology
group for lattices in semisimple Lie groups. From now on, L is a connected
semisimple Lie group and L = SK is the almost direct decomposition into
noncompact and compact parts (i.e., K is compact and all simple components of
S are noncompact).



Starkov 453

Proposition 2.1. Let Γ be a lattice in a connected semisimple Lie group
L = SK , p:L → S/S ∩ K be the projection, and S/S ∩ K =

∏n
1 Si be the

(almost direct) decomposition into irreducible components with respect to p(Γ) .
Assume that all the first cohomology groups of p(Γ) ∩ Si are trivial for all i .
Then all the first cohomology groups of Γ are trivial.

Proof. By Lemma 1.5, all the first cohomology groups of
∏n

1 (p(Γ) ∩ Si) are
trivial. But

∏n
1 (p(Γ) ∩ Si) is a normal subgroup of finite index in p(Γ). Hence

by Lemma 1.3, all the first cohomology groups of p(Γ) are trivial. On the other
hand, p(Γ) = Γ/Γ ∩K , where Γ ∩K is a finite normal subgroup of Γ. Now by
Lemma 1.4, all the first cohomology groups of Γ are trivial.

Now we need the following nontrivial result which can be derived from
papers of Deligne [2] and Raghunathan [8] and Margulis Arithmeticity Theorem.

Theorem 2.2. (See [4, Assertion IX.6.18 (B)]). Let S be a connected semisim-
ple Lie group without compact factors, and let Γ be an irreducible lattice in
S . Assume that rkR S ≥ 2 . Then the group Γ/[Γ,Γ] is finite and hence
H1(Γ, τ1) = 0 .

Corollary 2.3. Let S be a connected semisimple Lie group without compact
factors and let Γ be an irreducible lattice in S . Assume that rkR S ≥ 2 . Then
all the first cohomology groups of Γ are trivial.

Proof. Let Z(S) be the center of S . Then Z = Γ ∩ Z(S) is of finite index
in Z(S). Hence Γ′ = Γ/Z is an irreducible lattice in the group S′ = S/Z with
finite center. Now the claim follows from Theorems 1 and 2.2 and Lemma 1.6.

Corollary 2.4. Let L be a connected semisimple Lie group with a lattice Γ .
Assume that there is no epimorphism φ:L→ H onto a semisimple Lie group H
such that rkRH = 1 and φ(Γ) is a lattice in H . Then all the first cohomology
groups of Γ are trivial.

Proof. Let p:L = SK → S/S ∩K be the projection along the compact part,
and let S/S ∩K =

∏n
1 Si be the (almost direct) decomposition into irreducible

components with respect to p(Γ). By assumption, rkR Si ≥ 2 for all i . Now the
claim follows from Proposition 2.1 and Corollary 2.3.

§3. Rank one case

Here we prove the following result.

Theorem 3.1. Let G be either Sp(1, n), n ≥ 2 , or F−20
4 , and let Γ be a

lattice in G . Then H1(Γ, ρ) = 0 for any representation ρ of Γ .
It is well known that G as above is simply connected, R -algebraic (in

the natural linear presentation) and of R -rank one. The center of Sp(1, n) is
isomorphic to Z2 , and that of F−20

4 is trivial. Besides, both G and Γ are
Kazhdan groups. In particular, H1(Γ, τ1) = 0 (see [10] or [4]).
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To prove Theorem 3.1, we use Superrigidity and Arithmeticity Theorems
of Corlette [1] and Gromov and Schoen [3] and combine them with results of
Raghunathan [6, 7].

Theorem 3.2. (Superrigidity), [1] Let G and Γ be as in Theorem 3.1.
Assume that

1) H is a connected semisimple Lie group,
2) H is center-free,
3) H has no connected compact normal subgroups,
and let ρ: Γ → H be a homomorphism such that ρ(Γ) is Zariski dense

in H . Then there exists an epimorphism R:G→ H that extends ρ .

Theorem 3.3. (Arithmeticity), [3] Let G and Γ be as in Theorem 3.1. Then
there exists a Q-defined semisimple subgroup H ⊂ SL(k,C) and an epimorphism
φ:HR → G with compact kernel such that φ(HZ) and Γ are commensurable.

Now we formulate two results of Raghunathan which (modulo the Arith-
meticity Theorem) essentially say that H1(Γ, ρ) = 0 whenever ρ can be extended
to a representation of G .

Theorem 3.4. [6] Let G be a connected Lie group which has no compo-
nents locally isomorphic to SO(1, n) and SU(1, n) , and let R:G → GL(V ) be
a nontrivial irreducible representation. Let Γ be a uniform lattice in G . Then
H1(Γ, R) = 0 .

Corollary 3.5. Let G = S×K , where S is either Sp(1, n), n ≥ 2 , or F−20
4 ,

and K is a compact semisimple Lie group. Then given a uniform lattice Γ ⊂ G
and a representation R:G→ GL(V ) we have H1(Γ, R) = 0 .

Proof. Since Γ is a Kazhdan group, it follows that H1(Γ, τ1) = 0. Now the
claim follows by decomposition of R into irreducible representations.

Theorem 3.6. [7] Let G ⊂ GL(n,C) be a Q-defined Q-simple algebraic Lie
group with rkQG = 1 . Assume that G has no components locally isomorphic to
SL(n,C) and GR has no components locally isomorphic to SO(1, n) . Assume
that Γ ⊂ GR is an arithmetic group (i.e., Γ is commensurable with GZ ). Let
R:G → GL(N,C) be a nontrivial irreducible rational representation. Then
H1(Γ,R) = 0 .

Corollary 3.7. Let G be either Sp(1, n), n ≥ 2 , or F−20
4 , let Γ ⊂ G

be a non-uniform lattice, and let R:G → GL(V ) be a representation. Then
H1(Γ, R) = 0 .

Proof. Since Γ is non-uniform and G is simply connected, by Arithmeticity
Theorem 3.3 there exists a Q-defined group H ⊂ GL(k,C) such that HR ' G
and Γ is commensurable with HZ (compact factors of HR can be avoided as in
the higher rank case, cf. [12, Corollary 6.1.10]). Clearly, R can be extended from
HR to a rational representation R:H→ GL(VC). Since Γ is a Kazhdan group, it
follows that H1(Γ, τ1) = 0. Now decomposing R into irreducible representations
we derive from Theorem 3.6 that H1(Γ,R) = 0. Note that R|Γ is isomporphic
to the direct sum of two copies of R|Γ . Hence H1(Γ, R) = 0.
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Now we proceed to the proof of Theorem 3.1. It suffices to prove that the
Zariski closure F = A(φ(Γ)) ⊂ H is reductive for any homomorphism φ: Γ→ H
to an R -algebraic group. Let F = (LA)·U be a Levi decomposition, where
U is the unipotent radical, L is a semisimple subgroup (with finite number of
connected components), and A is a finite abelian subgroup (see Remark after
Lemma 1.2). Let L0 stand for the identity component of L . Replacing Γ with
its finite index subgroup (see Lemma 1.3), we can assume that A is trivial and
φ(Γ) ⊂ L0 .

If L0 is trivial then φ(Γ) ⊂ U . But Γ is a Kazhdan group and hence
φ(Γ) is trivial and there is nothing to prove. So we may assume that L0 is
nontrivial. We have to prove that U is trivial.

Let V = U/[U,U ] , and let q:L → GL(V ) be the natural representa-
tion. By α:F = L·U → q(L)·V we denote the composite epimorphism and by
π: q(L)·V → q(L) the projection. Let ρ′ = α ◦ φ and ρ = π ◦ ρ′ . Then ρ′ is a
covering homomorpshism for the representation ρ of Γ on the vector space V .

We know that ρ′(Γ) is Zariski dense in q(L)·V , and ρ(Γ) is Zariski dense
in q(L). Assume that H1(Γ, ρ) = 0. Then ρ(Γ) is conjugate to ρ′(Γ) and hence
V is trivial, so U is also trivial. Now it suffices to prove that H1(Γ, ρ) = 0.

Let q(L) = SK be the almost direct decomposition of q(L) into non-
compact and compact parts.

Assume first that S is trivial and hence q(L) = K . The group Γ̂ =
{(γ, ρ(γ)), γ ∈ Γ} is a lattice in G×K that projects densely into K . Hence Γ̂
is a uniform lattice in G × K . Let ρ̂: Γ̂ → GL(V ) be given by ρ̂(γ, ρ(γ)) =
ρ(γ), γ ∈ Γ. Note that ρ̂ extends to a representation G × K → GL(V )
given by the projection onto the second factor. By Corollary 3.5 it follows that
H1(Γ, ρ) = H1(Γ̂, ρ̂) = 0, and we are done.

Now we assume that S is nontrivial. Let Z(S) be the center of S ,
σ: q(L) = SK → AdS ×K be the natural epimorphism, and pS : AdS ×K →
AdS be the projection. Then pS ◦ σ ◦ ρ(Γ) is Zariski dense in AdS and by
Superrigidity Theorem 3.2, it follows that pS ◦ σ ◦ ρ extends to an epimorphism
R:G→ AdS . It follows that R(Γ) = pS ◦ σ ◦ ρ(Γ) is a lattice in AdS . Since G
has finite center, the kernel of R is finite and hence the intersection K ∩σ ◦ρ(Γ)
is finite. It follows that σ ◦ ρ(Γ) is a lattice in AdS ×K and hence ρ(Γ) is a
Zariski dense lattice in q(L).

Let i: q(L)→ GL(V ) be the inclusion. We know that ρ has finite kernel.
Now it suffices to prove that H1(ρ(Γ), i) = 0.

Assume that ρ(Γ) is a uniform lattice in q(L). Since the natural rep-
resentation of ρ(Γ) on V extends to the natural representation of q(L) on V ,
we can apply Corollary 3.5 and conclude that H1(ρ(Γ), i) = 0 (to apply the
Corollary directly it suffices to lift the representation of q(L) = SK to that of
G×K ).

Assume now that ρ(Γ) is a nonuniform lattice in q(L). Then q(L) = S
and by Corollary 3.7, H1(ρ(Γ), i) = 0 as well.

Proof of Theorem 2. Any rank one simple Lie group is locally isomorphic to
one of the following: Sp(1, n), F−20

4 , SO(1, n), SU(1, n). Now Theorem 2 can
be derived from Theorems 1 and 3.1 in the same manner as Corollary 2.4.
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§4. Applications of the main result

Superrigidity. As before, given a semisimple Lie group L , we denote by
L = SK an almost direct decomposition of L into noncompact and compact
parts. Clearly, a lattice Γ ⊂ G is Zariski dense in G (in the Ad-representation)
iff G = SΓ (here and in what follows the horizontal bar stands for the closure of
a subset in a topological space).

We recall Margulis Superrigidity Theorem for irreducible lattices in
higher rank semisimple Lie groups.

Theorem 4.1. [4] Let L be a connected semisimple Lie group with rkR L ≥ 2 .
Let Γ ⊂ L be an irreducible Zariski dense lattice, and let φ: Γ → H be a
homomorphism such that

1) H is a connected semisimple Lie group,
2) H is center-free,
3) H has no connected compact normal subgroups.
Then φ uniquely extends to a continuous homomorphism φ̃:L → H

whenever φ(Γ) is Zariski dense in H .

Remark . Assume that H is an R -algebraic group and φ(Γ) is Zariski dense
in H . Then H is either finite or semisimple because all the first cohomologies of
Γ vanish. So condition 1) can be replaced by saying that H is an R -algebraic
group and φ(Γ) ⊂ H0 . Conditions 2) and 3) cannot be omitted.

To generalize this Theorem, we use a terminology from [11]. We will say
that a connected Lie group G is algebraically simply connected if G admits
a faithful finite-dimensional representation, and no proper covering group of
G admits such a representation. Note that SL(2,R) is algebraically simply
connected but not (topologically) simply connected. Clearly, a semisimple Lie
group L is algebraically simply connected iff it decomposes into direct product
of simple algebraically simply connected normal subgroups.

We say that a homomorphism φ: Γ→ H virtually extends to a continuous
homomorphism φ̃:G → H if there exists a finite index subgroup Γ′ ⊂ Γ such
that φ̃|Γ′ ≡ φ|Γ′ .

Finally, we say that a lattice Γ in a connected Lie group G is superrigid if
every homomorphism φ: Γ→ H , where H is an R -algebraic group containing no
connected simple compact normal subgroups, virtually extends to a continuous
homomorphism φ̃:G→ H whenever φ(Γ) is Zariski dense in H .

In these terms we can formulate the following Superrigidity Theorem.

Theorem 4.2. Let L be an algebraically simply connected semisimple Lie
group, and Γ be a lattice in L such that (L,Γ) satisfies (∗) . Then Γ is superrigid
in L .

Remark. If Γ is a Zariski dense irreducible lattice in L and rkR L ≥ 2, the
result is contained in [4, Theorem IX.5.12].



Starkov 457

Proof. Since L is algebraically simply connected, it follows that L = S ×K ,
where S is the noncompact part, and K is the compact part. Let pS :L → S
be the projection along K . Then pS(Γ) is a lattice in S , and Γ ∩ K is finite
normal subgroup in Γ.

Let φ: Γ → H be a homomorphism to an R -algebraic group as in the
definition of superrigidity. Then it follows from Theorem 2 that H0 is either
trivial or semisimple group with finite center Z(H). Replacing Γ with its finite
index subgroup (if necessary), we can assume that φ(Γ) ⊂ H0 . Then φ(Γ∩K) ⊂
Z(H). Let AdH :H → AdH = H/Z(H) be the adjoint representation and define
φ′ = AdH ◦φ . Since pS(Γ) ' Γ/Γ ∩ K and Γ ∩ K ⊂ Ker(φ′), there exists a
homomorphism φ′′: pS(Γ)→ AdH such that φ′ = φ′′ ◦ pS .

Let S =
∏
i Si be the decomposition of S into irreducible components

with respect to pS(Γ), and Γi = pS(Γ)∩Si . Again, replacing Γ by its finite index
subgroup, we can assume that

∏
i Γi = pS(Γ). Notice that AdH is a center-free

semisimple Lie group with no connected compact normal subgroups. Applying
Theorem 4.1 to the homomorphism φ′′: Γi → AdH if rkR Si ≥ 2 or Theorem
3.2 if rkR Si = 1, we obtain a continuous homomorphism φ̃′′:S → AdH that
extends φ′′ .

Since S is algebraically simply connected, it follows that there exists a
continuous homomorphism φ̃:S → H such that AdH ◦φ̃ = φ̃′′ . Now we extend
φ̃ onto L = S×K defining it trivially on K . Then AdH ◦φ̃|Γ ≡ AdH ◦φ . Define
a map σ: Γ→ Z(H) by σ(g) = φ̃−1(γ)φ(γ), γ ∈ Γ. Then σ is a homomorphism
and hence φ̃ agrees with φ on finite index subgroup Kerσ ⊂ Γ.

Now we proceed to general Lie groups. Given a connected Lie group G ,
we denote by R its radical and by L its Levi subgroup. Then G = LR is a Levi
decomposition of G . In general, L and R may intersect in a discrete central
subgroup of G .

Let K be the compact part of Levi subgroup L ⊂ G . Then for any
lattice Γ ⊂ G the product KRΓ is closed (see, e.g., [10]) and hence Γ∩KR is a
uniform lattice in KR . Moreover, the product RΓ is closed whenever G = SRΓ.
The last condition is obviously verified whenever Ad(Γ) is Zariski dense in AdG .

Remark. Let α:G → G/KR be the factor map. Then α(Γ) is a lattice
in semisimple Lie group G/KR . Let φ:G → H be an epimorphism, where
H is locally isomorphic to SO(1, n) or SU(1, n), such that φ(Γ) is a lattice.
Factorizing H over its center if necessary, we can assume that H is center-free.
Clearly, φ(Γ∩KR) is a normal amenable subgroup of the lattice φ(Γ). Since H
is center-free, it follows that φ(Γ∩KR) is trivial. We derive that (G,Γ) satisfies
(∗) iff (G/KR, α(Γ)) does so.

One knows that G is algebraically simply connected iff the radical R of
G is (topologically) simply connected and G = L·R , where L is an algebraically
simply connected Levi subgroup. Recall that Witte [11] proved superrigidity of
Zariski dense lattices in solvable Lie groups. Now we can derive the following
general result.

Theorem 4.3. Let Γ be a lattice in an algebraically simply connected Lie
group G . Assume that
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1) Ad(Γ) is Zariski dense in AdG ,
2) (G,Γ) satisfies (∗) .

Then Γ is superrigid in G .

Proof. From 1) it follows that Γ∩R is a lattice in R . ¿From 2) and Theorem
4.2 it follows that the image of Γ in G/R is superrigid. This together with
condition 1) enables one to conclude that Γ is superrigid in G (see [11, Corollary
9.10]).

Levi–Mostow Splitting. Now we apply Theorem 2 to obtain a general result
on Levi–Mostow splitting of lattices. Recall a result of Mostow [5] presented as
in [11].

Theorem 4.4. Cf [11]. Let G be a connected Lie group with a lattice Γ .
Assume that

1) G is algebraically simply connected Lie group,
2) G has no connected compact semisimple normal subgroups,
3) Ad(Γ) is Zariski dense in AdG ,
4) the image of Γ in G/R is a superrigid lattice.

Then there exists a Levi subgroup L ⊂ G such that (Γ ∩ L)(Γ ∩ R) has finite
index in Γ .

We will prove more general result.

Theorem 4.5. Let G be a connected Lie group with a lattice Γ . Assume that
(G,Γ) satisfies (∗) . Then there exists a Levi subgroup L = SK ⊂ G such that
(Γ∩L)(Γ∩KR) has finite index in Γ . Moreover, if G = SRΓ then (Γ∩L)(Γ∩R)
has finite index in Γ .

Proof. It suffices to find a Levi subgroup L that intersects Γ in a lattice.
Define G′ = (SRΓ)0 . Then G′ is a connected Lie group such that G′ = L′R′ ,
where L′ = SK ′ is a Levi subgroup, R′ = TR is the radical, K ′ ⊂ K is a
compact semisimple subgroup, and T ⊂ K is a torus. Clearly, Γ′ = Γ ∩G′ is a
lattice in G′ such that (G′,Γ′) satisfies (∗) and G′ = SR′Γ′ .

Therefore, we can assume that G = SRΓ. Moreover, passing to the
universal cover of G if necessary, we can assume that G is simply connected.
Then G = L·R and L = S×K . Let C ⊂ K be the maximal connected compact
semisimple normal subgroup of G . Then G = G′ × C , where G′ = L′·R and
L′ ⊂ L . Let p:G→ G′ be the projection along C , and Γ′ = p(Γ). Then (G′,Γ′)
satisfies (∗) and hence with no loss of generality we can assume that G contains
no connected compact semisimple normal subgroups.

From the condition G = SRΓ it follows that Γ ∩ R is a lattice in R .
It is fairly well known (see, e.g., [11, Proposition 8.2]) that one can “straighten”
the radical R to make Ad(Γ ∩ R) Zariski dense in Ad(R). More precisely,
there exists a finite index subgroup Γ′ ⊂ Γ and a simply connected Lie group
G′ = L·R′ such that Γ′ is a lattice in G′ and Ad(Γ′ ∩ R′) is Zariski dense in
Ad(R′) (moreover, the nilradical of R lies in the nilradical of R′ ).

Hence with no loss of generality we can assume that Ad(Γ∩R) is Zariski
dense in Ad(R). Since G = SRΓ, it follows that Ad(Γ) is Zariski dense in AdG .
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Hence the product of Γ with the center Z(G) is closed. Let L′ be the linearizer of
L , i.e. the maximal algebraically simply connected factor of L . Then L′ = L/Z ,
where Z ⊂ L ∩ Z(G).

In general, the product ZΓ need not be closed. Clearly, M = (ZΓ)0 is a
connected central subgroup of G and hence M ⊂ Z(G) ∩ R . Let G′ = G/ZM ,
and α:G → G′ = L′·R′ be the factor map, where R′ = R/M . Then Γ′ = α(Γ)
is a Zariski dense lattice in G′ such that (G′,Γ′) satisfies (∗). Moreover, G′ is
algebraically simply connected, and it follows from Theorem 4.2 that G′ and Γ′

satisfy all the conditions 1)–4) of Theorem 4.4. Hence there exists a choice of L′

such that (Γ′ ∩ L′)(Γ′ ∩R′) has finite index in Γ′ .
It follows that Γ ∩ LM is a lattice in LM . Let p:L ×M → L be the

projection. Then p(Γ ∩ LM) is a superrigid lattice in L . Hence [Γ ∩ LM,Γ ∩
LM ] = [p(Γ ∩ LM), p(Γ ∩ LM)] has finite index in p(Γ ∩ LM). It follows that
Γ ∩ L is a lattice in L and we are done.

Remark. One can bypass few steps in the proof (in particular, “straightening”
of R) using a result saying that for any lattice Γ in a connected Lie group G ,
the intersection Γ∩LN is a lattice in LN , N ⊂ R being the nilradical (cf. [9]).
So one can concentrate on the Lie group LN .

Necessity of condition (∗) for vanishing of the first cohomologies. It is
well known that for any n ≥ 2 there exists a lattice Γ in SO(1, n) with its factor-
group Γ/[Γ,Γ] infinite. Hence the group H1(Γ, τ1) = Hom(Γ,R) is nontrivial.
The same is valid for SU(1, n).

Moreover, there is a conjecture (called the Millson problem) saying that
given any lattice Γ in SO(1, n) or SU(1, n), there exists a finite index normal
subgroup Γ′ ⊂ Γ such that the group Γ′/[Γ′,Γ′] is infinite (see [10] for more
details). It implies that the factor group F = Γ/[Γ′,Γ′] is an infinite (finitely
generated) virtually abelian group, i.e. F contains a normal subgroup A ' Zk
for some k ≥ 1, of finite index. It is easy to construct an embedding to an R -
algebraic group φ:F → H = C·U , where U ' Rk is the unipotent radical and
C ' F/A , such that φ(F ) is Zariski dense in H . According to Lemma 1.2, this
means that one can construct a representation ρ of Γ with nontrivial H1(Γ, ρ).

We conclude the following.

Proposition 4.6. Let Γ be a lattice in a connected semisimple Lie group L .
If the Millson problem has positive solution, then the following conditions are
equivalent:

1) H1(Γ, ρ) = 0 for any representation ρ of Γ ,
2) Γ admits no epimorphism onto an infinite virtually abelian group,
3) (L,Γ) satisfies (∗) .

Using Theorem 4.5 one can easily derive the following.

Proposition 4.7. Let Γ be a lattice in a connected Lie group G . If the Millson
problem has positive solution, then the following conditions are equivalent:

1) H1(Γ, ρ) = 0 for any representation ρ of Γ ,
2) Γ admits no epimorphism onto an infinite virtually abelian group,
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3) (G,Γ) satisfies (∗) , Levi subgroup L ⊂ G is normal, and the factor-
group G/L is compact.
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