Complete Filtered Lie Algebras over a Vector Space of Dimension Two

Thomas W. Judson
Communicated by E. B. Vinberg

Abstract

There may exist many non-isomorphic complete filtered Lie algebras with the same graded algebra. In [6], we found elements in the Spencer cohomology that determined all complete filtered Lie algebras having certain graded algebra provided that obstructions do not exist in the cohomology at higher levels. In this paper we use the Spencer cohomology to classify all graded and filtered algebras over a real vector space of dimension two.

1. Introduction

Closed transitive Lie algebras are subalgebras of the Lie algebra $D\left(\mathbb{K}^{n}\right)$ of formal vector fields. If \mathbb{K} a field of characteristic zero, X is a formal vector field in $D\left(\mathbb{K}^{n}\right)$ if

$$
X=\sum_{i} X_{i}\left(x_{1}, \ldots, x_{n}\right) \frac{\partial}{\partial x_{i}},
$$

where X_{i} in $\mathbb{K}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$. The vector space $D\left(\mathbb{K}^{n}\right)$ is a Lie algebra under the usual bracket operation

$$
[X, Y]=\sum_{i, j}\left\{X^{i} \frac{\partial Y^{j}}{\partial x_{i}}-Y^{i} \frac{\partial X^{j}}{\partial x_{i}}\right\} \frac{\partial}{\partial x_{j}}
$$

If $D^{k}\left(\mathbb{K}^{n}\right)$ is the set of $X \in D\left(\mathbb{K}^{n}\right)$ such that each X^{i} has no terms of degree k or less, then $D\left(\mathbb{K}^{n}\right)$ has a natural filtration

$$
D\left(\mathbb{K}^{n}\right) \supset D^{0}\left(\mathbb{K}^{n}\right) \supset D^{1}\left(\mathbb{K}^{n}\right) \supset D^{2}\left(\mathbb{K}^{n}\right) \supset \cdots .
$$

Guillemin and Sternberg studied local geometries by examining Lie algebras of formal vector fields [3]. More specifically, if we choose a coordinate system and replace each infinitesimal automorphism (which is a vector field) with its Taylor series expansion about the origin, we obtain a subalgebra L of $D\left(\mathbb{K}^{n}\right)$. Letting $L_{k}=D^{k}\left(\mathbb{K}^{n}\right) \cap L$, we have

$$
L \supset L_{0} \supset L_{1} \supset L_{2} \supset \cdots
$$

with $\left[L_{i}, L_{j}\right] \subset L_{i+j}$. Guillemin and Sternberg limited their study to transitive geometries. That is, for any two points there exists a local transformation that takes one point to other. In infinitesimal terms, there exists an $X \in L$ such that $X(0)=v$ for each $v \in \mathbb{K}^{n}$. We also demand that L be closed. If $X \in D\left(\mathbb{K}^{n}\right)$ and there exists an $X_{i} \in L$ such that X and X_{i} agree on terms of up to order i for $i=1,2, \ldots$, then $X \in L$. A subalgebra $L \subset D\left(\mathbb{K}^{n}\right)$ satisfying these properties is a closed transitive Lie algebra. Two such algebras are isomorphic when they are equivalent by a formal change of coordinates.

A complete filtered Lie algebra over a field \mathbb{K} of characteristic zero is a Lie algebra with a decreasing sequence of subalgebras $L=L_{-1} \supset L_{0} \supset L_{1} \supset \cdots$ satisfying the following conditions.

1. $\bigcap_{i} L_{i}=0$.
2. $\left[L_{i}, L_{j}\right] \subset L_{i+j}$ (by convention $L_{-2}=L$).
3. $\operatorname{dim} L_{i} / L_{i+1}<\infty$.
4. If $x \in L_{i}$ for $i \geq 0$ and $[L, x] \subset L_{i}$, then $x \in L_{i+1}$.
5. Whenever $\left\{x_{i}\right\}$ is a sequence in L such that $x_{i}-x_{i+1} \in L_{i}$ for $i \geq 0$, then there exists an $x \in L$ such that $x-x_{i} \in L_{i}$.

Every complete filtered Lie algebra is isomorphic to a closed transitive subalgebra of $D\left(\mathbb{K}^{n}\right)$ [3].

A graded Lie algebra is a Lie algebra $\prod_{p=-1}^{\infty} G_{p}$ that satisfies the following conditions.

1. $\left[G_{i}, G_{j}\right] \subset G_{i+j}$ (by convention $G_{-2}=0$).
2. $\operatorname{dim} G_{i}<\infty$.
3. If $x \in G_{i}$ for $i \geq 0$ and $\left[G_{-1}, x\right]=0$, then $x=0$.

Any graded Lie algebra is a complete filtered Lie algebra if we let $L_{i}=G_{i} \times G_{i+1} \times$ \cdots. Conversely, if L is a complete filtered Lie algebra, then the bracket operation on L induces a bracket operation on

$$
G_{L}=\prod_{p=-1}^{\infty} L_{p} / L_{p+1}
$$

We refer to G_{L} as the associated graded algebra of L. An isomorphism of two complete filtered Lie algebras is a Lie algebra isomorphism preserving the filtration. Similarly, an isomorphism of two graded Lie algebras is a Lie algebra isomorphism preserving the gradation.

There may exist many non-isomorphic complete filtered Lie algebras with the same graded algebra. Given a graded Lie algebra $\prod G_{p}$, it is an interesting problem to try to reconstruct all complete filtered Lie algebras L whose associated graded algebras are isomorphic to $\prod G_{p}$. One of the primary tools for analyzing this problem has been the Spencer cohomology. A complete filtered Lie algebra is isomorphic to its graded algebra provided certain cohomology groups vanish [3,

7, 9, 12]. It is more difficult to determine the complete filtered Lie algebras that are not isomorphic to their graded algebras. Many of the known results have hypothesis that are difficult to verify. In [6] we outlined a theory, where certain elements in the Spencer cohomology determine all the complete filtered Lie algebras having a certain graded algebra provided that obstructions do not exist in the cohomology at a higher level. In this paper we use the theory to classify all graded and filtered algebras over a real vector space of dimension two. Cartan first classified these algebras as pseudogroups on $\mathbb{R}^{2}[1]$.

2. Graded Algebras with $\operatorname{dim} G_{-1}=2$

If $\prod G_{p}$ is a graded Lie algebra, then $V=G_{0}$ is a linear Lie algebra acting faithfully on G_{-1} by $\left[G_{0}, G_{-1}\right] \subset G_{-1}$. For $p \geq 0$, we may consider G_{p} to be a subspace of $V \otimes S^{p+1}\left(V^{*}\right)$. If $X \in G_{p}$ and $v_{0}, \ldots, v_{p} \in V$, define $\bar{X} \in V \otimes S^{p+1}\left(V^{*}\right)$ by

$$
\bar{X}\left(v_{0}, \ldots, v_{p}\right)=\left[\cdots\left[\left[X, v_{0}\right], v_{1}\right], \cdots v_{p}\right] .
$$

Since $\left[G_{-1}, G_{-1}\right]=0$, the Jacobi identity implies that $\bar{X}\left(v_{0}, \ldots, v_{p}\right)$ is symmetric in v_{0}, \ldots, v_{p}. The bracket operation on $\prod G_{p}$ then becomes

$$
\begin{aligned}
{[\bar{X}, \bar{Y}]\left(v_{0}, \ldots, v_{p+q}\right) } & =\frac{1}{p!(q+1)!} \sum \bar{X}\left(\bar{Y}\left(v_{j_{0}}, \ldots, v_{j_{q}}\right), v_{j_{q+1}}, \ldots, v_{j_{p+q}}\right) \\
& -\frac{1}{(p+1)!q!} \sum \bar{Y}\left(\bar{X}\left(v_{k_{0}}, \ldots, v_{k_{p}}\right), v_{k_{p+1}}, \ldots, v_{k_{p+q}}\right)
\end{aligned}
$$

In particular, if $X \in G_{p}$ with $p>0$ and $v \in G_{-1}$, then

$$
[\bar{X}, v]\left(v_{1}, \ldots, v_{p}\right)=\bar{X}\left(v, v_{1}, \ldots, v_{p}\right) .
$$

Conversely, given a sequence $V=G_{-1}, G_{0}, G_{1}, \ldots$ in $V \otimes S^{p+1}\left(V^{*}\right)$, we know that $\prod G_{p}$ is a graded algebra under the bracket operation described above if $\left[G_{p}, G_{q}\right] \subset G_{p+q}$.

Given a finite sequence $V=G_{-1}, G_{0}, G_{1}, \ldots, G_{n-1}$ with $G_{p} \subset V \otimes S^{p+1}\left(V^{*}\right)$ and $\left[G_{p}, G_{q}\right] \subset G_{p+q}$ with p, q, and $p+q$ all less than n, we wish to impose conditions on subspaces $G_{i} \subset V \otimes S^{i+1}\left(V^{*}\right)$ with $i \geq n$ that will allow $\prod G_{p}$ to be a graded algebra. Define the first prolongation $\Lambda^{1} P$ of a subspace $P \subset V \otimes S^{p+1}\left(V^{*}\right)$ to be the subspace of maps $T \in V \otimes S^{p+2}\left(V^{*}\right)$ such that for all fixed $v \in V$, $T\left(v, v_{1}, \ldots, v_{p}\right) \in P$. The k-th prolongation is defined inductively by $\Lambda^{1} \Lambda^{k-1} P$. Thus, $G_{n} \subset \Lambda^{1} G_{n-1}$ and $\left[G_{n}, G_{0}\right] \subset G_{n}$. Hence, G_{n} must be an invariant subspace under this representation. Since $\left[G_{p}, G_{q}\right] \subset G_{n}$ whenever $p<n, q<n$, and $p+q=n$, we must not choose G_{n} to be too small. If such a G_{n} can be selected, then we are guaranteed a graded algebra containing G_{n}.

For a given Lie algebra $G_{0} \subset \mathfrak{g l}(V)$ acting on a vector space $V=G_{-1}$, it is often possible to compute all graded algebras arising from G_{-1} and G_{0}. Suppose that $\operatorname{dim} V=2$ and G_{0} is a subalgebra of $\mathfrak{g l}(V)$. The prolongation $\Lambda^{1} G_{0}$ of G_{0} consists of $T \in V \otimes S^{2}\left(V^{*}\right)$ such that for $v \in G_{-1}, T(v) \in G_{0}$. We can represent elements $T \in V \otimes S^{2}\left(V^{*}\right)$ using matrices

$$
\left(\begin{array}{ccc}
a_{11}^{1} & a_{12}^{1} & a_{22}^{1} \\
a_{11}^{2} & a_{12}^{2} & a_{22}^{2}
\end{array}\right),
$$

where

$$
T\left(e_{i}, e_{j}\right)=a_{i j}^{1} e_{1}+a_{i j}^{2} e_{2}
$$

if $\left\{e_{1}, e_{2}\right\}$ is a fixed basis for V. Hence, T is in $\Lambda^{1} G_{0}$ if and only if the matrix is in G_{0} whenever the first or the last column of the matrix is deleted. In general, we shall write

$$
\left(\begin{array}{ccccc}
a_{11 \cdots 1}^{1} & a_{1 \cdots 12}^{1} & \cdots & a_{12 \cdots 2}^{1} & a_{22}^{1} \\
a_{11 \cdots 1}^{2} & a_{1 \cdots 12}^{2} & \cdots & a_{12 \cdots 2}^{2} & a_{22 \cdots 2}^{2}
\end{array}\right)
$$

for an element in $\Lambda^{n} G_{0}$.
Proposition 2.1. Let V be a real vector space with $\operatorname{dim} V=2$. The following subalgebras G_{0} are the only subalgebras of $\mathfrak{g l}(V)$ up to conjugation.

1. $\operatorname{dim} G_{0}=1$ and $\lambda \in \mathbb{R}$,

$$
\left(\begin{array}{cc}
0 & a \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
a & 0 \\
0 & \lambda a
\end{array}\right),\left(\begin{array}{cc}
a & a \\
0 & a
\end{array}\right),\left(\begin{array}{cc}
\lambda a & -a \\
a & \lambda a
\end{array}\right) .
$$

2. $\operatorname{dim} G_{0}=2$ and $\lambda \in \mathbb{R}$,

$$
\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right),\left(\begin{array}{ll}
a & b \\
0 & a
\end{array}\right),\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right),\left(\begin{array}{cc}
\lambda a & b \\
0 & (\lambda+1) a
\end{array}\right) .
$$

3. $\operatorname{dim} G_{0}=3$,

$$
\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right), \mathfrak{s l}(V) .
$$

4. $\operatorname{dim} G_{0}=4, \mathfrak{g l}(V)$.

A complete determination of Lie algebras of dimension less than or equal to three can be found in Jacobson [5]. To construct the faithful representations of these algebras in $\mathfrak{g l}(V)$ up to conjugation, see [4, 5].

Proposition 2.2. Let V be a real vector space of dimension two. The prolongations of $G_{0} \subset \mathfrak{g l}(V)$ are the algebras (1), (3), (4), (6)-(8), (11), (14), (16), (21), (25), (35), and (37) in Table 1.

As an example, we will compute the prolongations in (7) and (21). Let e_{1}, e_{2} be a basis for V and recall that we can represent elements $T \in V \otimes S^{2}\left(V^{*}\right)$ using matrices

$$
\left(\begin{array}{ccc}
a_{11}^{1} & a_{12}^{1} & a_{22}^{1} \\
a_{11}^{2} & a_{12}^{2} & a_{22}^{2}
\end{array}\right),
$$

where

$$
T\left(e_{i}, e_{j}\right)=a_{i j}^{1} e_{1}+a_{i j}^{2} e_{2} .
$$

Since T is in $\Lambda^{1} G_{0}$ if and only if the matrix is in G_{0} whenever the first or the last column of the matrix is deleted, the first prolongation of (7) must be zero. On the other hand, the first prolongation of (21) is

$$
\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
0 & 0 & 0
\end{array}\right) .
$$

Continuing, we see that the nth prolongation is

$$
\left(\begin{array}{ccccc}
a_{1} & a_{2} & \cdots & a_{n+1} & a_{n+2} \\
0 & 0 & \cdots & 0 & 0
\end{array}\right) .
$$

For a more in depth treatment of prolongation, see $[3,12]$.

Theorem 2.3. Table 1 is a complete list of all graded algebras up to isomorphism with V, a real vector space of dimension two, and $G_{0} \subset \mathfrak{g l}(V)$.

Table 1e. Graded Algebras $\prod G_{p}$ with $G_{0} \subset \mathfrak{g l}(2, \mathbb{R})$

1. $\left(\begin{array}{ll}0 & a \\ 0 & 0\end{array}\right)-\left(\begin{array}{lll}0 & 0 & a \\ 0 & 0 & 0\end{array}\right)-\left(\begin{array}{llll}0 & 0 & 0 & a \\ 0 & 0 & 0 & 0\end{array}\right)-\cdots$
2. $G_{k}=0$ for $k>n$

$$
\left(\begin{array}{ll}
0 & a \\
0 & 0
\end{array}\right)-\left(\begin{array}{lll}
0 & 0 & a \\
0 & 0 & 0
\end{array}\right)-\cdots-\left(\begin{array}{cccc}
0 & \cdots & 0 & a \\
0 & \cdots & 0 & 0
\end{array}\right)-(0)-\cdots
$$

3. $\lambda \neq 0$

$$
\left(\begin{array}{cc}
a & 0 \\
0 & \lambda a
\end{array}\right)-(0)-\cdots
$$

4.

$$
\left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right)-\left(\begin{array}{lll}
a & 0 & 0 \\
0 & 0 & 0
\end{array}\right)-\left(\begin{array}{llll}
a & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)-\cdots
$$

5. $G_{k}=0$ for $k>n$

$$
\left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right)-\left(\begin{array}{lll}
a & 0 & 0 \\
0 & 0 & 0
\end{array}\right)-\cdots-\left(\begin{array}{cccc}
a & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0
\end{array}\right)-(0)-\cdots
$$

6.

$$
\left(\begin{array}{ll}
a & a \\
0 & a
\end{array}\right)-(0)-\cdots
$$

7. $\lambda \in \mathbb{R}$

$$
\left(\begin{array}{cc}
\lambda a & -a \\
a & \lambda a
\end{array}\right)-(0)-\cdots
$$

8.

$$
\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)-\left(\begin{array}{lll}
a & 0 & 0 \\
0 & 0 & b
\end{array}\right)-\left(\begin{array}{cccc}
a & 0 & 0 & 0 \\
0 & 0 & 0 & b
\end{array}\right)-\cdots
$$

9.

$$
\begin{aligned}
& \left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)-\left(\begin{array}{lll}
a & 0 & 0 \\
0 & 0 & b
\end{array}\right)-\left(\begin{array}{llll}
a & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)-\cdots \\
& \text { or } \\
& \left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)-\left(\begin{array}{lll}
a & 0 & 0 \\
0 & 0 & b
\end{array}\right)-(0)-\cdots
\end{aligned}
$$

10. $G_{k}=0$ for $k>n$

$$
\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)-\left(\begin{array}{lll}
a & 0 & 0 \\
0 & 0 & 0
\end{array}\right)-\cdots-\left(\begin{array}{cccc}
a & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0
\end{array}\right)-(0)-\cdots
$$

11.

$$
\left(\begin{array}{ll}
a & b \\
0 & a
\end{array}\right)-\left(\begin{array}{lll}
0 & a & b \\
0 & 0 & a
\end{array}\right)-\left(\begin{array}{cccc}
0 & 0 & a & b \\
0 & 0 & 0 & a
\end{array}\right)-\cdots
$$

12.

$$
\begin{aligned}
& \left(\begin{array}{ll}
a & b \\
0 & a
\end{array}\right)-\left(\begin{array}{lll}
0 & a & b \\
0 & 0 & a
\end{array}\right)-\left(\begin{array}{llll}
0 & 0 & 0 & b \\
0 & 0 & 0 & 0
\end{array}\right)-\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & b \\
0 & 0 & 0 & 0 & 0
\end{array}\right)-\cdots \\
& \text { or } \\
& \left(\begin{array}{ll}
a & b \\
0 & a
\end{array}\right)-\left(\begin{array}{lll}
0 & a & b \\
0 & 0 & a
\end{array}\right)-(0)-\cdots
\end{aligned}
$$

13. $G_{k}=0$ for $k>n$

$$
\left(\begin{array}{cc}
a & b \\
0 & a
\end{array}\right)-\left(\begin{array}{lll}
0 & 0 & b \\
0 & 0 & 0
\end{array}\right)-\cdots-\left(\begin{array}{cccc}
0 & \cdots & 0 & b \\
0 & \cdots & 0 & 0
\end{array}\right)-(0)-\cdots
$$

14.

$$
\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)-\left(\begin{array}{ccc}
a & -b & -a \\
b & a & -b
\end{array}\right)-\left(\begin{array}{cccc}
a & -b & -a & b \\
b & a & -b & -a
\end{array}\right)-\cdots
$$

15. $G_{k}=0$ for $k>n$

$$
\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)-\left(\begin{array}{ccc}
a & -b & -a \\
b & a & -b
\end{array}\right)-\cdots-\left(\begin{array}{cccc}
a & -b & -a & \cdots \\
b & a & -b & \cdots
\end{array}\right)-(0)-\cdots
$$

16. $\lambda \neq-1$

$$
\begin{aligned}
\left(\begin{array}{cc}
\lambda a & b \\
0 & (\lambda+1) a
\end{array}\right)-\left(\begin{array}{ccc}
0 & \lambda a & b \\
0 & 0 & (\lambda+1) a
\end{array}\right) & -\cdots \\
& -\left(\begin{array}{ccccc}
0 & \cdots & 0 & \lambda a & b \\
0 & \cdots & 0 & 0 & (\lambda+1) a
\end{array}\right)-\cdots
\end{aligned}
$$

17. $\lambda \neq-1$ and $G_{k}=0$ for $k>n$

$$
\begin{aligned}
& \left(\begin{array}{cc}
\lambda a & b \\
0 & (\lambda+1) a
\end{array}\right)-\left(\begin{array}{lll}
0 & 0 & b \\
0 & 0 & 0
\end{array}\right)-\cdots-\left(\begin{array}{llll}
0 & \cdots & 0 & b \\
0 & \cdots & 0 & 0
\end{array}\right)-(0)-\cdots \\
& \text { or } \\
& \left(\begin{array}{cc}
\lambda a & b \\
0 & (\lambda+1) a
\end{array}\right)-\left(\begin{array}{lll}
0 & 0 & b \\
0 & 0 & 0
\end{array}\right)-\cdots-\left(\begin{array}{llll}
0 & \cdots & 0 & b \\
0 & \cdots & 0 & 0
\end{array}\right)-\cdots
\end{aligned}
$$

18. $\lambda \neq-1$
$\left(\begin{array}{cc}\lambda a & b \\ 0 & (\lambda+1) a\end{array}\right)-\left(\begin{array}{ccc}0 & \lambda a & b \\ 0 & 0 & (\lambda+1) a\end{array}\right)-\left(\begin{array}{cccc}0 & 0 & 0 & b \\ 0 & 0 & 0 & 0\end{array}\right)-\cdots$
19. $\lambda=1$
$\left(\begin{array}{cc}\lambda a & b \\ 0 & (\lambda+1) a\end{array}\right)-\left(\begin{array}{ccc}0 & \lambda a & b \\ 0 & 0 & (\lambda+1) a\end{array}\right)-(0)-\cdots$
20. $\lambda=-(n+1) /(n-1), n=2,3, \ldots$ and $G_{k}=0$ for $k>n$

$$
\begin{aligned}
&\left(\begin{array}{cc}
\lambda a & b \\
0 & (\lambda+1) a
\end{array}\right)-\left(\begin{array}{ccc}
0 & \lambda a & b \\
0 & 0 & (\lambda+1) a
\end{array}\right)-\left(\begin{array}{cccc}
0 & 0 & 0 & b \\
0 & 0 & 0 & 0
\end{array}\right)-\cdots \\
&-\left(\begin{array}{cccc}
0 & \cdots & 0 & b \\
0 & \cdots & 0 & 0
\end{array}\right)-(0)-\cdots
\end{aligned}
$$

21.

$$
\left(\begin{array}{cc}
a_{1} & a_{2} \\
0 & 0
\end{array}\right)-\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
0 & 0 & 0
\end{array}\right)-\left(\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \\
0 & 0 & 0 & 0
\end{array}\right)-\cdots
$$

22.

$$
\left(\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right)-\left(\begin{array}{lll}
a & b & c \\
0 & 0 & 0
\end{array}\right)-\left(\begin{array}{cccc}
0 & a & b & c \\
0 & 0 & 0 & 0
\end{array}\right)-\cdots-\left(\begin{array}{ccccc}
0 & 0 & a & b & c \\
0 & 0 & 0 & 0 & 0
\end{array}\right)-\cdots
$$

23. $\operatorname{dim} G_{k}=1$ for $k>n$

$$
\left(\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right)-\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & 0
\end{array}\right)-\cdots-\left(\begin{array}{ccccc}
0 & \cdots & 0 & a & b \\
0 & \cdots & 0 & 0 & 0
\end{array}\right)-\left(\begin{array}{llll}
0 & \cdots & 0 & b \\
0 & \cdots & 0 & 0
\end{array}\right)-\cdots
$$

$$
\begin{aligned}
& \text { or } \\
& \left(\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right)-\left(\begin{array}{lll}
0 & a & b \\
0 & 0 & 0
\end{array}\right)-\cdots-\left(\begin{array}{ccccc}
0 & \cdots & 0 & a & b \\
0 & \cdots & 0 & 0 & 0
\end{array}\right)-\cdots
\end{aligned}
$$

24. $G_{k}=0$ for $k>n$

$$
\left(\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right)-\left(\begin{array}{lll}
0 & 0 & b \\
0 & 0 & 0
\end{array}\right)-\cdots-\left(\begin{array}{cccc}
0 & \cdots & 0 & b \\
0 & \cdots & 0 & 0
\end{array}\right)-(0)-\cdots
$$

25.

$$
\left(\begin{array}{cc}
a_{1} & a_{2} \\
0 & b
\end{array}\right)-\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
0 & 0 & b
\end{array}\right)-\left(\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \\
0 & 0 & 0 & b
\end{array}\right)-\cdots
$$

26. $G_{k}=0$ for $k>n$

$$
\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)-\left(\begin{array}{lll}
0 & 0 & b \\
0 & 0 & 0
\end{array}\right)-\cdots-\left(\begin{array}{cccc}
0 & \cdots & 0 & b \\
0 & \cdots & 0 & 0
\end{array}\right)-(0)-\cdots
$$

27. $\operatorname{dim} G_{k}=1$ for $k>n$

$$
\left.\begin{array}{l}
\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)-\left(\begin{array}{lll}
0 & a & b \\
0 & 0 & 0
\end{array}\right)-\cdots-\left(\begin{array}{lllll}
0 & \cdots & 0 & a & b \\
0 & \cdots & 0 & 0 & 0
\end{array}\right)-\left(\begin{array}{lll}
0 & \cdots & 0 \\
b \\
0 & \cdots & 0
\end{array}\right)-\cdots
\end{array}\right)-\left(\begin{array}{lll}
0 & a & b \\
0 & 0 & 0
\end{array}\right)-\cdots-\left(\begin{array}{lllll}
0 & \cdots & 0 & a & b \\
0 & \cdots & 0 & 0 & 0
\end{array}\right)-\cdots .
$$

28.

$$
\begin{aligned}
& \left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)-\left(\begin{array}{lll}
0 & 0 & b \\
0 & 0 & c
\end{array}\right)-\left(\begin{array}{llll}
0 & 0 & 0 & b \\
0 & 0 & 0 & c
\end{array}\right)-\cdots \\
& \text { or } \\
& \left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)-\left(\begin{array}{lll}
0 & 0 & b \\
0 & 0 & c
\end{array}\right)-\left(\begin{array}{llll}
0 & 0 & 0 & b \\
0 & 0 & 0 & 0
\end{array}\right)-\cdots
\end{aligned}
$$

29.

$$
\begin{aligned}
& \left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)-\left(\begin{array}{lll}
0 & a & b \\
0 & 0 & c
\end{array}\right)-\left(\begin{array}{llll}
0 & 0 & a & b \\
0 & 0 & 0 & 0
\end{array}\right)-\cdots \\
& \text { or } \\
& \left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)-\left(\begin{array}{lll}
0 & a & b \\
0 & 0 & c
\end{array}\right)-\left(\begin{array}{llll}
0 & 0 & a & b \\
0 & 0 & 0 & c
\end{array}\right)-\cdots
\end{aligned}
$$

30.

$$
\begin{aligned}
& \left(\begin{array}{cc}
a_{1} & a_{2} \\
0 & b
\end{array}\right)-\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
0 & 0 & 0
\end{array}\right)-\left(\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \\
0 & 0 & 0 & 0
\end{array}\right)-\cdots \\
& \text { or } \\
& \left(\begin{array}{cc}
a_{1} & a_{2} \\
0 & b
\end{array}\right)-\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
0 & 0 & 0
\end{array}\right)-\left(\begin{array}{cccc}
0 & a_{1} & a_{2} & a_{3} \\
0 & 0 & 0 & 0
\end{array}\right)-\cdots
\end{aligned}
$$

31.

$$
\begin{aligned}
& \left(\begin{array}{cc}
a_{1} & a_{2} \\
0 & b
\end{array}\right)-\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
0 & 0 & b
\end{array}\right)-\left(\begin{array}{cccc}
0 & a_{1} & a_{2} & a_{3} \\
0 & 0 & 0 & 0
\end{array}\right)-\cdots \\
& \text { or } \\
& \left(\begin{array}{cc}
a_{1} & a_{2} \\
0 & b
\end{array}\right)-\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
0 & 0 & b
\end{array}\right)-\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
0 & 0 & a_{4} \\
0 & 0
\end{array}\right)-\cdots \\
& \text { or } \\
& \left(\begin{array}{cc}
a_{1} & a_{2} \\
0 & b
\end{array}\right)-\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
0 & 0 & b
\end{array}\right)-\left(\begin{array}{cccc}
0 & a_{1} & a_{2} & a_{3} \\
0 & 0 & 0 & b
\end{array}\right)-\cdots
\end{aligned}
$$

32. $\lambda \neq 0$
$\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)-\left(\begin{array}{ccc}0 & \lambda a & b \\ 0 & 0 & a\end{array}\right)-\left(\begin{array}{cccc}0 & 0 & \lambda a & b \\ 0 & 0 & 0 & a\end{array}\right)-\cdots$
or
$\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)-\left(\begin{array}{ccc}0 & \lambda a & b \\ 0 & 0 & a\end{array}\right)-\left(\begin{array}{cccc}0 & 0 & 0 & b \\ 0 & 0 & 0 & 0\end{array}\right)-\cdots$
33. $\lambda=1 / 2$
$\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)-\left(\begin{array}{ccc}0 & \lambda a & 0 \\ 0 & 0 & a\end{array}\right)-(0)-\cdots$
34. $\lambda=(n-1) / 2, n=3,4, \ldots$, and $G_{k}=0$ for $k>n$
$\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)-\left(\begin{array}{ccc}0 & \lambda a & b \\ 0 & 0 & a\end{array}\right)-\left(\begin{array}{cccc}0 & 0 & 0 & b \\ 0 & 0 & 0 & 0\end{array}\right)-\cdots-\left(\begin{array}{cccc}0 & \cdots & 0 & b \\ 0 & \cdots & 0 & 0\end{array}\right)-(0)-\cdots$
35. $\mathfrak{s l}(2, \mathbb{R})-\Lambda^{1} \mathfrak{s l}(2, \mathbb{R})-\Lambda^{2} \mathfrak{s l}(2, \mathbb{R})-\cdots$
36. $\mathfrak{s l}(2, \mathbb{R})-(0)-\cdots$
37. $\mathfrak{g l}(2, \mathbb{R})-\Lambda^{1} \mathfrak{g l}(2, \mathbb{R})-\Lambda^{2} \mathfrak{g l}(2, \mathbb{R})-\cdots$
38. $\mathfrak{g l}(2, \mathbb{R})-(0)-\cdots$
or
$\mathfrak{g l}(2, \mathbb{R})-\Lambda^{1} \mathfrak{s l}(2, \mathbb{R})-\Lambda^{2} \mathfrak{s l}(2, \mathbb{R})-\cdots$
or
$\mathfrak{g l}(2, \mathbb{R})-\left(\begin{array}{ccc}2 a & b & 0 \\ 0 & a & 2 b\end{array}\right)-(0)-\cdots$

For the proof of (35)-(38) refer to Singer and Sternberg [12]. Koch proved (25)-(34) in [10]. It remains to show that (1)-(24) are the only possible graded algebras with $\operatorname{dim} G_{0}=1$ or 2 . We will calculate the Lie brackets on a basis for each graded algebra obtained from the prolongation of G_{0} with $\operatorname{dim} G_{0} \leq 2$ in the following lemmas. The proof of the theorem follows directly from the following lemmas and the fact that $\left[G_{p}, G_{q}\right] \subset G_{p+q}$. For the remainder of the paper we shall let $\left\{e_{1}, e_{2}\right\}$ be a canonical basis for $V=G_{-1}$.

Lemma 2.4. Let $\left\{e_{1}, e_{2}, A_{0}, A_{1}, \ldots\right\}$ be a basis for (1), where

$$
A_{0}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), A_{1}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), \ldots
$$

Then the only nonzero bracket relations are $\left[A_{0}, e_{2}\right]=e_{1}$ and $\left[A_{i}, e_{2}\right]=A_{i-1}$, where $i \geq 1$.

Proof. Clearly, these relations hold as well as the relations $\left[e_{1}, e_{2}\right]=0$ and $\left[A_{i}, e_{1}\right]=0$ for $i \geq 0$. It remains to show that $\left[A_{i}, A_{j}\right]=0$. For $j>0$ and $k=1$ or 2 , we have

$$
\left[\left[A_{0}, A_{j}\right], e_{k}\right]=\left[A_{0},\left[A_{j}, e_{k}\right]\right]+\left[A_{j},\left[A_{0}, e_{k}\right]\right] .
$$

If $k=1$, the righthand expression is zero. If $k=2$, then

$$
\left[\left[A_{0}, A_{j}\right], e_{2}\right]=\left[A_{0}, A_{j-1}\right]=0
$$

by induction on j; hence, $\left[A_{0}, A_{j}\right]=0$. Similarly, if we fix j and induct on i, then $\left[A_{i}, A_{j}\right]=0$.

The proofs of the following lemmas are similar.
Lemma 2.5. Let $\left\{e_{1}, e_{2}, A_{0}, A_{1}, \ldots\right\}$ be a basis for (4), where

$$
A_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), A_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \ldots
$$

The only nonzero bracket operations are $\left[A_{0}, e_{1}\right]=e_{1}$ and $\left[A_{i}, e_{1}\right]=A_{i-1}$ for $i \geq 1$.

Lemma 2.6. Let $\left\{e_{1}, e_{2}, A_{0}, A_{1}, \ldots, B_{0}, B_{1}, \ldots\right\}$ be a basis for (8), where

$$
A_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), A_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \ldots
$$

and

$$
B_{0}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), B_{1}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \ldots
$$

The nonzero bracket operations are

$$
\begin{aligned}
& {\left[A_{0}, e_{1}\right]=e_{1}, \quad\left[A_{i}, e_{1}\right]=A_{i-1},} \\
& {\left[B_{0}, e_{2}\right]=e_{2}, \quad\left[B_{i}, e_{2}\right]=B_{i-1},}
\end{aligned}
$$

for $i \geq 1$, and

$$
\begin{aligned}
& {\left[A_{i}, A_{j}\right]=\frac{(i-j)(i+j+1)!}{(i+1)!(j+1)!} A_{i+j}} \\
& {\left[B_{i}, B_{j}\right]=\frac{(i-j)(i+j+1)!}{(i+1)!(j+1)!} B_{i+j}}
\end{aligned}
$$

Lemma 2.7. Let $\left\{e_{1}, e_{2}, A_{0}, A_{1}, \ldots, B_{0}, B_{1}, \ldots\right\}$ be a basis for (11) where

$$
A_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), A_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \ldots
$$

and

$$
B_{0}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), B_{1}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), \ldots
$$

The nonzero bracket operations are

$$
\begin{array}{ll}
{\left[A_{0}, e_{1}\right]=e_{1},} & {\left[A_{i}, e_{1}\right]=B_{i-1},} \\
{\left[A_{0}, e_{2}\right]=e_{2},} & {\left[A_{i}, e_{2}\right]=A_{i-1},} \\
{\left[B_{0}, e_{2}\right]=e_{1},} & {\left[B_{i}, e_{2}\right]=B_{i-1},}
\end{array}
$$

for $i \geq 1$, and

$$
\begin{aligned}
& {\left[A_{i}, A_{j}\right]=\frac{(i-j)(i+j+1)!}{(i+1)!(j+1)!} A_{i+j}} \\
& {\left[A_{i}, B_{j}\right]=\frac{(i-j)(i+j+1)!}{(i+1)!(j+1)!} B_{i+j}}
\end{aligned}
$$

Lemma 2.8. Let $\left\{e_{1}, e_{2}, A_{0}, A_{1}, \ldots, B_{0}, B_{1}, \ldots\right\}$ be a basis for (14), where

$$
A_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), A_{1}=\left(\begin{array}{ccc}
-1 & 0 & -1 \\
0 & 1 & 0
\end{array}\right), \ldots
$$

and

$$
B_{0}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), B_{1}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & -1
\end{array}\right), \ldots
$$

Then there exist nonzero bracket operations

$$
\begin{aligned}
& {\left[A_{1}, A_{i}\right]=\alpha A_{i+1},} \\
& {\left[A_{1}, B_{i}\right]=\beta B_{i+1},} \\
& {\left[B_{1}, B_{i}\right]=\gamma A_{i+1},}
\end{aligned}
$$

where $i=2,3, \ldots$ and $\alpha, \beta, \gamma \neq 0$.
Lemma 2.9. Suppose $\lambda \neq-1$, and let $\left\{e_{1}, e_{2}, A_{0}, A_{1}, \ldots, B_{0}, B_{1}, \ldots\right\}$ be a basis for (16), where

$$
A_{0}=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda+1
\end{array}\right), A_{1}=\left(\begin{array}{ccc}
0 & \lambda & 0 \\
0 & 0 & \lambda+1
\end{array}\right), \ldots
$$

and

$$
B_{0}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), B_{1}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), \ldots
$$

The nonzero bracket operations are

$$
\begin{array}{ll}
{\left[A_{0}, e_{1}\right]=\lambda e_{1},} & {\left[A_{i}, e_{1}\right]=\lambda B_{i-1},} \\
{\left[A_{0}, e_{2}\right]=(\lambda+1) e_{2},} & {\left[A_{i}, e_{2}\right]=A_{i-1},} \\
{\left[B_{0}, e_{2}\right]=e_{1},} & {\left[B_{i}, e_{2}\right]=B_{i-1},}
\end{array}
$$

for $i \geq 1$, and

$$
\begin{aligned}
{\left[A_{i}, A_{j}\right] } & =\frac{(\lambda+1)(i-j)(i+j+1)!}{(i+1)!(j+1)!} A_{i+j} \\
{\left[A_{i}, B_{j}\right] } & =\frac{(\lambda(i-j)-(j+1))(i+j+1)!}{(i+1)!(j+1)!} B_{i+j}
\end{aligned}
$$

The proofs of (1) through (18) follow directly from the lemmas. The proof of (19) and (20) are special cases of Lemma 2.9. To prove (21) through (24), the following lemma is required.

Lemma 2.10. Consider the basis $\left\{e_{1}, e_{2}, A_{k}^{j}, B_{k}\right\}$ for (21), where

$$
\begin{gathered}
B_{0}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), B_{1}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \ldots, \\
A_{1}^{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), A_{2}^{0}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),
\end{gathered}
$$

$$
A_{1}^{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), A_{2}^{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right), \ldots A_{3}^{1}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), \ldots .
$$

Then G_{k} has basis $\left\{A_{1}^{k}, \ldots, A_{k+2}^{k}, B_{k}\right\}$. The nonzero relations for this algebra are

$$
\left[A_{1}^{0}, e_{1}\right]=\left[A_{2}^{0}, e_{2}\right]=e_{1}
$$

and for $k \geq 1$

$$
\begin{aligned}
{\left[A_{i}^{k}, e_{1}\right] } & =A_{i}^{k-1}, 1 \leq i \leq k+1, \\
{\left[A_{i}^{k}, e_{2}\right] } & =A_{i-1}^{k-1}, 2 \leq i \leq k+2, \\
{\left[A_{i+1}^{i}, A_{j+2}^{j}\right] } & =\frac{(i+1)(i+j+1)!}{(i+1)!(j+1)!} A_{i+j+2}^{i+j}, \\
{\left[A_{1}^{1}, A_{j}^{i-1}\right] } & =\alpha A_{j}^{i}, \text { for some } \alpha \neq 0 .
\end{aligned}
$$

3. The Spencer Cohomology

For any graded algebra $\prod G_{p}$, define $C^{i, j}$ to be the space of skew-symmetric multilinear maps $c: \bigwedge^{j} G_{-1} \rightarrow G_{i-1}$. If we define the coboundary operator

$$
\partial: C^{i, j} \rightarrow C^{i-1, j+1}
$$

by

$$
(\partial c)\left(v_{1}, \ldots, v_{j+1}\right)=\sum_{k}(-1)^{k}\left[c\left(v_{1}, \ldots, \widehat{v_{k}}, \ldots, v_{j+1}\right), v_{k}\right],
$$

then $\partial^{2}=0$. The resulting cohomology groups are known as the Spencer cohomology groups, which we will denote by $H^{i, j}$ for $i, j \geq 0$. For $A \in G_{0}$ define a map $c \mapsto c^{A}$ from $C^{i, j}$ to itself by

$$
c^{A}\left(v_{1}, \ldots, v_{j}\right)=\left[A, c\left(v_{1}, \ldots, v_{j}\right)\right]-\sum_{k} c\left(v_{1}, \ldots,\left[A, v_{k}\right], \ldots, v_{j}\right) .
$$

Then $(\partial c)^{A}=\partial\left(c^{A}\right)$. Consequently, G_{0} acts on $H^{i, j}$, which we shall denote by $\xi \mapsto \xi^{A}$. An element $\xi \in H^{i, j}$ is invariant if $\xi^{A}=0$ for all $A \in G_{0}$. The set of invariant elements of a cohomology group $H^{i, j}$ is denoted by $\left(H^{i, j}\right)^{I}$. If $\eta \in \operatorname{Hom}\left(G_{i}, C^{j, l}\right)$ and $\xi \in C^{i+1, k}$, define $\xi \cdot \eta \in C^{j, k+l}$ by

$$
\begin{aligned}
\xi \cdot \eta\left(v_{1}, \ldots, v_{l+l}\right) & \\
& =\frac{1}{k!l!} \sum_{\sigma \in S_{k+l}}(\operatorname{sgn} \sigma) \eta\left(\xi\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right)\right)\left(v_{\sigma(k+1)}, \ldots, v_{\sigma(k+l)}\right) .
\end{aligned}
$$

In [6] it was shown that $\xi \cdot \eta \in H^{j, k+l}$.
The following proposition is due to Kobayashi and Nagano [7].
Proposition 3.1. Let $G=\prod G_{p}$ be a graded Lie algebra. Then the following statements are true.

1. $H^{0,0}=G_{-1}$.
2. $H^{i, 0}=0$ for $i \geq 1$.
3. $H^{0,1}=\mathfrak{g l}\left(G_{-1}\right) / G_{0}$.
4. $H^{i, 1}=\Lambda^{1} G_{i-1} / G_{i}$ for $i \geq 1$. In particular, $H^{i, 1}=0$ if and only if $\Lambda^{1} G_{i-1}=G_{i}$.

Let $L_{p}=G_{p} \times G_{p+1} \times \ldots$, and [,] be the usual Lie bracket on a graded algebra $\prod G_{p}$. An n-bracket on $\prod G_{p}$ is a skew-bilinear map

$$
\text { 1, } \mu_{n}^{\prime}: \prod^{G_{p}} \times \prod^{G_{p}} \rightarrow \prod^{G_{p}}
$$

satisfying the following conditions.

1. For $X \in L_{i}, Y \in L_{j},[X, Y]_{n}^{\prime}-[X, Y] \in L_{i+j+1}$.
2. If $X, Y, Z \in \prod G_{p}$, then

$$
\left[X,[Y, Z]_{n}^{\prime}\right]_{n}^{\prime}+\left[Y,[Z, X]_{n}^{\prime}\right]_{n}^{\prime}+\left[Z,[X, Y]_{n}^{\prime}\right]_{n}^{\prime} \in L_{n-1}
$$

If $[X, Y]_{n}^{\prime}-[X, Y] \in L_{n-1}$ for $X, Y \in \prod G_{p}$, then $[,]_{n}^{\prime}$ is a flat n-bracket.
If $[,]^{\prime}$ is 0 -bracket, we can define an element \bar{c} in $C^{0,2}$ by

$$
\bar{c}(u, v)=[u, v]^{\prime} \bmod L_{0},
$$

for $u, v \in G_{-1}$. By definition $C^{-1,3}=0$; therefore, $\partial \bar{c}=0$. We will let $c \in H^{0,2}$ be the element in cohomology represented by \bar{c}. Similarly, if we are given a flat n-bracket with $n \geq 1$, we can define elements $c \in H^{n, 2}$ and $\eta_{i} \in \operatorname{Hom}\left(G_{i}, H^{n, 1}\right)$ for $i=0, \ldots, n-1$. We now state several theorems from [6].

Theorem 3.2. Let $[,]^{\prime}$ be a 0 -bracket on $\prod G_{p}$, and suppose that

1. $c \cdot c=c^{2}=0$;
2. $c \in\left(H^{0,2}\right)^{I}$.

If $H^{k, 1}=H^{k, 2}=H^{k, 3}=0$ for $k \geq 0$, then there exists a complete filtered Lie algebra L with Lie algebra bracket $[,]_{L}$ on $\prod G_{p}$ extending $[,]^{\prime}$ such that $\prod G_{p}$ under the usual graded bracket is the associated graded algebra of L.

Theorem 3.3. Let [,] be a n-bracket on $\prod G_{p}$ with $n \geq 1$, and suppose that the following equations are satisfied.

1. $\eta_{0}[A, B]=\eta_{0}(B)^{A}-\eta_{0}(A)^{B}$ for $A, B \in G_{0}$.
2. $\eta_{i}[A, B]=\eta_{i}(B)^{A}$ for $A \in G_{0}, B \in G_{i}$ with $i=1, \ldots, n-1$.
3. $\eta_{i}[A, B]=0$ for $A \in G_{p}, B \in G_{q}$ with $p+q=i, p, q \geq 1$.
4. $c^{A}=\eta_{0}(A) \cdot \eta_{n-1}$ for $A \in G_{0}$.
5. $c \cdot \eta_{n-1}=0$.
6. $\partial A \cdot \eta_{n-1}=0$ for $A \in G_{n}$.
7. $\partial A \cdot \eta_{n-1}=-\eta_{i}(A) \cdot \eta_{n-1}$ for $A \in G_{i}$, where $i=1, \ldots, n-1$.

If $H^{k, 1}=H^{k, 2}=H^{k, 3}=0$ for $k>n$, then there exists a complete filtered Lie algebra L with Lie algebra bracket $[,]_{L}$ on $\prod G_{p}$ extending $[,]^{\prime}$ such that $\prod G_{p}$ under the usual graded bracket is the associated graded algebra of L.

Let L and M be complete filtered Lie algebras with associated graded algebras isomorphic to $\prod G_{p}$ and denote the bracket operations on L and M by $[,]_{L}$ and $[,]_{M}$, respectively. An n-isomorphism or n-map is a linear map $\psi: L \rightarrow M$ such that

1. $\psi\left(L_{p}\right) \subset M_{p}$;
2. $L_{p} \xrightarrow{\psi} M_{p} \rightarrow M_{p} / M_{p+1}=G_{p}$ is the map $L_{p} \rightarrow L_{p} / L_{p+1}=G_{p}$;
3. $[\psi(X), \psi(Y)]_{M}-\psi\left([X, Y]_{L}\right) \in M_{n-1}$ for $X, Y \in L$.

If an n-map $\prod G_{p} \rightarrow L$ exists, we can define $c^{L} \in H^{n, 2}$ and $\eta_{i}^{L} \in \operatorname{Hom}\left(G_{i}, H^{n, 1}\right)$. These elements satisfy the structure equations in either Theorem 3.2 or Theorem 3.3 depending on whether $n=0$ or $n \geq 1$.

If $\alpha \in G L\left(G_{-1}\right)$, then α acts on G_{p} via

$$
A^{\alpha}\left(v_{1}, \ldots, v_{p}\right)=\alpha A\left(\alpha^{-1} v_{1}, \ldots, \alpha^{-1} v_{p}\right) \text { for } A \in G_{p} \text { and } v_{i} \in G_{-1}
$$

which results in an automorphism of ΠG_{p}. Hence, there is a natural action of $\operatorname{Aut}\left(\prod G_{p}\right)$ on the cohomology groups $H^{i, j}$ that sends invariant elements to invariant elements. We denote this action by α_{*} for $\alpha \in \operatorname{Aut}\left(\prod G_{p}\right)$. Furthermore, if $\eta \in \operatorname{Hom}\left(G_{p}, H^{i, j}\right)$, then the induced action α^{*} on η is $\alpha^{*}(\eta)(A)=\alpha_{*} \eta\left(\alpha^{-1} A\right)$ for $A \in G_{p}$.

Theorem 3.4. Let L and M be complete filtered Lie algebra with graded algebra $\prod G_{p}$ and let $\psi: L \rightarrow M$ be an n-map satisfying the following conditions.

1. $\left(H^{k, 2}\right)^{I}=0$ for $k>n$.
2. For $k>n$,

$$
\frac{\left\{\eta: G_{0} \rightarrow H^{k, 1}: \eta[A, B]=\eta(B)^{A}-\eta(A)^{B}\right\}}{\left\{\eta: G_{0} \rightarrow H^{k, 1}: \eta(A)=\xi^{A} \text { for some } \xi \in H^{k, 1}\right\}}=0
$$

3. $\operatorname{Hom}_{G_{0}}\left(G_{i}, H^{k, 1}\right)=0$ for $n<k$ and $1 \leq i<k$.

If $n=0$ and there exists an $\alpha \in \operatorname{Aut}\left(\prod G_{p}\right)$ such that $\alpha_{*} c^{L}=c^{M}$, then $L \cong M$. If $n \geq 1$ and there exist n-maps $\phi_{L}: \prod G_{p} \rightarrow L$ and $\phi_{M}: \prod G_{p} \rightarrow M$, and for some $\alpha \in \operatorname{Aut}\left(\prod G_{p}\right), \alpha_{*} c^{L}=c^{M}$ and $\alpha^{*} \eta_{i}^{L}=\eta_{i}^{M}$ for $i=0, \ldots, n-1$, then $L \cong M$.

4. The Group of n-maps

The n-maps from $\prod G_{p}$ to itself act on the cohomological elements c and η_{i}. These n-maps form a group \mathcal{H}. There exists a series of subgroups of \mathcal{H}

$$
\mathcal{H}=\mathcal{H}_{0} \supset \mathcal{H}_{1} \supset \cdots \supset \mathcal{H}_{n}
$$

where $\tau \in \mathcal{H}_{i}$ whenever $\tau(v)=v+\tau_{i}(v)+\tau_{i+1}(v)+\cdots$ and $\tau_{p} \in \operatorname{Hom}\left(G_{-1}, G_{p}\right)$. In addition, \mathcal{H}_{i+1} is normal in \mathcal{H}_{i}. Let $c^{L}, \eta_{0}^{L}, \ldots, \eta_{n-1}^{L}$ be the elements in cohomology defined by the n-map $\phi: \prod G_{p} \rightarrow L$. The group \mathcal{H} acts on c^{L} and η_{i}^{L} via the n-map $\phi \sigma$ and gives elements $\left(c^{L}\right)^{\sigma}$ and $\left(\eta_{i}^{L}\right)^{\sigma}$, where $\sigma \in \mathcal{H}$.

Proposition 4.1. Let $\phi: \prod G_{p} \rightarrow L$ be an n-map that defines cohomological elements c^{L} and η_{i}^{L} for $i=0, \ldots, n-1$. If $\sigma \in \mathcal{H}_{n}$, then the following statements are true.

1. If $\sigma(v)=v+\sigma_{0}(v)+\sigma_{1}(v)+\cdots, v \in G_{-1}$ and $\sigma_{i} \in \operatorname{Hom}\left(G_{-1}, G_{i}\right)$, then

$$
\left(c^{L}\right)^{\sigma}=c^{\sigma}+c^{L}+\sum_{k=0}^{n-1} \sigma_{k} \cdot \eta_{k}^{L}
$$

2. If $0 \leq p \leq n-1$ and $A \in G_{p}$, then

$$
\left(\eta_{p}^{L}\right)^{\sigma}(A)=\eta_{p}^{\sigma}(A)+\eta_{p}^{L}(A)+\sum_{k=p+1}^{n-1} \eta_{k}^{L}\left(\sigma_{k}(A)\right)
$$

where $\sigma(A)=A+\sigma_{p+1}(A)+\sigma_{p+2}(A)+\cdots, \sigma_{i}(A) \in G_{i}$.
The action of \mathcal{H}_{n} on the elements c^{L} and η_{i}^{L} is trivial. Let

$$
\sigma(v)=v+\sigma_{n-1}(v)+\sigma_{n}(v)+\cdots
$$

be a representative for $\bar{\sigma} \in \mathcal{H}_{n-1} / \mathcal{H}_{n}$ where $\sigma_{i} \in \operatorname{Hom}\left(G_{-1}, G_{i}\right)$. Since $\partial \sigma_{n-1}=0$, there is a well-defined natural map $\theta: \mathcal{H}_{n-1} / \mathcal{H}_{n} \rightarrow H^{n, 1}$. Furthermore, θ is surjective.

Proposition 4.2. Let $\bar{\sigma}, \bar{\tau}$ in $\mathcal{H}_{n-1} / \mathcal{H}_{n}$ have representatives $\sigma, \tau \in \mathcal{H}_{n-1}$, respectively. If $\theta(\bar{\sigma})=\theta(\bar{\tau})$, then σ and τ act the same on the elements c^{L} and $\eta_{i}^{L}, 0 \leq i<n-1$. In addition, if $\bar{\sigma}$ induces $\sigma_{n-1} \in \mathcal{H}_{n-1}$, then

1. $\left(c^{L}\right)^{\sigma}= \begin{cases}c^{L}+\left[\sigma_{0}, \sigma_{0}\right]+\sigma \cdot \eta_{0}^{L}, & n=1 \\ c^{L}+\sigma_{n-1} \cdot \eta_{n-1}^{L}, & n \geq 2 ;\end{cases}$
2. $\left(\eta_{0}^{L}\right)^{\sigma}(A)=\sigma_{n-1}^{A}+\eta_{0}^{L}(A)$;
3. $\left(\eta_{i}^{L}\right)^{\sigma}(A)=\eta_{i}^{L}(A), i=1, \ldots, n-1$.

The action of the groups $\mathcal{H}_{p-1} / \mathcal{H}_{p}$ on $c^{L}, \eta_{0}^{L}, \ldots, \eta_{n-1}^{L}$ for $1 \leq p<n$ is partially determined by the adjoint map $\operatorname{Ad}_{X}: \prod G_{p} \rightarrow \prod G_{p}$ defined by

$$
\operatorname{Ad}_{X} Y=Y+[X, Y]+\frac{1}{2!}[X,[X, Y]]+\frac{1}{3!}[X,[X,[X, Y]]]+\cdots,
$$

where $X \in G_{p}, p \geq 1$. The map Ad_{X} is both an n-map and antomorphism of $\prod G_{p}$. The set $\operatorname{Ad}_{G_{p}}$ of all Ad_{X} where $X \in G_{p}$ is a subgroup of \mathcal{H}_{p-1}, and the subgroup $\left\langle\mathcal{H}_{p} \cup \operatorname{Ad}_{G_{p}}\right\rangle$ of \mathcal{H}_{p-1} generated by \mathcal{H}_{p} and $\operatorname{Ad}_{G_{p}}$ is normal in \mathcal{H}_{p-1}.

Proposition 4.3. Let $X \in G_{p}, p=1, \ldots, n-1$. Then

1. $\left(\eta_{i}^{L}\right)^{\operatorname{Ad}_{X}}(A)=\eta_{i}^{L}(A)$ for $i=1, \ldots, n-1$;
2. $\left(\eta_{0}^{L}\right)^{\operatorname{Ad}_{X}}(A)=\eta_{0}^{L}(A)+\eta_{p}^{L}(X)^{A}$;
3. $\left(c^{L}\right)^{\operatorname{Ad}_{X}}=c^{L}+\partial X \cdot \eta_{p-1}^{L}$.

Define a map $\theta: \mathcal{H}_{p-1} / \mathcal{H}_{p} \rightarrow\left(H^{p, 1}\right)^{I}$ for $p=1, \ldots, n-1$ as follows. Let $\sigma(v)=v+\sigma_{p-1}+\cdots$ be a representative for $\bar{\sigma} \in \mathcal{H}_{p-1} / \mathcal{H}_{p}$, then $\partial \sigma_{p-1}=0$. Let $\bar{\sigma}_{p-1} \in\left(H^{p, 1}\right)^{I}$ be the element in cohomology represented by σ_{p}.

Proposition 4.4. For $p=1, \ldots, n-1$

$$
\theta: \mathcal{H}_{p-1} /\left\langle\mathcal{H}_{p} \cup \operatorname{Ad}_{X}\right\rangle \rightarrow\left(H^{p, 1}\right)^{I}
$$

is an injection.
The map $\theta: \mathcal{H}_{p-1} /\left\langle\mathcal{H}_{p} \cup \operatorname{Ad}_{X}\right\rangle \rightarrow\left(H^{p, 1}\right)^{I}$ is generally not surjective; however, an element $\xi \in\left(H^{p, 1}\right)^{I}$ is the image of some element in $\mathcal{H}_{p-1} /\left\langle\mathcal{H}_{p} \cup \operatorname{Ad}_{X}\right\rangle$ under the map θ exactly when ξ is given by an n-derivation on $\prod G_{p}$. An n-derivation is a linear map $D: \prod G_{p} \rightarrow \prod G_{p}$ such that

1. $D\left(G_{i}\right) \subset G_{i+1} \times G_{i+2} \times \cdots$;
2. $D[X, Y]-[D X, Y]-[X, D Y] \in G_{n-1} \times G_{n} \times \cdots$, for $X, Y \in \prod G_{p}$.

Suppose $\sigma \in \mathcal{H}_{i}(0 \leq i<n-1)$ and $\sigma(v)=v+\sigma_{i}(v)+\sigma_{i+1}(v)+\cdots$. Then there exists an n-derivation D such that $D(v)=\sigma_{i}(v)$. Conversely, the map $\exp D$ is an n-map. The following theorem gives a method of calculating the action of n-maps on $\prod G_{p}$ [6].

Theorem 4.5. An element $\bar{D} \in\left(H^{p, 1}\right)^{I}$ is the image of some element in

$$
\mathcal{H}_{p-1} /\left\langle\mathcal{H}_{p} \cup \operatorname{Ad}_{X}\right\rangle
$$

under the map

$$
\theta: \mathcal{H}_{p-1} /\left\langle\mathcal{H}_{p} \cup \operatorname{Ad}_{X}\right\rangle \rightarrow\left(H^{p, 1}\right)^{I}
$$

exactly when D induces an n-derivation on $\prod G_{p}$.
5. Algebras with $\operatorname{dim} G_{-1}=2$

We are now ready to classify all complete filtered Lie algebras L with graded algebra $\prod G_{p}$ and $\operatorname{dim} G_{-1}=2$. We first decide the cases where L is flat; i.e, $L \cong \prod G_{p}$. The following propositions shall prove useful. The proofs of the propositions can be found in Koch's paper [9].

Proposition 5.1. Koch Let L be a complete filtered Lie algebra with graded algebra $\prod G_{p}$ such that the following conditions are satisfied.

1. $\left(H^{i, 2}\right)^{I}=0$ for $i \geq 0$.
2. For $j>0$,

$$
\frac{\left\{\eta: G_{0} \rightarrow H^{j, 1}: \eta[A, B]=\eta(B)^{A}-\eta(A)^{B}\right\}}{\left\{\eta: G_{0} \rightarrow H^{j, 1}: \eta(A)=\xi^{A} \text { for some } \xi \in H^{j, 1}\right\}}=0
$$

3. $\operatorname{Hom}_{G_{0}}\left(G_{i}, H^{j, 1}\right)=0$ for $1 \leq i<j$.

Then $L \cong \prod G_{p}$.
Proposition 5.2. Gunning Let L be a complete filtered Lie algebra with graded algebra $\prod G_{p}$ where G_{0} contains the identity map, then $L \cong \prod G_{p}$.

Proposition 5.3. If $\left(H^{i, 2}\right)^{I}=0$ and $H^{i, 1}=0$ for $i \geq 1$, then $L \cong \prod G_{p}$.
The algebras (3) $(\lambda=1),(8)-(15),(25)-(34),(37)$, and (38) have no complete filtered Lie algebras that are not isomorphic to their associated graded algebras since in each algebra G_{0} contains the identity. Singer and Sternberg [12] proved that (35) and (36) are flat. To analyze the remaining cases, it is necessary to compute the cohomology groups of each graded algebra in question. We remark here that $H^{i, 3}=0$ for $i \geq 0$ since $\operatorname{dim} G_{-1}=2$.

Proposition 5.4. Table 2 is a complete list of all nonzero cohomology groups $H^{i, 1},(i \geq 1)$ and $H^{i, 2},(i \geq 0)$ together with the generators for each of the cohomology groups for the graded algebras (1)-(7) and (16)-(24) of Table 1.

We will compute the cohomology for (5) as an example. Using Lemma 2.5, we may take $\left\{e_{1}, e_{2}, A_{0}, \ldots, a_{n}\right\}$ as a basis for this algebra. The nonzero bracket operations are $\left[A_{0}, e_{1}\right]=e_{1}$ and $\left[A_{i}, e_{1}\right]=A_{i-1}$, where $1 \leq i \leq n$. Since $\operatorname{dim} V=2, H^{i, j}=0$ for $j \geq 3$, and $H^{i, 1}=0$ for $i \neq n+1$ by Proposition 3.1. To compute $H^{n+1,1}$, consider the sequence

$$
C^{n+2,0} \rightarrow C^{n+1,1} \rightarrow C^{n, 2}
$$

If $\xi \in C^{n+1,1}$ is the linear map from V to G_{n} defined by $\xi\left(e_{1}\right)=a A_{n}$ and $\xi\left(e_{2}\right)=b A_{n}$, then

$$
\partial \xi\left(e_{1}, e_{2}\right)=\left[\xi\left(e_{1}\right), e_{2}\right]-\left[\xi\left(e_{2}\right), e_{1}\right]=-b A_{n-1} .
$$

Hence, the kernel of $\partial \xi$ consists of linear maps of the form $\xi\left(e_{1}\right)=a A_{n}$ and $\xi\left(e_{2}\right)=0$. Since $C^{n+2,0}=0, H^{n+1,1}=\mathbb{R}$. To see that there are no invariant elements in $H^{n+1,1}$, observe that

$$
\xi^{A_{0}}\left(e_{1}\right)=\left[A_{0}, \xi\left(e_{1}\right)\right]-\xi\left(\left[A_{0}, e_{1}\right]\right)=-a A_{n} .
$$

To compute $H^{0,2}$, consider the sequence

$$
C^{1,1} \rightarrow C^{0,2} \rightarrow 0
$$

We may take $\xi \in C^{1,1}$ to be the linear map defined by $\xi\left(e_{1}\right)=a A_{0}$ and $\xi\left(e_{2}\right)=$ $b A_{0}$. Then

$$
\partial \xi\left(e_{1}, e_{2}\right)=\left[\xi\left(e_{1}\right), e_{2}\right]-\left[\xi\left(e_{2}\right), e_{1}\right]=-b e_{1} .
$$

Thus, $H^{0,2}=\mathbb{R}$ with representative $\left(e_{1}, e_{2}\right) \mapsto a e_{2}$. Since

$$
\xi^{A_{0}}\left(e_{1}, e_{2}\right)=\left[A_{0}, \xi\left(e_{1}, e_{2}\right)\right]-\xi\left(\left[A_{0}, e_{1}\right], e_{2}\right)-\xi\left(e_{1},\left[A_{0}, e_{2}\right]\right)=-\xi\left(e_{1}, e_{2}\right),
$$

there are no invariant elements in $H^{0,2}$. The computation of $H^{n+1,2}$ and $\left(H^{n+1,2}\right)^{I}$ follows in a similar manner.

Table 2. Cohomology Groups of $\prod G_{0}$ with $G_{0} \subset \mathfrak{g l}(2, \mathbb{R})$.

Cohomology Group Generators

$H^{0,2}=\mathbb{R}$
$\left(H^{0,2}\right)^{I}=H^{0,2}$
$\left(e_{1}, e_{2}\right) \mapsto a e_{1}$
(2) $n \geq 0$

$$
\begin{array}{ll}
H^{0,2}=\mathbb{R} & \left(e_{1}, e_{2}\right) \mapsto a e_{1} \\
\left(H^{0,2}\right)^{I}=H^{0,2} & \\
H^{n+1,1}=\mathbb{R} & e_{1} \mapsto 0, e_{2} \mapsto a A_{n} \\
\left(H^{n+1,1}\right)^{I}=H^{n+1,1} & \\
H^{n+1,2}=\mathbb{R} & \left(e_{1}, e_{2}\right) \mapsto a A_{n} \\
\left(H^{n+1,2}\right)^{I}=H^{n+1,2} &
\end{array}
$$

(3) $\lambda \neq 0$
$H^{1,2}=\mathbb{R}$
$\left(H^{1,2}\right)^{I}=0$ where $\lambda \neq-1$
$\left(H^{1,2}\right)^{I}=H^{1,2}$ where $\lambda=-1$
(5) $n \geq 0$

$$
\begin{equation*}
H^{0,2}=\mathbb{R} \tag{4}
\end{equation*}
$$

$\left(e_{1}, e_{2}\right) \mapsto a e_{2}$
$\left(H^{0,2}\right)^{I}=0$
$H^{0,2}=\mathbb{R} \quad\left(e_{1}, e_{2}\right) \mapsto a e_{2}$
$\left(H^{0,2}\right)^{I}=0$
$H^{n+1,1}=\mathbb{R} \quad e_{1} \mapsto a A_{n}, e_{2} \mapsto 0$
$\left(H^{n+1,1}\right)^{I}=0$
$H^{n+1,2}=\mathbb{R}$
$\left(e_{1}, e_{2}\right) \mapsto a A_{n}$
$\left(H^{n+1,2}\right)^{I}=0$
$H^{1,2}=\mathbb{R}$
$\left(e_{1}, e_{2}\right) \mapsto a A_{0}$
$\left(H^{1,2}\right)^{I}=0$
$H^{1,2}=\mathbb{R}$
$\left(e_{1}, e_{2}\right) \mapsto a A_{0}$
$\left(H^{1,2}\right)^{I}=0$ where $\lambda \neq 0$
$\left(H^{1,2}\right)^{I}=H^{1,2}$ where $\lambda=0$
(16) All cohomology groups vanish.
(17) $\lambda \neq-1$ and $\operatorname{dim} G_{k}=1$ for $k \geq 1$

$$
\begin{aligned}
& H^{1,1}=\mathbb{R} \quad e_{1} \mapsto \lambda a B_{0}, e_{2} \mapsto a A_{0} \\
& \left(H^{1,1}\right)^{I}=0 \\
& H^{1,2}=\mathbb{R} \quad\left(e_{1}, e_{2}\right) \mapsto a A_{0} \\
& \left(H^{1,2}\right)^{I}=0 \text { where } \lambda \neq-1 / 2 \\
& \left(H^{1,2}\right)^{I}=H^{1,2} \text { where } \lambda=-1 / 2
\end{aligned}
$$

$G_{k}=0$ for $k \geq 1$

$$
\begin{array}{ll}
H^{1,1}=\mathbb{R}^{2} & e_{1} \mapsto \lambda a B_{0} \\
& e_{2} \mapsto a A_{0}+b B_{0} \\
\left(H^{1,1}\right)^{I}=0 \text { where } \lambda \neq-2 & \\
\left(H^{1,1}\right)^{I}=\mathbb{R} \text { where } \lambda=-2 & e_{1} \mapsto 0, e_{2} \mapsto b B_{0} \\
H^{1,2}=\mathbb{R}^{2} & \left(e_{1}, e_{2}\right) \mapsto a A_{0}+b B_{0} \\
\left(H^{1,2}\right)^{I}=0 &
\end{array}
$$

$n \geq 1$ and $G_{k}=0$ for $k>n$

$$
\begin{aligned}
& H^{1,1}=\mathbb{R} \\
& e_{1} \mapsto a \lambda B_{0}, e_{2} \mapsto a A_{0} \\
& \left(H^{1,1}\right)^{I}=0 \\
& H^{1,2}=\mathbb{R} \quad\left(e_{1}, e_{2}\right) \mapsto a A_{0} \\
& \left(H^{1,2}\right)^{I}=0 \text { where } \lambda \neq-1 / 2 \\
& \left(H^{1,2}\right)^{I}=H^{1,2} \text { where } \lambda=-1 / 2 \\
& H^{n+1,1}=\mathbb{R} \\
& e_{1} \mapsto 0, e_{2} \mapsto a B_{n} \\
& \left(H^{n+1,1}\right)^{I}=0 \\
& \text { where } \lambda \neq-(n+2) /(n+1) \\
& \left(H^{n+1,1}\right)^{I}=H^{n+1,1} \\
& \text { where } \lambda=-(n+2) /(n+1) \\
& H^{n+1,2}=\mathbb{R} \quad\left(e_{1}, e_{2}\right) \mapsto a B_{n} \\
& \left(H^{n+1,2}\right)^{I}=0
\end{aligned}
$$

$$
\begin{align*}
& H^{2,1}=\mathbb{R} \quad e_{1} \mapsto a \lambda B_{1}, e_{2} \mapsto a A_{1} \\
& \left(H^{2,1}\right)^{I}=0 \tag{18}\\
& H^{2,2}=\mathbb{R} \quad\left(e_{1}, e_{2}\right) \mapsto a A_{1} \\
& \left(H^{2,2}\right)^{I}=0 \text { where } \lambda \neq-2 / 3 \\
& \left(H^{2,2}\right)^{I}=H^{2,2} \text { where } \lambda=-2 / 3
\end{align*}
$$

$$
\begin{array}{ll}
H^{2,2}=\mathbb{R} & \left(e_{1}, e_{2}\right) \mapsto a A_{1} \\
\left(H^{2,2}\right)^{I}=0 & \tag{19}
\end{array}
$$

(20) $\lambda=-(n+1) /(n-1)$

$$
\begin{array}{ll}
H^{2,1}=\mathbb{R} & e_{1} \mapsto a \lambda B_{1}, e_{2} \mapsto a A_{1} \\
\left(H^{2,1}\right)^{I}=0 & \left(e_{1}, e_{2}\right) \mapsto a A_{1} \\
H^{2,2}=\mathbb{R} & \\
\left(H^{2,2}\right)^{I}=0 & e_{1} \mapsto 0, e_{2} \mapsto a B_{n} \\
H^{n+1,1}=\mathbb{R} & \\
\left(H^{n+1,1}\right)^{I}=0 & \left(e_{1}, e_{2}\right) \mapsto a B_{n} \\
H^{n+1,2}=\mathbb{R} & \\
\left(H^{n+1,2}\right)^{I}=0 &
\end{array}
$$

(21) All cohomology groups vanish.

$$
\begin{array}{ll}
H^{0,2}=\mathbb{R} & \left(e_{1}, e_{2}\right) \mapsto a e_{1} \\
\left(H^{0,2}\right)^{I}=0 & \tag{22}\\
H^{2,1}=\mathbb{R} & e_{1} \mapsto a A_{1}^{1}, e_{2} \mapsto 0 \\
\left(H^{2,1}\right)^{I}=0 &
\end{array}
$$

(23) $\operatorname{dim} G_{k}=2$
$H^{0,2}=\mathbb{R}$
$\left(e_{1}, e_{2}\right) \mapsto a e_{1}$

$$
\begin{array}{ll}
\left(H^{0,2}\right)^{I}=0 & \\
H^{1,1}=\mathbb{R} & e_{1} \mapsto a A_{1}^{0}, e_{2} \mapsto 0 \\
\left(H^{1,1}\right)^{I}=0 &
\end{array}
$$

$$
\begin{array}{rll}
\operatorname{dim} G_{k}=1 \text { for } & k>n \geq 1 & \\
& H^{0,2}=\mathbb{R} & \left(e_{1}, e_{2}\right) \mapsto a e_{1} \\
& \left(H^{0,2}\right)^{I}=0 & \\
& H^{1,1}=\mathbb{R} & e_{1} \mapsto a A_{1}^{0}, e_{2} \mapsto 0 \\
& \left(H^{1,1}\right)^{I}=0 & \\
& H^{n+1,1}=\mathbb{R} & e_{1} \mapsto a A_{n+1}^{n}, e_{2} \mapsto a A_{n+2}^{n} \\
& \left(H^{n+1,1}\right)^{I}=H^{n+1,1} & \\
& H^{n+1,2}=\mathbb{R} & \left(e_{1}, e_{2}\right) \mapsto a A_{n+1}^{n} \\
& \left(H^{n+1,2}\right)^{I}=0 &
\end{array}
$$

(24) $\operatorname{dim} G_{k}=1$ for $k \geq 1$

$$
\begin{array}{ll}
H^{0,2}=\mathbb{R} & \left(e_{1}, e_{2}\right) \mapsto a e_{1} \\
\left(H^{0,2}\right)^{I}=0 & e_{1} \mapsto a A_{1}^{0}+b A_{2}^{0}, \\
H^{1,1}=\mathbb{R}^{2} & e_{2} \mapsto b A_{1}^{0} \\
\left(H^{1,1}\right)^{I}=\mathbb{R} & e_{1} \mapsto b A_{2}^{0}, e_{2} \mapsto b A_{1}^{0} \\
H^{1,2}=\mathbb{R} & \left(e_{1}, e_{2}\right) \mapsto a A_{1}^{0} \\
\left(H^{1,1}\right)^{I}=0 &
\end{array}
$$

$$
\begin{array}{cl}
G_{k}=0 \text { for } k>n \geq 1 \text { and } \operatorname{dim} G_{k}=1, n=1, \ldots, n \\
& H^{0,2}=\mathbb{R} \\
& \left(H_{1}^{0,2}\right)^{I}=0 \\
& \left.H^{1,1}=e^{2}\right) \mapsto a e_{1} \\
& \\
& \left(H^{1,1}\right)^{I}=\mathbb{R} \\
& H^{1,2}=\mathbb{R} \\
& \left(H^{1,1}\right)^{I}=0 \\
H^{n+1,1}=\mathbb{R} & e_{2} \mapsto b A_{1}^{0}+b A_{2}^{0}, \\
\left(H^{n+1,1}\right)=0 & e_{1} \mapsto b A_{2}^{0}, e_{2} \mapsto b A_{1}^{0} \\
H^{n+1,2}=\mathbb{R} & \left(e_{1}, e_{2}\right) \mapsto b A_{1}^{0} \\
\left(H^{n+1,2}\right)^{I}=0 & \\
& e_{1} \mapsto 0, e_{2} \mapsto a A_{n+2}^{n} \\
& \\
& \left(e_{1}, e_{2}\right) \mapsto a A_{n+2}^{n} \\
&
\end{array}
$$

By Proposition 5.3, $L \cong \prod G_{p}$ for the algebras (3), $(\lambda \neq-1,0),(4),(6)$, (7) $(\lambda \neq 0),(16),(19)$, and (21), since the appropriate cohomology groups vanish. A straightforward but lengthy computation shows that the algebras (5), (20), and (22) satisfy the hypothesis of Proposition 5.1; therefore, these algebras are also flat.

The remaining algebras to be considered are (1)-(3), (7), (17), (18), (23), and (24). If the cohomological elements $c, \eta_{0} \ldots, \eta_{n-1}$ are known modulo the actions of $\operatorname{Aut}\left(\prod G_{p}\right)$ and \mathcal{H}, then we may determine all complete filtered Lie algebras with $\operatorname{dim} G_{-1}=2$ provided that all higher obstructions vanish.

Lemma 5.5. There exist exactly two complete filtered Lie algebras L having graded algebra (1). These algebras are determined by $c \in H^{0,2}$ with $c=0$ if L is graded and $c \neq 0$ if L is nongraded.

Proof. The only nonzero cohomology group is $H^{0,2}$. Let $c \in H^{0,2}$ have generator $c\left(e_{1}, e_{2}\right)=a e_{1}$. The hypothesis of Theorem 3.2 are satisfied; hence, c induces a complete filtered Lie algebra bracket on $\prod G_{p}$. The group of n-maps acts trivially on c since $H^{i, 0}=0$ for $i \geq 0$. An automorphism α on G_{-1} is given by a matrix of the form

$$
\left(\begin{array}{ll}
r & s \\
0 & t
\end{array}\right) .
$$

An easy computation yields $\alpha_{*} c\left(e_{1}, e_{2}\right)=(a / t) e_{1}$. An appropriate choice of α will send c to any other nonzero element in $H^{0,2}$. Therefore, if $c \neq 0$, there exists exactly one nongraded algebra L.

The proofs of the next two lemmas are similar to the proof of Lemma 5.5.
Lemma 5.6. The two complete filtered Lie algebras having graded algebra (3) $(\lambda=-1)$ are characterized by $c \neq 0$ and $c=0$ (graded case), where $c \in H^{1,2}$.

Lemma 5.7. For the algebra (7) $(\lambda=0)$, let $c \in H^{1,2}$ have the generator $c\left(e_{1}, e_{2}\right)=\beta A_{0}$. Then there are three distinct complete filtered Lie algebras determined by $\beta>0, \beta<0$, and $\beta=0$ (graded case).

Lemma 5.8. The complete filtered Lie algebras having graded algebra (2) are parameterized by $\left(\beta_{-1}, \ldots, \beta_{n}\right)$, $\beta_{i} \in \mathbb{R}$. Furthermore, $L_{\beta_{-1}, \ldots, \beta_{n}} \cong L_{\gamma_{-1}, \ldots, \gamma_{n}}$ if there exists a $\lambda \in \mathbb{R}$ such that

$$
\left(\beta_{-1}, \ldots, \beta_{n}\right)=\left(\lambda^{n+2} \gamma_{-1}, \ldots, \lambda \gamma_{n}\right)
$$

Proof. Let $c \in H^{n+1,2}$ and $\eta_{i} \in \operatorname{Hom}\left(G_{i}, H^{n+1,1}\right)$ for $0 \leq i \leq n$ be given by

$$
\begin{aligned}
c\left(e_{1}, e_{2}\right) & =\beta_{-1} A_{n} \\
\eta_{i}\left(A_{i}, e_{1}\right) & =0 \\
\eta_{i}\left(A_{i}, e_{2}\right) & =\beta_{i} A_{n}
\end{aligned}
$$

One quickly checks that the hypothesis of Theorem 3.3 hold. Applying Proposition 4.2 , we see that the n-maps have no effect on the $c, \eta_{0}, \ldots, \eta_{n-1}$.

It remains to show how $\operatorname{Aut}\left(\prod G_{p}\right)$ acts on the $c, \eta_{0}, \ldots, \eta_{n-1}$. Let α be as in Lemma 5.5. Then

$$
\begin{aligned}
\alpha_{*} c\left(e_{1}, e_{2}\right) & =\left(\beta_{-1} / t\right) A_{n}, \\
\alpha^{*} \eta_{i}\left(A_{i}, e_{2}\right) & =\left(\beta_{i} / t^{n-i-1}\right) A_{n} .
\end{aligned}
$$

Therefore, if $L=L_{\beta_{-1}, \ldots, \beta_{n}}$ is the algebra determined by the c and η_{i}, then any other algebra determined by

$$
\begin{aligned}
\bar{c}\left(e_{1}, e_{2}\right) & =\lambda^{n+2} \beta_{-1} A_{n} \\
\bar{\eta}_{i}\left(A_{i}, e_{1}\right) & =0 \\
\bar{\eta}_{i}\left(A_{i}, e_{2}\right) & =\lambda^{n-i+1} \beta_{i} A_{n}
\end{aligned}
$$

for some $\lambda \in \mathbb{R}$, must be isomorphic to L.

Lemma 5.9. Let $\prod G_{p}$ be the graded algebra

$$
\left(\begin{array}{cc}
\lambda a & b \\
0 & (\lambda+1) a
\end{array}\right)-\left(\begin{array}{ccc}
0 & 0 & b \\
0 & 0 & 0
\end{array}\right)-\left(\begin{array}{cccc}
0 & 0 & 0 & b \\
0 & 0 & 0 & 0
\end{array}\right)-\cdots
$$

as in (17). If $\lambda \neq-1,0,-1 / 2$, then $\prod G_{p}$ is flat. If $\lambda=-1 / 2$, then there is exactly one nongraded algebra characterized by $c \neq 0, c \in H^{1,2}$. If $\lambda=0$ there is exactly one nongraded algebra characterized by $\eta_{0}\left(B_{0}\right) \neq 0, \eta_{0} \in \operatorname{Hom}\left(G_{0}, H^{1,1}\right)$.

Proof. Let

$$
\begin{gathered}
c\left(e_{1}, e_{2}\right)=\beta A_{0}, \\
\eta_{0}\left(A_{0}, e_{1}\right)=\lambda \gamma B_{0}, \quad \eta_{0}\left(A_{0}, e_{2}\right)=\gamma A_{0} \\
\eta_{0}\left(B_{0}, e_{1}\right)=\lambda \delta B_{0}, \quad \eta_{0}\left(B_{0}, e_{2}\right)=\delta A_{0} .
\end{gathered}
$$

If $\lambda=-1 / 2$ and we apply the structural equations of Theorem 3.3, we may assume that $c\left(e_{1}, e_{2}\right)=\beta A_{0}$. If $\lambda \neq-1,0$, or $-1 / 2$, then $\eta_{0}\left(A_{0}, e_{1}\right)=\lambda \gamma B_{0}$ and $\eta_{0}\left(A_{0}, e_{2}\right)=\gamma A_{0}$. If $\lambda=0$, then $\eta_{0}\left(A_{0}, e_{2}\right)=\gamma A_{0}$ and $\eta_{0}\left(B_{0}, e_{2}\right)=\delta A_{0}$. The actions of the n-maps in the first case show that there are no nongraded algebras if $\lambda \neq 1,0$, or $-1 / 2$. If $\lambda=-1 / 2$, the n-maps act trivially. If $\lambda=0$, we may assume that $\gamma=0$. Finally, notice that $\alpha \in \operatorname{Aut}\left(\prod G_{p}\right)$ is given on G_{-1} by a matrix of the form

$$
\left(\begin{array}{ll}
r & s \\
0 & t
\end{array}\right) .
$$

If either $\lambda=0$ or $-1 / 2$, any nonzero element may be sent to any other nonzero element by the appropriate choice of α.

Lemma 5.10. Let

$$
\left(\begin{array}{cc}
\lambda a & b \\
0 & (\lambda+1) a
\end{array}\right)-(0)-\cdots
$$

be as in (17). If $\lambda \neq 0$ or -2 , then all algebras are graded. If $\lambda=0$, then there exists one nongraded algebra characterized by $\eta_{0}\left(B_{0}\right) \neq 0$. If $\lambda=-2$, there is exactly one nongraded algebra characterized by $\eta_{0}\left(A_{0}\right) \neq 0$.

Proof. Let

$$
\begin{gathered}
c\left(e_{1}, e_{2}\right)=\alpha A_{0}+\beta B_{0}, \\
\eta_{0}\left(A_{0}, e_{1}\right)=\lambda \gamma B_{0}, \quad \eta_{0}\left(A_{0}, e_{2}\right)=\gamma A_{0}+\delta B_{0}, \\
\eta_{0}\left(B_{0}, e_{1}\right)=\lambda \sigma B_{0}, \quad \eta_{0}\left(B_{0}, e_{2}\right)=\sigma A_{0}+\tau B_{0} .
\end{gathered}
$$

The equations of Theorem 3.3 allow for two cases. If $\lambda=0$, then

$$
\begin{aligned}
& \eta_{0}\left(A_{0}, e_{2}\right)=\gamma A_{0}+\delta B_{0}, \\
& \eta_{0}\left(B_{0}, e_{2}\right)=\sigma A_{0}+\gamma B_{0} .
\end{aligned}
$$

If $\lambda \neq 0$, then

$$
\begin{gathered}
c\left(e_{1}, e_{2}\right)=\frac{\lambda \gamma^{2}}{(\lambda+1)^{2}} B_{0}, \\
\eta_{0}\left(A_{0}, e_{1}\right)=\lambda \gamma B_{0}, \quad \eta_{0}\left(A_{0}, e_{2}\right)=\gamma A_{0}+\delta B_{0}, \\
\eta_{0}\left(B_{0}, e_{1}\right)=0, \quad \eta_{0}\left(B_{0}, e_{2}\right)=\frac{\lambda-1}{\lambda+1} \gamma B_{0} .
\end{gathered}
$$

Applying Proposition 4.2, we may assume that $\eta_{0}\left(B_{0}, e_{2}\right)=\sigma A_{0}$ if $\lambda=0$. If $\lambda \neq 0$, the c and the η_{i} 's vanish except for the case $\lambda=-2$, where $\eta_{0}\left(A_{0}, e_{2}\right)=$ δB_{0}. The automorphism group of $\prod G_{p}$ sends any nonzero element to any other nonzero element.

The proofs of the next four lemmas are similar to the proofs above.
Lemma 5.11. Let

$$
\left(\begin{array}{cc}
\lambda a & b \\
0 & (\lambda+1) a
\end{array}\right)-\left(\begin{array}{ccc}
0 & 0 & b \\
0 & 0 & 0
\end{array}\right)-\cdots-\left(\begin{array}{cccc}
0 & \cdots & 0 & b \\
0 & \cdots & 0 & 0
\end{array}\right)-(0)-\cdots
$$

be the algebra given in (17), where $n \geq 1$ and $G_{k}=0$ for $k>n$. If $\lambda \neq$ $-(n+2) /(n+1)$, then $L \cong \prod G_{p}$. If $\lambda=-(n+2) /(n+1)$, then there exists exactly one nongraded algebra determined by $\eta_{0}\left(A_{0}\right) \neq 0$.

Lemma 5.12. Algebra (18) is flat if $\lambda \neq-1,0$, or $-2 / 3$. If $\lambda=0$ or $\lambda=-2 / 3$, then there is exactly one nongraded example in each case that is determined by $\eta_{0}\left(B_{0}\right) \neq 0$ and $c \neq 0$, respectively.

We remark that the algebra given by

$$
\left(\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right)-\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & 0
\end{array}\right)-\left(\begin{array}{cccc}
0 & 0 & a & b \\
0 & 0 & 0 & 0
\end{array}\right)-\cdots
$$

in (23) is graded by Proposition 5.1.
Lemma 5.13. Let

$$
\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)-\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & 0
\end{array}\right)-\cdots-\left(\begin{array}{ccccc}
0 & \cdots & 0 & a & b \\
0 & \cdots & 0 & 0 & 0
\end{array}\right)-\left(\begin{array}{ccccc}
0 & \cdots & 0 & 0 & b \\
0 & \cdots & 0 & 0 & 0
\end{array}\right)-\cdots
$$

be the algebra in (23) with $\operatorname{dim} G_{k}=1$ for $k>n$. The nongraded algebras are parameterized by $\left(\beta_{0}, \ldots \beta_{n}\right), \beta_{i} \in \mathbb{R}$; where $L_{\beta_{0}, \ldots, \beta_{n}} \cong L_{\gamma_{0}, \ldots, \gamma_{n}}$ if there exists $\lambda \in \mathbb{R}$ such that

$$
\left(\beta_{0}, \ldots, \beta_{n}\right)=\left(\lambda^{n+1} \gamma_{0}, \ldots, \lambda \gamma_{n}\right)
$$

Lemma 5.14. Given the algebra

$$
\left(\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right)-\left(\begin{array}{lll}
0 & 0 & b \\
0 & 0 & 0
\end{array}\right)-\left(\begin{array}{llll}
0 & 0 & 0 & b \\
0 & 0 & 0 & 0
\end{array}\right)-\cdots
$$

in (24), there exists one nongraded algebra determined by $\eta_{0}\left(A_{1}^{0}\right) \neq 0$.
Lemma 5.15. Let

$$
\left(\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right)-\left(\begin{array}{lll}
0 & 0 & b \\
0 & 0 & 0
\end{array}\right)-\cdots-\left(\begin{array}{cccc}
0 & \cdots & 0 & b \\
0 & \cdots & 0 & 0
\end{array}\right)-(0)-\cdots
$$

be as in (24) where $G_{k}=0$ for $k>n$. The nongraded algebras are parameterized by $\left(\beta_{0}, \ldots \beta_{n}\right), \beta_{i} \in \mathbb{R}$; and $L_{\beta_{0}, \ldots, \beta_{n}} \cong L_{\gamma_{0}, \ldots, \gamma_{n}}$ if there exists $\lambda \in \mathbb{R}$ such that $\left(\beta_{0}, \ldots, \beta_{n}\right)=\left(\lambda^{n+1} \gamma_{0}, \ldots, \lambda \gamma_{n}\right)$.

Proof. Let $c\left(e_{1}, e_{2}\right)=\alpha A_{n+2}^{n}, \eta_{0}\left(A_{0}, e_{2}\right)=\beta A_{n+2}^{n}$, and $\eta_{i}\left(B_{i}, e_{2}\right)=\gamma_{i} A_{n+2}^{n}$ for $0 \leq i<n$. Equations (1) through (7) of Theorem 3.3 are satisfied. Let D be the n-derivation D given by

$$
\begin{gathered}
D e_{1}=A_{2}^{0}, \quad D e_{2}=A_{1}^{0}, \quad D A_{1}^{0}=0 \\
D A_{i+2}^{i}=(i+2) A_{i+3}^{i+1}(0 \leq i<n) \\
D A_{n+2}^{n}=0
\end{gathered}
$$

The n-map $\exp D$ is given by

$$
\begin{gathered}
(\exp D)\left(e_{1}\right)=e_{1}+A_{2}^{0}+\cdots A_{n+2}^{n} \\
(\exp D)\left(e_{2}\right)=e_{2}+A_{1}^{0} \\
(\exp D)\left(A_{1}^{0}\right)=0 \\
(\exp D)\left(A_{i+2}^{i}\right)=A_{i+2}^{i}+(i+2) A_{i+3}^{i+1}+\frac{(i+2)(i+3)}{2!} A_{i+4}^{i+2}+\cdots
\end{gathered}
$$

The n-maps act on c as in Proposition 4.1, allowing us to assume that $c=0$. The action of the n-maps on $H^{n+1,1}$ also allows us to assume that $\beta=0$. Now apply $\operatorname{Aut}\left(\prod G_{p}\right)$ as in Lemma 5.8.

Theorem 5.16. Table 3 is a complete list of all nongraded algebras for $\prod G_{p}$, where $\operatorname{dim} G_{-1}=2$.

Table 3. Nongraded Algebras with $\operatorname{dim} G_{-1}=2$.
(1) One nongraded algebra.
(2) Nongraded algebras $L_{\beta_{-1} \cdots \beta_{n}}, \beta_{i} \in \mathbb{R}$ where $L_{\beta_{-1} \cdots \beta_{n}} \cong L_{\gamma_{-1} \cdots \gamma_{n}}$ if there exists $\lambda \in \mathbb{R}$ such that $\left(\beta_{-1}, \ldots, \beta_{n}\right)=\left(\lambda^{n+2} \gamma_{-1}, \ldots, \lambda \gamma_{n}\right)$.
(3) One nongraded algebra $(\lambda=-1)$.
(7) Two nongraded algebras $(\lambda=0)$.
(17) One nongraded algebra in each case $(\lambda=-1 / 2,0)$.

$$
\left(\begin{array}{cc}
\lambda a & b \\
0 & (\lambda+1) a
\end{array}\right)-\left(\begin{array}{ccc}
0 & 0 & b \\
0 & 0 & 0
\end{array}\right)-\left(\begin{array}{cccc}
0 & 0 & 0 & b \\
0 & 0 & 0 & 0
\end{array}\right)-\cdots
$$

One nongraded algebra in each case $(\lambda=-2,0)$.

$$
\left(\begin{array}{cc}
\lambda a & b \\
0 & (\lambda+1) a
\end{array}\right)-(0)-\cdots
$$

One nongraded algebra in each case $(\lambda=-(n+2) /(n+1))$ and $G_{k}=0$ for $k>n$.

$$
\left(\begin{array}{cc}
\lambda a & b \\
0 & (\lambda+1) a
\end{array}\right)-\left(\begin{array}{ccc}
0 & 0 & b \\
0 & 0 & 0
\end{array}\right)-\cdots-\left(\begin{array}{cccc}
0 & \cdots & 0 & b \\
0 & \cdots & 0 & 0
\end{array}\right)-(0)-\cdots
$$

(18) One nongraded algebra in each case $(\lambda=0,-2 / 3)$.
(23) Let $\prod G_{p}$ be the algebra

$$
\left(\begin{array}{cc}
a & b \\
0 & 0
\end{array}\right)-\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & 0
\end{array}\right)-\cdots-\left(\begin{array}{cccc}
0 & \cdots & a & b \\
0 & \cdots & 0 & 0
\end{array}\right)-\left(\begin{array}{cccc}
0 & \cdots & 0 & b \\
0 & \cdots & 0 & 0
\end{array}\right)-\cdots,
$$

where $\operatorname{dim} G_{k}=1$ for $k>n$. Nongraded algebras $L_{\beta_{0} \cdots \beta_{n}}$ exist, where $\beta_{i} \in \mathbb{R}$ and $L_{\beta_{0} \cdots \beta_{n}} \cong L_{\gamma_{0} \cdots \gamma_{n}}$ if there exists $\lambda \in \mathbb{R}$ such that

$$
\left(\beta_{0}, \ldots, \beta_{n}\right)=\left(\lambda^{n+1} \gamma_{0}, \ldots, \lambda \gamma_{n}\right)
$$

(24) One nongraded algebra for the graded algebra

$$
\left(\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right)-\left(\begin{array}{lll}
0 & 0 & b \\
0 & 0 & 0
\end{array}\right)-\cdots-\left(\begin{array}{cccc}
0 & \cdots & 0 & b \\
0 & \cdots & 0 & 0
\end{array}\right)-\cdots
$$

For the algebra

$$
\left(\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right)-\left(\begin{array}{lll}
0 & 0 & b \\
0 & 0 & 0
\end{array}\right)-\cdots-\left(\begin{array}{llll}
0 & \cdots & 0 & b \\
0 & \cdots & 0 & 0
\end{array}\right)-(0)-\cdots,
$$

where $G_{k}=0$ for $k>n$, there exist nongraded algebras $L_{\beta_{0} \ldots \beta_{n}}$ with $\beta_{i} \in \mathbb{R}$ and $L_{\beta_{0} \cdots \beta_{n}} \cong L_{\gamma_{0} \cdots \gamma_{n}}$ if there exists a $\lambda \in \mathbb{R}$ such that $\left(\beta_{0}, \ldots, \beta_{n}\right)=$ $\left(\lambda^{n+1} \gamma_{0}, \ldots, \lambda \gamma_{n}\right)$.

6. Conclusion

Cartan first classified the pseudogroups on \mathbb{R}^{2} in [1] using a different approach, and Conn treats the structure of transitive Lie algebras in [2]. The methods used in this paper is that they can reasonably be applied to dimensions higher than two in many cases. Although the techniques here are useful in constructing examples of nongraded Lie algebras, they do not allow a complete classification. If higher obstructions in cohomology exist, then these techniques may fail. Volpert offers another method using the Spencer cohomology and spectral sequences to obtain examples of complete filtered Lie algebras in [14, 15]. Finally, complete filtered Lie algebras are the algebraic objects corresponding to pseudogroups and transitive differential geometry. The geometric meaning of the c 's and the η_{i} 's are only partially understood [3, 12, 13].

References

[1] Cartan, E., Les sous groupes continus de transformations, Ann. Sci. Ecole Norm. Sup. 25 (1908), 57-194.
[2] Conn, J., "Nonabelian Minimal Closed Ideals of Transitive Lie Algebras", Mathematical Notes 25, Princeton University Press, 1981.
[3] Guillemin, V., and S. Sternberg, An algebraic model of transitive differential geometry, Amer. Math. Soc. 70 (1964), 16-47.
[4] Humphreys, J., "Introduction to Lie Algebras and Representation Theory," Third edition. Springer-Verlag, New York etc. 1997.
[5] Jacobson, N., "Lie Algebras," John Wiley \& Sons, 1962.
[6] Judson, T., Complete filtered Lie algebras and the Spencer cohomology, J. Algebra 125 (1989), 66-109.
[7] Kobayashi, S., and T. Nagano, On filtered Lie algebras and geometric structures III, J. Math. Mech. 14 (1965), 679-706.
[8] Kobayashi, S., "Transformation Groups in Differential Geometry," SpringerVerlag, New York etc. 1995.
[9] Koch, R. N., On filtered Lie algebras, Indiana Univ. J. 26 (1977), 115-123.
[10] -, Pseudogroups associated with the one dimensional foliation group (I), J. Math. Soc. Japan 23 (1971), 149-180.
[11] -, Pseudogroups associated with the one dimensional foliation group (II), J. Math. Soc. Japan 23 (1971), 181-212.
[12] Singer, I. M., and S. Sternberg, The infinite groups of Lie and Cartan, Part I (the transitive groups), J. Analyse Math. 15 (1965), 4-113.
[13] Sternberg, S., "Lectures on Differential Geometry," Second edition. Chelsea Publishing Co., 1983.
[14] Volpert, K., Finite spectral sequences and Massey powers in the deformation theory of graded Lie algebras and associative algebras, J. Pure Appl. Algebra 87 (1993), 281-300.
[15] -, A spectral sequence connecting the Spencer cohomology of a transitive Lie algebra with its deformation cohomology, Algebras Groups Geom. 7 (1990), 313-344.

Thomas W. Judson
Department of Mathematics
and Computer Science
University of Puget Sound
1500 North Warner Street
Tacoma, Washington 98416
tjudson@ups.edu

Received May 8, 2001
and in final form October 11, 2001

