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Abstract. For an irreducible representation of a connected affine algebraic
group G in a vector space V of dimension at least 2, it is shown that the

intersection of any orbit π(G)x (with x∈V ) and any hyperplane of V is

non-empty. The question is raised to decide whether an analogous fact holds
for irreducible continuous representations of connected compact groups, for

example of SU(2).
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By definition, a linear representation π : G −→ GL(V ) of a group G in a vector
space V is irreducible if, for any vector x 6= 0 in V and for any hyperplane H
of V , the orbit π(G)x does not lie inside H . The purpose of this note is to
record how irreducibility may imply other geometrical properties of the orbits,
either in general as in the most elementary Proposition 1 below about “affine
irreducibility”, or for representations of algebraic groups as in Proposition 2.
We provide also examples which show that Proposition 2 has no analogue for
noncompact semisimple real Lie groups, but we leave open the question to decide
if it has for compact semisimple Lie groups.

Proposition 1. Let G be a group, V a vector space over some field, and
π : G −→ GL(V ) an irreducible linear representation distinct from the unit
representation. If A is an affine subspace of V which is invariant by G , then
A = 0 or A = V .

Proof. If an affine subspace A is π(G)-invariant, so is the linear space H of
differences of vectors in A , so that H is one of 0 or V , and the same holds for
A .

Proposition 2. Let G be a connected algebraic group over some algebraically
closed field K , let V a finite dimensional vector space of dimension at least
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two, and let π : G −→ GL(V ) be a rational irreducible representation. For any
linear hyperplane H of V and any x ∈ V , the intersection of H with the orbit
X = π(G)x is non empty.

Proof. Consider first the case of a group G which is semisimple. Choose
a linear form f 6= 0 on V such that H = ker(f). Define a regular function
φ : G −→ K by φ(g) = f(π(g)x).

Assume (ab absurdo) that the intersection of H and X is empty. Then
φ does not have any zero on G . A theorem of Rosenlicht (see below) implies that
there exists a constant c 6= 0 such that cφ is a group homomorphism G −→ K

∗ ;
this implies that φ is constant since G is perfect. Thus X is contained in an
affine hyperplane of V . The affine hull of X is non-trivial and invariant by
G ; this is absurd by Proposition 1, so that the proposition is proved in the
semisimple case.

Consider now the general case. Let Ru denote the unipotent radical
of G . By a theorem of Kolchin (see e.g. 4.8 in [1]), the subspace V u = {v ∈
V | π(r)v = v for all r ∈ Ru} is not reduced to zero. This space being π(G)-
invariant, because Ru is normal in G , and π being irreducible, we have V u = V .
Consequently, we may replace G by G/Ru , namely we may assume that G is
reductive.

Let T denote the solvable radical of G , which is a torus (11.21 in [1]).
Let V = ⊕V χ denote the weight space decomposition of the restriction π|T ,
where V χ = {v ∈ V | π(t)v = χ(t)v for all t ∈ T} for χ ∈ Hom(T,K∗). We may
choose ψ ∈ Hom(T,K∗) such that V ψ 6= {0} . Since T is normal in G and since
the abelian group Hom(T,K∗) is finitely generated (8.2 in [1]), there is a natural
action of the connected group G on Hom(T,K∗) and this action is trivial. Hence
V ψ is π(G)-invariant, and indeed is equal to V by irreducibility of π . Thus π
coincides on T with some ψ ∈ Hom(T,K∗).

Now G is a product of its derived group DG and of T , and DG is
semisimple (14.2 in [1]). Thus the equality π|T = ψ⊗ idV and the irreducibility
of π imply that the restriction of π to the semisimple group DG is irreducible.
This ends the proof of the reduction of the general case to the semisimple case.

Reminder of Rosenlicht’s result [6]. If Y, Z are two irreducible affine algebraic
varieties, any scalar-valued function on the product Y × Z which is regular and
without zero is a product of a regular function on Y by a regular function on Z .
Thus, if φ is a regular function without zero on a linear algebraic group G , there
exist regular functions ψ, χ such that φ(gh) = ψ(g)χ(h) for all g, h ∈ G . Set
c = φ(1)−1 and let ϕ denote the function cφ ; the previous relation implies that
ϕ = ψ(1)−1ψ = χ(1)−1χ and that ϕ(gh) = ϕ(g)ϕ(h) for all g, h ∈ G , namely
that ϕ is a character on G , by which we mean here a homomorphism of groups
G −→ K

∗ . For an exposition of Rosenlicht’s result, see [4]; see also [2].

Corollary. Let G be a reductive connected complex Lie group, let V a finite
dimensional complex vector space of dimension at least two, and let π : G −→
GL(V ) be an irreducible holomorphic representation. For any linear hyperplane
H of V and any x ∈ V , the intersection of H with the orbit X = π(G)x is non
empty.

Proof. This is a straightforward consequence of Proposition 2, since a con-
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nected reductive complex Lie group G has a unique algebraic structure, and
a holomorphic representation of such a group is necessarily algebraic. See e.g.
Theorem 6.4 of Chapter 1 and Theorem 2.8 of Chapter 4 in [5].

Observations. There are no analogues of Proposition 2 for finite groups and
for simple connected real Lie groups, as the following examples show.

(i) If G is a finite group, G -orbits in V \ {0} and hyperplanes are
generically disjoint.

(ii) Let π be the 2-dimensional irreducible representation of the group
SL2(R) in the space C2 . For a vector x ∈ R2 , x 6= 0, and the linear span H of
the vector (1, i) ∈ C2 , the SL2(R)-orbit of x and the hyperplane H are disjoint.

For another example, consider the 3-dimensional irreducible representa-
tion of SL2(R) in the space V of homogeneous polynomials of degree 2 with
complex coefficients in 2 variables ξ, η . If x ∈ V is the polynomial ξη , its
SL2(R)-orbit X is a surface of equation ρ2−4στ = 1 (with respect to appropri-
ate coordinates (ρ, σ, τ) on V ), and its intersection with the complex hyperplane
of equation σ =

√
i τ is empty.

(iii) Consider more generally an integer n ≥ 2, the connected component
G of the group SO(n, 1), and the natural irreducible representation π of G in
C
n+1 . For a non-zero vector x ∈ Rn+1 inside and a real hyperplane H0 ⊂ Rn+1

outside the light cone, it is clear that the orbit π(G)x is disjoint from H0 ; it
follows that π(G)x is also disjoint from the complexified hyperplane H0⊗RC in
C
n+1 .

Question. In which situations does some Proposition 2 hold? what about a
connected compact group and an irreducible continuous representation? what
about the irreducible representation of SU(n)? of SU(2)? We spell out ex-
plicitely the last particular case of the question:

Let πk be the natural representation of SU(2) in the space Pk of
complex polynomials in two variables which are homogeneous of degree k , for
some k ≥ 1, let H be a complex hyperplane in Pk and let P ∈ Pk ; is it always
true that πk(SU(2))P ∩H 6= Ø?

Remarks. (i) Let G be a compact topological group, V an Hermitian space,
and π : G −→ U(V ) an irreducible continuous unitary representation distinct
from the unit representation. It is known [3] that, for any vector x ∈ V of
norm 1, the diameter maxg∈G ‖π(g)x − x‖ of the orbit π(G)x is strictly larger
than

√
2.
(ii) Let G be a compact connected topological group, V a finite dimen-

sional real vector space, π : G −→ GL(V ) an irreducible continuous representa-
tion distinct from the unit representation, X = π(G)x the G -orbit of a vector
x 6= 0 in V , and H an hyperplane of V , say H = ker(f) for some linear form
f 6= 0 on V . Then the intersection of H and X is non empty.

Indeed, define as above φ : G −→ R by φ(g) = f(π(g)x). If X∩H = Ø,
then φ is either strictly positive or strictly negative on G , so that

∫
G
φ(g)dg =

f(y) 6= 0 for y =
∫
G
π(g)x dg , and in particular y 6= 0; but this is impossible

because y is π(G)-invariant by invariance of the Haar measure dg on G .
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