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Abstract. We will determine the singular points and a resolution of sin-
gularities of each irreducible component of the varieties of the Lie algebras of
dimension 3 and 4 over C .

1. Introduction

Let Ln be the projective variety of the Lie algebras of dimension n over C . In
some recent papers many results on the irreducible components of Ln were found
for small values of n . In [2] Carles and Diakité determined the open orbits and
described the irreducible components of Ln as orbit closures for n ≤ 7. In [6]
Kirillov and Neretin determined the number of irreducible components of Ln and
their dimension for n ≤ 6; they also determined representatives of the generic
orbits of any component of L4 . In [1] Burde and Steinhoff gave a classification of
any orbit closure of L4 . The variety L3 has two irreducible components and one
of them is a linear variety; the variety L4 has four irreducible components.
In this paper we will determine the singular points and find a resolution of singu-
larities of each irreducible component of L3 and L4 . By using the classification of
the Lie algebras of dimension 3 and 4 over C , we will describe each irreducible
component by giving algebraic equations of it. The first classification is well known
(see [3]); the second one may be deduced from [8] and from [9] (see [1]); neverthe-
less we will give a short proof of it. Each resolution of singularities is a subvariety
of the product of the irreducible component with a suitable grassmannian or is a
resolution of singularities of a variety of this type. We observe that the results
of this paper are also true over any algebraically closed field K such that char
K 6= 2.

2. Preliminaries

For any n ∈ N let Ln be the subvariety of the projective space
P(Hom(Cn ∧ Cn, Cn))
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of all [α] such that α(x ∧ α(y ∧ z)) + α(y ∧ α(z ∧ x)) + α(z ∧ α(x ∧ y)) = 0 for
any x, y, z ∈ Cn , which we regard as the variety of all the Lie algebras over C of
dimension n . For any [α] ∈ Ln let Lα be the Lie algebra defined by α . The group
GL(n, C) acts on Hom(Cn∧Cn, Cn) by the relation α·G(Gx∧Gy) = G(α(x∧y)),
for any G ∈ GL(n, C), α ∈ Hom(Cn ∧ Cn, Cn), x, y ∈ Cn and this induces an
action of GL(n, C) on Ln ; the orbits of this action are the classes of isomorphic
Lie algebras. For any n, n′ ∈ N let Mn×n′ , Mn and Sn be the vector spaces of
all n × n′ matrices, of all n × n matrices and of all n × n symmetric matrices
respectively over C . Let {e1, . . . , en} be the canonical basis of Cn and let us
order the set {ei ∧ ej : i, j = 1, . . . , n, i < j} , writing it as {E1, . . . , Em} . For
any α ∈ Hom(Cn ∧ Cn, Cn) let Aα ∈ Mn×m be the matrix of α with respect to

the previous bases; then Aα·G = GAαĜ where Ĝ ∈ GL(m, C) is the matrix whose
(h, k) entry is the determinant of the 2×2 submatrix of G−1 obtained by choosing
the rows i, j with Eh = ei ∧ ej and the columns i′, j′ with Ek = ei′ ∧ ej′ . If n = 3
we set E1 = e2∧e3 , E2 = e3∧e1 , E3 = e1∧e2 and we get Aα·G = (detG)−1GAαG

t .
Then we have

L3 = {[α] ∈ P(Hom(C3 ∧ C3, C3)) : cof Aα ∈ S3}

where for any A = (aij) ∈ Mn cof A is the matrix whose (i, j) entry is the
algebraic complement of aji .
We recall that, up to isomorphisms, we have the following non-abelian Lie algebras
of dimension 3 over C ([3]), which may also be obtained as in the proof of theorem
4.1:

la : [e1, e2] = e2, [e1, e3] = ae3, [e2, e3] = 0, a ∈ C,
n3 : [e1, e2] = [e1, e3] = 0, [e2, e3] = e1,

r3 : [e1, e2] = e2, [e1, e3] = e2 + e3, [e2, e3] = 0,

sl(2,C) : [e1, e2] = e3, [e1, e3] = −2e1, [e2, e3] = 2e2,

where the only pairs of isomorphic Lie algebras are {la,la−1} , a 6= 0, a−1 , and
n3 , the Heisenberg Lie algebra, is the only nilpotent one. Hence the following
subvarieties:

W1 = {[α] ∈ L3 : Aα ∈ S3}
= {[α] ∈ L3 : for any v ∈ Lα tr ad v = 0},

which is isomorphic to P(S3), and

W2 = {[α] ∈ L3 : rankAα ≤ 2}
= {[α] ∈ L3 : Lα has an abelian ideal of dimension 2},

that is the subvariety of the solvable Lie algebras, are the irreducible components
of L3 .
For any n, n′ ∈ N let Gn′,n be the grassmannian of all the subspaces of Cn of
dimension n′ .

3. The variety of the Lie algebras of dimension 3

We identify α with Aα and we set A = (aij) for any A ∈M3 .
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Lemma 3.1. We have W2 = {[A] ∈ P(M3) : dim(kerA ∩ kerAt) ≥ 1}.

Proof. Since both subsets are stable with respect to the action of GL(3, C)
it is sufficient to show that if A is such that aj1 = 0, j = 1, 2, 3, the condition
cof A ∈ S3 is equivalent to the condition dim(kerA ∩ kerAt) ≥ 1. But in this
case both these conditions are equivalent to the following one: rankA ≤ 1 or
a1j = 0, j = 2, 3; hence we get the claim. The result also follows from the
classification of the Lie algebras of dimension 3 over C .

Let

W ′2 = {(H, [A]) ∈ P2(C)× P(M3) : H ⊆ kerA ∩ kerAt}

and let π , π′ be the canonical projections of W ′2 onto P2(C) and W2 respectively.

Proposition 3.2. W2 is irreducible, dimW2 = 5 and π′ is a resolution of
singularities of W2 . The set of the singular points of W2 is Z = {[A] ∈ P(M3) :
dim(kerA ∩ kerAt) = 2}, that is the orbit of n3 , and dimZ = 2.

Proof. For i = 1, 2, 3 let Ui be the open subset of P2(C) given by the condition
that the i-th coordinate doesn’t vanish and let Fi be the subset of P(M3) of all
[A] such that the i-th row and column of A vanish. Let Gi ∈ GL(3, C) be such
that Gi(ei) ∈ 〈ei〉 and let G1

i , G
2
i , G

3
i be the columns of Gi . Let φi : Ui →

GL(3, C) be such that for any H = 〈(x1, x2, x3)〉 ∈ Ui the i-th column of φi(H) is
Gi
i−
∑

j 6=i xj(xi)
−1Gj

i , the others are equal to those of Gi ; then φi(H)(H) = 〈ei〉 . If

Ai = π−1(Ui) the map (H, [A]) 7→ (H, [(φi(H)−1)tAφi(H)−1]) from Ai to Ui×Fi
is an isomorphism. Hence W ′2 , with the map π , is a vector bundle on P2(C) with
fibers isomorphic to P(M2).
The map ([A]) 7→ (kerA ∩ kerAt, [A]) from W2 to W ′2 is regular except in the
points of Z , where the fibers of π′ have dimension 1, and is a birational inverse
of π′ . Let Z ′ = {(H, [A]) ∈ G2,3 × P(M3) : H ⊆ kerA ∩ kerAt}. If π1 and π2

are the canonical projections of Z ′ on G2,3 and Z respectively, π2 is a birational
morphism and the fibers of π1 have only one point. Hence Z ′ and Z are irreducible
of dimension 2 and (π′)−1(Z) is irreducible of dimension 3. Then by Theorem 2
of chap. II, §4 of [10] we get the claim.

Corollary 3.3. The set of the singular points of L3 is W1 ∩W2 , that is the
union of the orbits of n3 and l−1 .

For any [α] ∈ Ln the tangent space in [α] to Ln is P(Vα), where Vα is the vector
space of 2-cocycles in the cohomology of Lα as Lα -module ([5]). By the equations
of the space of 2-cocycles of a Lie algebra we have found that the dimensions of
the tangent spaces to L3 in n3 and l−1 are 7 and 6 respectively.

4. Classification of the Lie algebras of dimension 4 over C

For any (β, γ) ∈ C2 let [[β, γ]] and [[β]] be the orbit in P
2(C) of [1, β, γ] and

[1, β, 1−β] respectively with respect to the action of the group of the permutations
of the coordinates of P2(C).
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Theorem 4.1. We have [α] ∈ L4 if and only if Lα is isomorphic to one and
only one of the following Lie algebras (where we omit [ei, ej], i, j ∈ {1, . . . , 4}, if
it is 0):

g[[β,γ]] : [e4, e1] = e1, [e4, e2] = βe2, [e4, e3] = γe3, β, γ ∈ C;
g[[β]] : [e2, e3] = e1, [e4, e1] = e1, [e4, e2] = βe2,

[e4, e3] = (1− β)e3, β ∈ C;
gc : [e4, e1] = ce1, [e4, e2] = e2, [e4, e3] = e2 + e3, c ∈ C;
a1 : [e2, e3] = e1, [e4, e1] = 2e1, [e4, e2] = e2, [e4, e3] = e2 + e3;
a2 : [e4, e1] = e1, [e4, e2] = e1 + e2, [e4, e3] = e2 + e3;
a3 : [e3, e2] = e2, [e4, e1] = e1;
a4 : [e4, e1] = e1, [e4, e2] = −e2, [e1, e2] = e4;
a5 : [e1, e2] = e3, [e4, e1] = e1, [e4, e2] = −e2;
a6 : [e4, e1] = e1, [e4, e2] = e3;
a7 : [e2, e3] = e1;
a8 : [e2, e3] = e1, [e4, e3] = e2.

Proof. Let L be a Lie algebra over C of dimension 4. Let H be a Cartan
subalgebra of L , h ∈ H be such that H = L0(adh) = {v ∈ L : ∃ n ∈ N :
(adh)nv = 0} and adh , if not nilpotent, has the eigenvalue 1, H ′ be a subspace
of L such that H ⊕H ′ = L, [h,H ′] = H ′ .
Let dimH = 1. Then H ′ = [L,L] . Let {x, y, z} be a basis of H ′ such that
the matrix of adH′ h with respect to it is in Jordan canonical form. From the
Jacobi’s relations between h and the pairs of elements of {x, y, z} , when adH′ h
is represented by a diagonal matrix with diagonal entries 1, β, γ respectively,
β, γ 6= 0, we get

(β + 1)[x, y] = [h, [x, y]], (γ + 1)[x, z] = [h, [x, z]], (β + γ)[y, z] = [h, [y, z]],

hence either H ′ is abelian or, permuting x, y, z and multiplying them by a scalar
if necessary, β + γ = 1 and H ′ is a Heisenberg Lie algebra with x = [y, z] . We
get the Lie algebras g[[β,γ]] , β, γ 6= 0, and g[[β]] , β 6= 0, 1, respectively. If adH′ h
is represented by two Jordan blocks, the first one of order 2 and eigenvalue 1, the
second one of eigenvalue c 6= 0, we get

(c+ 1)[z, x] = [h, [z, x]], [z, x] + (c+ 1)[z, y] = [h, [z, y]], 2[x, y] = [h, [x, y]],

hence [z, x] = [z, y] = 0 and either H ′ is abelian or c = 2 and H ′ is a Heisenberg
Lie algebra, with (multiplying x and y by a scalar) [x, y] = z . We get the Lie
algebras gc , c 6= 0, and a1 respectively. If adH′ h is represented by only one
Jordan block we get

2[x, y] = [h, [x, y]], 2[x, z] = [h, [x, z]]− [x, y], 2[y, z] = [h, [y, z]]− [x, z],

hence H ′ is abelian and we get the Lie algebra a2 .
Let dimH = 2. Then, since H is abelian, adLH is abelian and H ′ = [H,H ′] =
[H,L] . Let {x, y} be a basis of H ′ such that the matrix of adH′ h with respect to
{x, y} is in Jordan canonical form. We have to require

[h, [x, y]] = [x, [h, y]] + [y, [x, h]] = (tr adH′ h)[x, y],
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hence either [x, y] = 0 or for any v ∈ H adH′ v has the eigenvalues 1,−1 and
dim adH ≤ 1. If dim adH = 2 and there exist in H elements v such that adH′ v
has two different eigenvalues, we may choose w, z ∈ H such that with respect
to the basis {x, y} adH′ w and adH′ z are represented by two diagonal matrices
with diagonal entries 1, 0 and 0, 1 respectively, hence we get the Lie algebra a3 .
If dim adH = 2 but for any v ∈ H adH′ v has only one eigenvalue we may
choose h, z ∈ H such that with respect to the basis {x, y} adH′ h and adH′ z are
represented respectively by the identity matrix and by the nilpotent Jordan block
of order 2, hence we get the Lie algebra g [[0]] . If dim adH = 1 let z ∈ H \ {0} be
such that ad z = 0. If the Jordan form of adH′ h is diagonal and [x, y] = 0 we get
the Lie algebras g [[0,γ]], γ ∈ C \ {0}. If the Jordan form of adH′ h is diagonal and
[x, y] 6∈ 〈z〉 we may assume h = [x, y] and we get the Lie algebra a4 . If the Jordan
form of adH′ h is diagonal and [x, y] ∈ 〈z〉 \ {0} we may assume [x, y] = z getting
the Lie algebra a5 . If the Jordan form of adH′ h has only one Jordan block we get
the Lie algebra g0 .
Let dimH = 3. If H is abelian, since dim adH = 1 there exist y, z ∈ H linearly
independent such that ad y = ad z = 0, hence we get the Lie algebra g [[0,0]] . If H
is a Heisenberg Lie algebra, since the subset of all v ∈ H such that H = L0(ad v)
is open in H , we may assume H = 〈h, y, z〉 with [h, y] = z, [h, x] = x, x 6∈ H.
Since adh and ad z commute, [z, x] ∈ 〈x〉 . Since ad y and ad z commute, if
we had [z, x] 6= 0 we would have [y, x] ∈ 〈x〉 and then, since adH y and adH h
commute, ad y and adh would commute; but this holds if and only if ad z = 0.
Hence [z, x] = 0 and [y, x] ∈ 〈x〉 . Since dim[H, x] = 1 we may choose y such that
[y, x] = 0; we get the Lie algebra a6 .
Let dimH = 4, that is L nilpotent. If L isn’t abelian there exists x 6= 0 such
that x ∈ Z(L)∩ [L,L] . If x = [y, z] , since H ′′ = 〈x, y, z〉 is a nilpotent subalgebra,
dimH ′′ = 3 and H ′′ is a Heisenberg Lie algebra. Since L is nilpotent [h,H ′′] ⊆ H ′′

for any h ∈ L . Since [h, x] = 0 it is possible to choose h, x, y, z such that h 6∈ H ′′ ,
the matrix of adH′′ h with respect to the basis {x, y, z} is in Jordan canonical form
and [h, y] = 0 (in fact if [h, y] = x then [h + z, y] = 0). We get the Lie algebras
a7 and a8 .

5. The variety of the Lie algebras of dimension 4

For any Lie algebra L let Z(L) be the center of L .

Proposition 5.1. L4 is the union of the following closed subsets:

C1 = {[α] ∈ L4 : Lα has an abelian ideal of dimension 3},
C2 = {[α] ∈ L4 : Lα has a nilpotent ideal Jα of dimension 3 such

that 1
2

tr ad v is eigenvalue of adJα v for any v ∈ Lα},
C3 = {[α] ∈ L4 : dim[Lα, Lα] ≤ 2, ad[Lα,Lα] Lα is abelian},
C4 = {[α] ∈ L4 : Z(Lα) 6= {0}, tr ad v = 0 for any v ∈ Lα}

and Ci 6⊆
⋃
j 6=i Cj for i, j = 1, . . . , 4.
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Proof. Since by Theorem 4.1 each one of these subsets is the union of the orbits
of the following Lie algebras:

C1 : g[[β,γ]], gc, a2, a6, a7, a8

C2 : g[[γ+1,γ]], g[[β]], g0,g2, a1, a5, a7, a8

C3 : g[[0,γ]], g[[0]], g0, a3, a6, a7, a8

C4 : g[[0,−1]], a4, a5, a7, a8

where β, γ, c ∈ C , we get the claim.

For any i = 1, . . . , 4 let Ai = {J ∈ G3,4 : ei 6∈ J} and let {i1, i2, i3} =
{1, . . . , 4} \ {i} , i1 < i2 < i3 . If J ∈ Ai let J = 〈eJi1 , e

J
i2
, eJi3〉 , where, with

respect to the basis {ei1 , ei2 , ei3 , ei} , for j = 1, 2, 3 the j -th coordinate of eJij is 1

and for k ∈ {1, 2, 3} , k 6= j the k -th coordinate of eJij is 0. Let

C ′1 = {(J, [α]) ∈ G3,4 × C1 : J is an abelian ideal of Lα}

and let p1, p
′
1 be the canonical projections of C ′1 onto G3,4 and C1 respectively.

Proposition 5.2. C1 is irreducible, dim C1 = 11 and p′1 is a resolution of
singularities of C1 . The set of the singular points of C1 is Z1 = {[α] ∈ C1 : Lα is
nilpotent and dim[Lα, Lα] ≤ 1}, that is the orbit of a7 , and dimZ1 = 5.

Proof. Let A′i := (p1)−1(Ai), i = 1, . . . , 4. The map ξi : Ai×P(M3) → A′i
defined by ξi(J, [A]) = (J, [α]) where [α] is such that in Lα adJ ei is represented
by A with respect to the basis {eJi1 , e

J
i2
, eJi3} is an isomorphism, hence C ′1 , with the

map p1 , is a vector bundle and dim C ′1 = 11.
The map p′1 is birational and (p′1)−1 is regular in the open subset of C1 of all [α]
such that Lα is not nilpotent or there exists x ∈ Lα such that dim[x, Lα] ≥ 2 (we
set (p′1)−1([α]) = (J, [α]) where J is the subspace of all the nilpotent elements x
of Lα such that dim[x, Lα] ≤ 1). It isn’t regular in the points of Z1 = {[α] ∈ C1 :
Lα is nilpotent and dim[Lα, Lα] ≤ 1} , that is the orbit of a7 , since the fibers of
p′1 on the elements of Z1 have dimension 1. The variety Z ′1 := (p′1)−1(Z1), with
the map p1|Z′1 , is a bundle on G3,4 whose fibers are isomorphic to P(N ′3), where
N ′3 is the variety of all the nilpotent 3 × 3 matrices over C of rank less or equal
1; hence it is irreducible of dimension 6, which shows the claim.

Let
C ′2 = {(J, [α]) ∈ G3,4 × C2 : J is a nilpotent ideal of Lα and

for any v ∈ Lα 1
2

tr ad v is eigenvalue of adJ v}.

Lemma 5.3. If (J, [α]) ∈ C ′2 and v ∈ Lα then [J, J ] is contained in the
eigenspace of adJ v corresponding to 1

2
tr ad v .

Proof. Let y 6= 0 belong to the previous eigenspace but [J, J ] 6⊆ 〈y〉 . Then we
may choose a basis {y, x, z} of J such that [J, J ] ⊆ 〈x〉 . Since [x, v] ∈ 〈x〉 (in fact
0 = [x, [y, v]] = [y, [x, v]] , hence [x, v] ∈ 〈x, y〉 , in the same way [x, v] ∈ 〈x, z〉),
there exist a, b, c, d ∈ C such that [v, y] = ay , [v, x] = bx , [v, z] = (a−b)z+cx+dy ,
hence by the condition [y, [z, v]] = [z, [y, v]] + [v, [z, y]] we get a = b .
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Let
S ′ =

{
(H, [(A,B)]) ∈ P2(C)× P(S3 ×M3) : ImA ⊆ H,
H ⊆ ker

(
B −

(
1
2

trB
)
I3

)}
;

let S be the image of the canonical projection of S ′ on P(S3 ×M3) and let s, s′

be the canonical projections of S ′ on P2(C) and S respectively.

Lemma 5.4. S is irreducible, dimS = 8 and s′ is a resolution of singularities
of S . The set of the singular points of S is

Ŝ =
{

[(A,B)] ∈ S : A = 0, dim ker
(
B −

(
1
2

trB
)
I3

)
≥ 2
}
,

which is irreducible of dimension 4.

Proof. The variety S ′ with the map s is a vector bundle on P
2(C) with

fibers of dimension 6. The map s′ is birational and (s′)−1 is regular in the open
subset of all [(A,B)] such that A 6= 0 or dim ker

(
B −

(
1
2

trB
)
I3

)
= 1. It isn’t

regular in the points of Ŝ , where the generic fiber of s′ has dimension 1, and

Ŝ
′
:= (s′)−1(Ŝ) is irreducible of dimension 5 (the fiber of s|Ŝ′ in H is birational to{

(V, [B]) ∈ G2,3 × P(M3) : H ⊂ V ⊆ ker
(
B −

(
1
2

trB
)
I3

)}
, hence has dimension

3), which shows the claim.

Let p2 and p′2 be the canonical projections of C ′2 on G3,4 and C2 respectively.

Lemma 5.5. C ′2 , with the map p2 , is a bundle on G3,4 with fibers isomorphic
to S .

Proof. Let Ui = (p2)−1(Ai), i = 1, . . . , 4. For any (J, [α]) ∈ C ′2 let αJ ∈
Hom(J ∧ J, J) be defined by αJ(v ∧ v′) = α|J∧J(v ∧ v′) for any v, v′ ∈ J . The
map νi : Ai×S → Ui such that νi(J, [(A,B)]) = (J, [α]) where α is such that the
matrix of αJ with respect to the bases {eJi2∧e

J
i3
, eJi3∧e

J
i1
, eJi1∧e

J
i2
} and {eJi1 , e

J
i2
, eJi3}

is A and in Lα the matrix of adJ ei with respect to the basis {eJi1 , e
J
i2
, eJi3} is B is

an isomorphism, which shows the claim.

For any i = 1, . . . , 4 and J ∈ Ai let BJ
i = {eJi1 , e

J
i2
, eJi3 , ei} . Let J ∈ Ai ∩Ai′ and

let GJ be the matrix whose columns are the coordinates of the elements of BJ
i

with respect to BJ
i′ . Let δ : S3 ×M3 → M4×6 be the isomorphism such that, by

regarding δ((A,B)) as a block matrix, we have

δ((A,B)) =

(
A B
0 0

)
.

Then, by using the notations of the proof of Lemma 5.5, we have that the auto-
morphism (νi′)

−1 ◦ νi of (Ai ∩Ai′)× S is given by

(νi′)
−1 ◦ νi(J, [(A,B)]) = (J, [δ−1(GJδ((A,B))ĜJ)]).

Let C ′′2 be the vector bundle on G3,4 which is the union of open subsets U ′i ,
i = 1, . . . , 4, with isomorphisms ν ′i : Ai×S ′ → U ′i such that

(ν ′i′)
−1 ◦ ν ′i(J, (H, [(A,B)])) = (J, (HJ , [δ

−1(GJδ((A,B))ĜJ)]))

where if H = [h1, h2, h3] then HJ = [hJ1 , h
J
2 , h

J
3 ] is such that (hJ1 , h

J
2 , h

J
3 , 0) =

G−1
J (h1, h2, h3, 0). Let p′′ : C ′′2 → C ′2 be the morphism such that p′′(U ′i) = Ui and,

if p′′i is p′′|U ′i as map onto Ui , we have νi ◦ (idAi ×s′) = p′′i ◦ν ′i for any i = 1, . . . , 4.
Then p′′ is a resolution of singularities of C ′2 .
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Proposition 5.6. C2 is irreducible, dim C2 = 11 and p′2 ◦ p′′ is a resolution of
singularities of C2 . The set of the singular points of C2 is Z2 = Ẑ2 ∪ Z̃2 where

Ẑ2 = {[α] ∈ C2 : Lα is nilpotent} and Z̃2 = {[α] ∈ C2 : Lα has an abelian ideal of
dimension 3 and for any v ∈ Lα dim Im(ad v− ( 1

2
tr ad v) id) ≤ 1}. We have that

Ẑ2 is irreducible of dimension 8 and is the union of the orbits of a7 and a8 ; Z̃2

is irreducible of dimension 7 and is the union of the orbits of g[[0,1]] , g0 and a7 .

Proof. The map p′2 is birational and the subset of C2 in which (p′2)−1 isn’t
regular is Ẑ2 , since (p′2)−1([α]) = (J, [α]) where J is the subspace of Lα of all
the nilpotent elements and the generic fiber of p′2 on Ẑ2 has dimension 1. Let

Ẑ
′
2 := (p′2)−1(Ẑ2). If we set S = {[(A,B)] ∈ S : B is nilpotent} we have

that S is irreducible and dimS = 6 (in fact, by Lemma 5.4, (s′)−1(S) has these

properties). Since the fibers of p2|Ẑ′2 are isomorphic to S we get that Ẑ
′
2 is

irreducible of dimension 9 and Ẑ2 is irreducible of dimension 8, hence by Theorem
2 of chap. II, §4 of [10] the points of Ẑ2 are singular for C2 . By Lemma 5.4 and
Lemma 5.5 Z̃2 is irreducible of dimension 7 and the points of Z̃2 \ Ẑ2 are singular
for C2 , hence we get the claim.

For any n ∈ N let Cn = {(A,B) ∈ Mn ×Mn : [A,B] = 0} . If (x0, . . . , x7) are
coordinates of C8 , we set

A =

(
x0 x2

x4 x0 + x6

)
, B =

(
x1 x3

x5 x1 + x7

)
and we regard C2 as a subvariety of C8 . Let V ′ = {(x0, . . . , x7) ∈ C2 :
(x2, . . . , x7) 6= (0, . . . , 0)} ; then the map u : V ′ → P

5(C) such that
u((x0, . . . , x7)) = [x2, . . . , x7] is a morphism. Let V = u(V ′), let:

W = {((x0, . . . , x7), [z2, . . . , z7]) ∈ C2 × V : xizj = zixj, i, j = 2, . . . , 7}

and let r be the canonical projection of W on C2 .

Lemma 5.7. C2 is irreducible, dimC2 = 6 and

Y = {(A,B) ∈ C2 : A,B ∈ 〈I2〉}
is the set of the singular points of C2 . The variety W is irreducible and r is a
resolution of singularities of C2 .

Proof. For any n ∈ N Cn is irreducible of dimension n2 +n ([7], [4]). If X =
(xij), Y = (yij) are the coordinates of Mn ×Mn and (A,B) ∈ Cn then [A,X] +
[B, Y ] = 0 are equations of the tangent space to Cn in (A,B). Hence the points
(A,B) such that A or B is regular, that is has centralizer of minimum dimension
n , are non singular for Cn , which shows the first claim. Since V and C2 have the
same equations, V is an irreducible nonsingular variety of dimension 3. The map
r is birational, since for any (x0, . . . , x7) ∈ C2 such that (x2, . . . , x7) 6= (0, . . . , 0)
we may set r−1((x0, . . . , x7)) = ((x0, . . . , x7), [x2, . . . , x7]); if (x2, . . . , x7) =
(0, . . . , 0) we have r−1({(x0, . . . , x7)}) = {(x0, . . . , x7)} × V . Since for any
x0, x1, t ∈ C and [z2, . . . , z7] ∈ V we have that ((x0, x1, tz2, . . . , tz7), [z2, . . . , z7]) ∈
W , W is irreducible. Since V has the same equations as C2 the tangent space to

W in a point such that (x2, . . . , x7) = (0, . . . , 0) has the same dimension as in a
point of W \r−1(Y), hence we get the claim.
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Let
G ′ = {([y1, y2, x0, . . . , x7], [z2, . . . , z7]) ∈ P9(C)× P5(C) :

: ((x0, . . . , x7), [z2, . . . , z7]) ∈ W};

let G be the image of the canonical projection of G ′ onto P9(C) and let r′ be the
canonical projection of G ′ on G .

Corollary 5.8. The map r′ is a resolution of singularities of G .

Let

C ′3 = {(W, [α]) ∈ G2,4 × C3 : [Lα, Lα] ⊆ W, adW Lα is abelian},

and let p3, p
′
3 be the canonical projections of C ′3 on G2,4 and C3 respectively.

For any i, j ∈ {1, . . . , 4}, i < j let Aij = {W ∈ G2,4 : W ∩ 〈ei, ej〉 = {0}} . Let
{i0, j0} = {1, . . . , 4} \ {i, j} , i0 < j0 ; if W ∈ Aij let W = 〈eWi0 , e

W
j0
〉 where the

first two coordinates of eWi0 and eWj0 with respect to the basis {ei0 , ej0 , ei, ej} are
1, 0 and 0, 1 respectively.

Lemma 5.9. C ′3 with the map p3 is a bundle on G2,4 with fibers isomorphic to G .

Proof. Let Uij = (p3)−1(Aij), i, j ∈ {1, . . . , 4}, i < j . The map ηij :

Aij ×G → Uij defined by ηij(W, [(y1, y2, A,B)]) = (W, [α]) where α is such that
in Lα [eiej] = y1e

W
i0

+ y2e
W
j0

and adW ei, adW ej are represented, with respect to
the basis {eWi0 , e

W
j0
} , respectively by A and B is an isomorphism, which shows the

claim.

For any i, j ∈ {1, . . . , 4} , i < j , and W ∈ Aij let BW
ij = {eWi0 , e

W
j0
, ei, ej} . Let

W ∈ Aij ∩Ai′j′ and let GW be the matrix whose columns are the coordinates of
the elements of BW

ij with respect to BW
i′j′ . Let ζ : C2×M2×M2 →M4×6 be the

isomorphism such that, by regarding ζ((y1, y2, A,B)) as a block matrix, we have:

ζ((y1, y2, A,B)) =

(
0 Y A B
0 0 0 0

)
, Y =

(
y1

y2

)
.

Then, by using the notations of the proof of Lemma 5.9, we have that the auto-
morphism (ηi′j′)

−1 ◦ ηij of (Aij ∩Ai′j′)× G is given by

(ηi′j′)
−1 ◦ ηij (W, [y1, y2, x0, . . . , x7]) =

= (W, [ζ−1(GW ζ((y1, y2, x0, . . . , x7))ĜW )]).

Let u : C2×V ′ → V be defined by u((y1, y2, x0, . . . , x7)) = [x2, . . . , x7] . Let C ′′3 be
the vector bundle on G2,4 which is the union of open subsets U ′ij , i, j ∈ {1, . . . , 4} ,
i < j , with isomorphisms η′ij : Aij ×G ′ → U ′ij , such that

(η′i′j′)
−1 ◦ η′ij (W, ([y1, y2, x0, . . . , x7], [z2, . . . , z7])) =

= (W, ([ζ−1(GW ζ((y1, y2, x0, . . . , x7))ĜW )],

u ◦ ζ−1(GW ζ((0, . . . , 0, z2, . . . , z7))ĜW ))

and let q′′ : C ′′3 → C ′3 be the morphism such that q′′(U ′ij) = Uij and, if q′′ij is q′′|U ′ij
as map onto Uij , we have ηij ◦(idAij ×r′) = q′′ij ◦η′ij for any i, j ∈ {1, . . . , 4}, i < j .
Then q′′ is a resolution of singularities of C ′3 .
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Proposition 5.10. C3 is irreducible, dim C3 = 11 and p′3 ◦ q′′ is a resolution
of singularities of C3 . The set of the singular points of C3 is Z3 = {[α] ∈ C3 :
ad[Lα,Lα] Lα ⊆ 〈id〉}, that is the union of the orbits of g[[0,0]] , g[[0,1]] and a7 , which
is irreducible of dimension 7.

Proof. The map p′3 is birational and the subset of C3 in which (p′3)−1 isn’t
regular is Ẑ3 := {[α] ∈ C3 : dim[Lα, Lα] < 2} (since (p′3)−1([α]) = ([Lα, Lα], [α])
and the generic fiber of p′3 on Ẑ3 has dimension 2). By Theorem 4.1 we have

Ẑ3 ⊂ Z3 and by Lemma 5.7 and Lemma 5.9 the points of Z3 \Ẑ3 are singular for

C3 . If Z ′3 := (p′3)−1(Z3), the fibers of p3|Z′3 are isomorphic to P3(C), hence Z3

is irreducible of dimension 7. Since the subset of the singular points is closed this
shows the claim.

Let

C ′4 = {(T, [α]) ∈ P3(C)× C4 : T ⊆ Z(Lα)}

and let p′4 be the canonical projections of C ′4 on C4 .

Proposition 5.11. C4 is irreducible, dim C4 = 11 and p′4 is a resolution of
singularities of C4 . The set of the singular points of C4 is Z4 = {[α] ∈ C4 :
dimZ(Lα) ≥ 2}, that is the orbit of a7 .

Proof. Let C ′′4 = {(J, T, [α]) ∈ G3,4 × C ′4 : J is an ideal of Lα} and let q1, q2

be the canonical projections of C ′′4 on G3,4 × P3(C) and on C ′4 respectively. If
(J, T ) ∈ G3,4 × P3(C) is such that T 6⊆ J the fiber of q1 in (J, T ) is isomorphic
to P(S3). If (J, T ) ∈ G3,4 × P3(C) is such that T ⊂ J then J is a nilpotent
ideal such that [J, J ] ⊂ T for any Lα such that (J, T, [α]) ∈ C ′′4 , hence the fiber of
q1 in (J, T ) is also a projective subspace of dimension 5. This proves that C ′4 is
irreducible and dim C ′4 = 11, since q2 is birational ((q2)−1 is regular in the open
subset of all the elements (T, [α]) such that dim[Lα, Lα] = 3).
For any i ∈ {1, . . . , 4} let Ai = {T ∈ P3(C) : T ∩ 〈ei1 , ei2 , ei3〉 = {0}}; for any
T ∈ Ai we set T = 〈eT 〉 where the first coordinate of eT with respect to the basis
{ei, ei1 , ei2 , ei3} is 1. Let

U i = {(T, [α]) ∈ C ′4 : T ∈ Ai, α(ei1 ∧ ei3) 6= 0},
U ′′ = {[x1, . . . , x8] ∈ P7(C) : (x1, . . . , x4) 6= (0, . . . , 0)}.

The map ψ : Ai×U ′′ → U i defined by ψ(T, [x1, . . . , x8]) = (T, [α]) where α is
such that α(ei1∧ei2) = x5e

T+x1ei2 +x6ei3 , α(ei1∧ei3) = x2e
T+x3ei1 +x4ei2−x1ei3 ,

α(ei2 ∧ ei3) = x7e
T + x8ei1 − x3ei2 is an isomorphism, hence C ′4 is nonsingular.

The map p′4 is birational and the subset of C4 in which (p′4)−1 isn’t regular is

Z4 = {[α] ∈ C4 : dimZ(Lα) ≥ 2} , that is the orbit of a7 , where the fibers of
p′4 have dimension 1. By Proposition 5.2 (p′4)−1(Z4) is irreducible of dimension 6,
which shows the claim.

Corollary 5.12. The varieties Ci , i = 1, . . . , 4, are the irreducible components
of L4 and the set of the singular points of L4 is

⋃
i6=j Ci ∩Cj , i, j = 1, . . . , 4, that

is the union of the orbits of the following Lie algebras: g[[0,γ]], γ ∈ C , g[[γ+1,γ]], γ ∈
C , g[[0]] , gc, c = 0, 2, a5 , a6 , a7 , a8 .
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By the equations of the space of 2-cocycles of a Lie algebra we have found that
the dimension of the tangent space to L4 in g [[β,γ]] , β = 0 or β = γ + 1,
[[β, γ]] 6= [[0, 1]], [[0,−1]], [[0, 0]], g [[0]] , gc , c = 0, 2, a5 , a6 is 12. It is 13 in
g [[0,1]] , g [[0,−1]] , g [[0,0]] . In a7 and a8 it is 18 and 14 respectively.
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