Resolutions of Singularities of Varieties of Lie Algebras of Dimensions 3 and 4

Roberta Basili
Communicated by Karl H. Hofmann

Abstract

We will determine the singular points and a resolution of singularities of each irreducible component of the varieties of the Lie algebras of dimension 3 and 4 over \mathbb{C}.

1. Introduction

Let \mathcal{L}_{n} be the projective variety of the Lie algebras of dimension n over \mathbb{C}. In some recent papers many results on the irreducible components of \mathcal{L}_{n} were found for small values of n. In [2] Carles and Diakité determined the open orbits and described the irreducible components of \mathcal{L}_{n} as orbit closures for $n \leq 7$. In [6] Kirillov and Neretin determined the number of irreducible components of \mathcal{L}_{n} and their dimension for $n \leq 6$; they also determined representatives of the generic orbits of any component of \mathcal{L}_{4}. In [1] Burde and Steinhoff gave a classification of any orbit closure of \mathcal{L}_{4}. The variety \mathcal{L}_{3} has two irreducible components and one of them is a linear variety; the variety \mathcal{L}_{4} has four irreducible components.
In this paper we will determine the singular points and find a resolution of singularities of each irreducible component of \mathcal{L}_{3} and \mathcal{L}_{4}. By using the classification of the Lie algebras of dimension 3 and 4 over \mathbb{C}, we will describe each irreducible component by giving algebraic equations of it. The first classification is well known (see [3]); the second one may be deduced from [8] and from [9] (see [1]); nevertheless we will give a short proof of it. Each resolution of singularities is a subvariety of the product of the irreducible component with a suitable grassmannian or is a resolution of singularities of a variety of this type. We observe that the results of this paper are also true over any algebraically closed field K such that char $K \neq 2$.

2. Preliminaries

For any $n \in \mathbb{N}$ let \mathcal{L}_{n} be the subvariety of the projective space

$$
\mathbb{P}\left(\operatorname{Hom}\left(\mathbb{C}^{n} \wedge \mathbb{C}^{n}, \mathbb{C}^{n}\right)\right)
$$

of all $[\alpha]$ such that $\alpha(x \wedge \alpha(y \wedge z))+\alpha(y \wedge \alpha(z \wedge x))+\alpha(z \wedge \alpha(x \wedge y))=0$ for any $x, y, z \in \mathbb{C}^{n}$, which we regard as the variety of all the Lie algebras over \mathbb{C} of dimension n. For any $[\alpha] \in \mathcal{L}_{n}$ let L_{α} be the Lie algebra defined by α. The group $\operatorname{GL}(n, \mathbb{C})$ acts on $\operatorname{Hom}\left(\mathbb{C}^{n} \wedge \mathbb{C}^{n}, \mathbb{C}^{n}\right)$ by the relation $\alpha \cdot G(G x \wedge G y)=G(\alpha(x \wedge y))$, for any $G \in \operatorname{GL}(n, \mathbb{C}), \alpha \in \operatorname{Hom}\left(\mathbb{C}^{n} \wedge \mathbb{C}^{n}, \mathbb{C}^{n}\right), x, y \in \mathbb{C}^{n}$ and this induces an action of $\operatorname{GL}(n, \mathbb{C})$ on \mathcal{L}_{n}; the orbits of this action are the classes of isomorphic Lie algebras. For any $n, n^{\prime} \in \mathbb{N}$ let $M_{n \times n^{\prime}}, M_{n}$ and S_{n} be the vector spaces of all $n \times n^{\prime}$ matrices, of all $n \times n$ matrices and of all $n \times n$ symmetric matrices respectively over \mathbb{C}. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the canonical basis of \mathbb{C}^{n} and let us order the set $\left\{e_{i} \wedge e_{j}: i, j=1, \ldots, n, i<j\right\}$, writing it as $\left\{E_{1}, \ldots, E_{m}\right\}$. For any $\alpha \in \operatorname{Hom}\left(\mathbb{C}^{n} \wedge \mathbb{C}^{n}, \mathbb{C}^{n}\right)$ let $A_{\alpha} \in M_{n \times m}$ be the matrix of α with respect to the previous bases; then $A_{\alpha \cdot G}=G A_{\alpha} \widehat{G}$ where $\widehat{G} \in \operatorname{GL}(m, \mathbb{C})$ is the matrix whose (h, k) entry is the determinant of the 2×2 submatrix of G^{-1} obtained by choosing the rows i, j with $E_{h}=e_{i} \wedge e_{j}$ and the columns i^{\prime}, j^{\prime} with $E_{k}=e_{i^{\prime}} \wedge e_{j^{\prime}}$. If $n=3$ we set $E_{1}=e_{2} \wedge e_{3}, E_{2}=e_{3} \wedge e_{1}, E_{3}=e_{1} \wedge e_{2}$ and we get $A_{\alpha \cdot G}=(\operatorname{det} G)^{-1} G A_{\alpha} G^{t}$. Then we have

$$
\mathcal{L}_{3}=\left\{[\alpha] \in \mathbb{P}\left(\operatorname{Hom}\left(\mathbb{C}^{3} \wedge \mathbb{C}^{3}, \mathbb{C}^{3}\right)\right): \operatorname{cof} A_{\alpha} \in S_{3}\right\}
$$

where for any $A=\left(a_{i j}\right) \in M_{n}$ cof A is the matrix whose (i, j) entry is the algebraic complement of $a_{j i}$.
We recall that, up to isomorphisms, we have the following non-abelian Lie algebras of dimension 3 over $\mathbb{C}([3])$, which may also be obtained as in the proof of theorem 4.1:

$$
\begin{aligned}
\mathbf{l}_{a} & :\left[e_{1}, e_{2}\right]=e_{2},\left[e_{1}, e_{3}\right]=a e_{3},\left[e_{2}, e_{3}\right]=0, a \in \mathbb{C}, \\
\mathbf{n}_{3} & :\left[e_{1}, e_{2}\right]=\left[e_{1}, e_{3}\right]=0,\left[e_{2}, e_{3}\right]=e_{1}, \\
\mathbf{r}_{3} & :\left[e_{1}, e_{2}\right]=e_{2},\left[e_{1}, e_{3}\right]=e_{2}+e_{3},\left[e_{2}, e_{3}\right]=0, \\
\mathbf{s l}(2, \mathbb{C}) & :\left[e_{1}, e_{2}\right]=e_{3},\left[e_{1}, e_{3}\right]=-2 e_{1},\left[e_{2}, e_{3}\right]=2 e_{2},
\end{aligned}
$$

where the only pairs of isomorphic Lie algebras are $\left\{\mathbf{1}_{a}, \mathbf{1}_{a^{-1}}\right\}, a \neq 0, a^{-1}$, and \mathbf{n}_{3}, the Heisenberg Lie algebra, is the only nilpotent one. Hence the following subvarieties:

$$
\begin{aligned}
\mathcal{W}_{1} & =\left\{[\alpha] \in \mathcal{L}_{3}: A_{\alpha} \in S_{3}\right\} \\
& =\left\{[\alpha] \in \mathcal{L}_{3}: \text { for any } v \in L_{\alpha} \operatorname{tr} \operatorname{ad} v=0\right\},
\end{aligned}
$$

which is isomorphic to $\mathbb{P}\left(S_{3}\right)$, and

$$
\begin{aligned}
\mathcal{W}_{2} & =\left\{[\alpha] \in \mathcal{L}_{3}: \operatorname{rank} A_{\alpha} \leq 2\right\} \\
& =\left\{[\alpha] \in \mathcal{L}_{3}: L_{\alpha} \text { has an abelian ideal of dimension } 2\right\},
\end{aligned}
$$

that is the subvariety of the solvable Lie algebras, are the irreducible components of \mathcal{L}_{3}.
For any $n, n^{\prime} \in \mathbb{N}$ let $G_{n^{\prime}, n}$ be the grassmannian of all the subspaces of \mathbb{C}^{n} of dimension n^{\prime}.

3. The variety of the Lie algebras of dimension 3

We identify α with A_{α} and we set $A=\left(a_{i j}\right)$ for any $A \in M_{3}$.

Lemma 3.1. We have $\mathcal{W}_{2}=\left\{[A] \in \mathbb{P}\left(M_{3}\right): \operatorname{dim}\left(\operatorname{ker} A \cap \operatorname{ker} A^{t}\right) \geq 1\right\}$.
Proof. Since both subsets are stable with respect to the action of GL $(3, \mathbb{C})$ it is sufficient to show that if A is such that $a_{j 1}=0, j=1,2,3$, the condition $\operatorname{cof} A \in S_{3}$ is equivalent to the condition $\operatorname{dim}\left(\operatorname{ker} A \cap \operatorname{ker} A^{t}\right) \geq 1$. But in this case both these conditions are equivalent to the following one: $\operatorname{rank} A \leq 1$ or $a_{1 j}=0, j=2,3$; hence we get the claim. The result also follows from the classification of the Lie algebras of dimension 3 over \mathbb{C}.

Let

$$
\mathcal{W}_{2}^{\prime}=\left\{(H,[A]) \in \mathbb{P}^{2}(\mathbb{C}) \times \mathbb{P}\left(M_{3}\right): H \subseteq \operatorname{ker} A \cap \operatorname{ker} A^{t}\right\}
$$

and let π, π^{\prime} be the canonical projections of \mathcal{W}_{2}^{\prime} onto $\mathbb{P}^{2}(\mathbb{C})$ and \mathcal{W}_{2} respectively.
Proposition 3.2. $\quad \mathcal{W}_{2}$ is irreducible, $\operatorname{dim} \mathcal{W}_{2}=5$ and π^{\prime} is a resolution of singularities of \mathcal{W}_{2}. The set of the singular points of \mathcal{W}_{2} is $\mathcal{Z}=\left\{[A] \in \mathbb{P}\left(M_{3}\right)\right.$: $\left.\operatorname{dim}\left(\operatorname{ker} A \cap \operatorname{ker} A^{t}\right)=2\right\}$, that is the orbit of \mathbf{n}_{3}, and $\operatorname{dim} \mathcal{Z}=2$.

Proof. For $i=1,2,3$ let \mathcal{U}_{i} be the open subset of $\mathbb{P}^{2}(\mathbb{C})$ given by the condition that the i-th coordinate doesn't vanish and let \mathcal{F}_{i} be the subset of $\mathbb{P}\left(M_{3}\right)$ of all $[A]$ such that the i-th row and column of A vanish. Let $G_{i} \in \mathrm{GL}(3, \mathbb{C})$ be such that $G_{i}\left(e_{i}\right) \in\left\langle e_{i}\right\rangle$ and let $G_{i}^{1}, G_{i}^{2}, G_{i}^{3}$ be the columns of G_{i}. Let $\phi_{i}: \mathcal{U}_{i} \rightarrow$ $\operatorname{GL}(3, \mathbb{C})$ be such that for any $H=\left\langle\left(x_{1}, x_{2}, x_{3}\right)\right\rangle \in \mathcal{U}_{i}$ the i-th column of $\phi_{i}(H)$ is $G_{i}^{i}-\sum_{j \neq i} x_{j}\left(x_{i}\right)^{-1} G_{i}^{j}$, the others are equal to those of G_{i}; then $\phi_{i}(H)(H)=\left\langle e_{i}\right\rangle$. If $\mathcal{A}_{i}=\pi^{-1}\left(\mathcal{U}_{i}\right)$ the map $(H,[A]) \mapsto\left(H,\left[\left(\phi_{i}(H)^{-1}\right)^{t} A \phi_{i}(H)^{-1}\right]\right)$ from \mathcal{A}_{i} to $\mathcal{U}_{i} \times \mathcal{F}_{i}$ is an isomorphism. Hence \mathcal{W}_{2}^{\prime}, with the map π, is a vector bundle on $\mathbb{P}^{2}(\mathbb{C})$ with fibers isomorphic to $\mathbb{P}\left(M_{2}\right)$.
The map $([A]) \mapsto\left(\operatorname{ker} A \cap \operatorname{ker} A^{t},[A]\right)$ from \mathcal{W}_{2} to \mathcal{W}_{2}^{\prime} is regular except in the points of \mathcal{Z}, where the fibers of π^{\prime} have dimension 1 , and is a birational inverse of π^{\prime}. Let $\mathcal{Z}^{\prime}=\left\{(H,[A]) \in G_{2,3} \times \mathbb{P}\left(M_{3}\right): H \subseteq \operatorname{ker} A \cap \operatorname{ker} A^{t}\right\}$. If π_{1} and π_{2} are the canonical projections of \mathcal{Z}^{\prime} on $G_{2,3}$ and \mathcal{Z} respectively, π_{2} is a birational morphism and the fibers of π_{1} have only one point. Hence \mathcal{Z}^{\prime} and \mathcal{Z} are irreducible of dimension 2 and $\left(\pi^{\prime}\right)^{-1}(\mathcal{Z})$ is irreducible of dimension 3. Then by Theorem 2 of chap. II, $\S 4$ of [10] we get the claim.

Corollary 3.3. The set of the singular points of \mathcal{L}_{3} is $\mathcal{W}_{1} \cap \mathcal{W}_{2}$, that is the union of the orbits of \mathbf{n}_{3} and \mathbf{l}_{-1}.
For any $[\alpha] \in \mathcal{L}_{n}$ the tangent space in $[\alpha]$ to \mathcal{L}_{n} is $\mathbb{P}\left(V_{\alpha}\right)$, where V_{α} is the vector space of 2-cocycles in the cohomology of L_{α} as L_{α}-module ([5]). By the equations of the space of 2-cocycles of a Lie algebra we have found that the dimensions of the tangent spaces to \mathcal{L}_{3} in \mathbf{n}_{3} and \mathbf{l}_{-1} are 7 and 6 respectively.

4. Classification of the Lie algebras of dimension 4 over \mathbb{C}

For any $(\beta, \gamma) \in \mathbb{C}^{2}$ let $[[\beta, \gamma]]$ and $[[\beta]]$ be the orbit in $\mathbb{P}^{2}(\mathbb{C})$ of $[1, \beta, \gamma]$ and $[1, \beta, 1-\beta]$ respectively with respect to the action of the group of the permutations of the coordinates of $\mathbb{P}^{2}(\mathbb{C})$.

Theorem 4.1. We have $[\alpha] \in \mathcal{L}_{4}$ if and only if L_{α} is isomorphic to one and only one of the following Lie algebras (where we omit $\left[e_{i}, e_{j}\right], i, j \in\{1, \ldots, 4\}$, if it is 0):

$$
\begin{aligned}
\mathbf{g}_{[[\beta, \gamma]]} & : \\
\mathbf{g}_{[\beta \beta]]} & :\left[e_{4}, e_{1}\right]=e_{1}, \quad\left[e_{4}, e_{2}\right]=\beta e_{2}, \quad\left[e_{4}, e_{3}\right]=\gamma e_{3}, \beta, \gamma \in \mathbb{C} ; \\
& {\left[e_{4}, e_{3}\right]=(1-\beta) e_{1}, \quad\left[e_{4}, e_{3}\right]=e_{1}, \quad\left[e_{4}, e_{2}\right]=\beta e_{2}, } \\
\mathbf{g}_{c} & :\left[e_{4}, e_{1}\right]=c e_{1}, \quad\left[e_{4}, e_{2}\right]=e_{2}, \quad\left[e_{4}, e_{3}\right]=e_{2}+e_{3}, c \in \mathbb{C} ; \\
\mathbf{a}_{1} & :\left[e_{2}, e_{3}\right]=e_{1}, \quad\left[e_{4}, e_{1}\right]=2 e_{1}, \quad\left[e_{4}, e_{2}\right]=e_{2}, \quad\left[e_{4}, e_{3}\right]=e_{2}+e_{3} ; \\
\mathbf{a}_{2} & :\left[e_{4}, e_{1}\right]=e_{1}, \quad\left[e_{4}, e_{2}\right]=e_{1}+e_{2}, \quad\left[e_{4}, e_{3}\right]=e_{2}+e_{3} ; \\
\mathbf{a}_{3} & :\left[e_{3}, e_{2}\right]=e_{2}, \quad\left[e_{4}, e_{1}\right]=e_{1} ; \\
\mathbf{a}_{4}: & {\left[e_{4}, e_{1}\right]=e_{1}, \quad\left[e_{4}, e_{2}\right]=-e_{2}, \quad\left[e_{1}, e_{2}\right]=e_{4} ; } \\
\mathbf{a}_{5} & :\left[e_{1}, e_{2}\right]=e_{3}, \quad\left[e_{4}, e_{1}\right]=e_{1}, \quad\left[e_{4}, e_{2}\right]=-e_{2} ; \\
\mathbf{a}_{6} & :\left[e_{4}, e_{1}\right]=e_{1}, \quad\left[e_{4}, e_{2}\right]=e_{3} ; \\
\mathbf{a}_{7} & :\left[e_{2}, e_{3}\right]=e_{1} ; \\
\mathbf{a}_{8} & :\left[e_{2}, e_{3}\right]=e_{1}, \quad\left[e_{4}, e_{3}\right]=e_{2} .
\end{aligned}
$$

Proof. Let L be a Lie algebra over \mathbb{C} of dimension 4. Let H be a Cartan subalgebra of $L, \quad h \in H$ be such that $H=L_{0}(\operatorname{ad} h)=\{v \in L: \exists n \in \mathbb{N}$: $\left.(\operatorname{ad} h)^{n} v=0\right\}$ and $\operatorname{ad} h$, if not nilpotent, has the eigenvalue $1, H^{\prime}$ be a subspace of L such that $H \oplus H^{\prime}=L,\left[h, H^{\prime}\right]=H^{\prime}$.
Let $\operatorname{dim} H=1$. Then $H^{\prime}=[L, L]$. Let $\{x, y, z\}$ be a basis of H^{\prime} such that the matrix of $\operatorname{ad}_{H^{\prime}} h$ with respect to it is in Jordan canonical form. From the Jacobi's relations between h and the pairs of elements of $\{x, y, z\}$, when $\operatorname{ad}_{H^{\prime}} h$ is represented by a diagonal matrix with diagonal entries $1, \beta, \gamma$ respectively, $\beta, \gamma \neq 0$, we get

$$
(\beta+1)[x, y]=[h,[x, y]], \quad(\gamma+1)[x, z]=[h,[x, z]], \quad(\beta+\gamma)[y, z]=[h,[y, z]],
$$

hence either H^{\prime} is abelian or, permuting x, y, z and multiplying them by a scalar if necessary, $\beta+\gamma=1$ and H^{\prime} is a Heisenberg Lie algebra with $x=[y, z]$. We get the Lie algebras $\mathbf{g}_{[\beta \beta, \gamma]]}, \beta, \gamma \neq 0$, and $\mathbf{g}_{[[\beta]]}, \beta \neq 0,1$, respectively. If $\operatorname{ad}_{H^{\prime}} h$ is represented by two Jordan blocks, the first one of order 2 and eigenvalue 1, the second one of eigenvalue $c \neq 0$, we get

$$
(c+1)[z, x]=[h,[z, x]], \quad[z, x]+(c+1)[z, y]=[h,[z, y]], \quad 2[x, y]=[h,[x, y]],
$$

hence $[z, x]=[z, y]=0$ and either H^{\prime} is abelian or $c=2$ and H^{\prime} is a Heisenberg Lie algebra, with (multiplying x and y by a scalar) $[x, y]=z$. We get the Lie algebras $\mathbf{g}_{c}, c \neq 0$, and \mathbf{a}_{1} respectively. If $\mathrm{ad}_{H^{\prime}} h$ is represented by only one Jordan block we get

$$
2[x, y]=[h,[x, y]], \quad 2[x, z]=[h,[x, z]]-[x, y], \quad 2[y, z]=[h,[y, z]]-[x, z],
$$

hence H^{\prime} is abelian and we get the Lie algebra \mathbf{a}_{2}.
Let $\operatorname{dim} H=2$. Then, since H is abelian, $\operatorname{ad}_{L} H$ is abelian and $H^{\prime}=\left[H, H^{\prime}\right]=$ [$H, L]$. Let $\{x, y\}$ be a basis of H^{\prime} such that the matrix of $\operatorname{ad}_{H^{\prime}} h$ with respect to $\{x, y\}$ is in Jordan canonical form. We have to require

$$
[h,[x, y]]=[x,[h, y]]+[y,[x, h]]=\left(\operatorname{trad}_{H^{\prime}} h\right)[x, y],
$$

hence either $[x, y]=0$ or for any $v \in H \operatorname{ad}_{H^{\prime}} v$ has the eigenvalues $1,-1$ and $\operatorname{dim} \operatorname{ad} H \leq 1$. If dimad $H=2$ and there exist in H elements v such that $\operatorname{ad}_{H^{\prime}} v$ has two different eigenvalues, we may choose $w, z \in H$ such that with respect to the basis $\{x, y\} \quad \operatorname{ad}_{H^{\prime}} w$ and $\operatorname{ad}_{H^{\prime}} z$ are represented by two diagonal matrices with diagonal entries 1,0 and 0,1 respectively, hence we get the Lie algebra \mathbf{a}_{3}. If $\operatorname{dim} \operatorname{ad} H=2$ but for any $v \in H \operatorname{ad}_{H^{\prime}} v$ has only one eigenvalue we may choose $h, z \in H$ such that with respect to the basis $\{x, y\} \quad \operatorname{ad}_{H^{\prime}} h$ and $^{\operatorname{ad}_{H^{\prime}}} z$ are represented respectively by the identity matrix and by the nilpotent Jordan block of order 2, hence we get the Lie algebra $\mathbf{g}_{[00]}$. If $\operatorname{dim} \operatorname{ad} H=1$ let $z \in H \backslash\{0\}$ be such that $\operatorname{ad} z=0$. If the Jordan form of $\operatorname{ad}_{H^{\prime}} h$ is diagonal and $[x, y]=0$ we get the Lie algebras $\mathbf{g}_{[0, \gamma]]}, \gamma \in \mathbb{C} \backslash\{0\}$. If the Jordan form of $\operatorname{ad}_{H^{\prime}} h$ is diagonal and $[x, y] \notin\langle z\rangle$ we may assume $h=[x, y]$ and we get the Lie algebra \mathbf{a}_{4}. If the Jordan form of $\operatorname{ad}_{H^{\prime}} h$ is diagonal and $[x, y] \in\langle z\rangle \backslash\{0\}$ we may assume $[x, y]=z$ getting the Lie algebra \mathbf{a}_{5}. If the Jordan form of $\mathrm{ad}_{H^{\prime}} h$ has only one Jordan block we get the Lie algebra \mathbf{g}_{0}.
Let $\operatorname{dim} H=3$. If H is abelian, since $\operatorname{dim} \operatorname{ad} H=1$ there exist $y, z \in H$ linearly independent such that ad $y=\operatorname{ad} z=0$, hence we get the Lie algebra $\mathbf{g}_{[00,0]]}$. If H is a Heisenberg Lie algebra, since the subset of all $v \in H$ such that $H=L_{0}(\operatorname{ad} v)$ is open in H, we may assume $H=\langle h, y, z\rangle$ with $[h, y]=z,[h, x]=x, x \notin H$. Since ad h and ad z commute, $[z, x] \in\langle x\rangle$. Since ad y and ad z commute, if we had $[z, x] \neq 0$ we would have $[y, x] \in\langle x\rangle$ and then, since $\operatorname{ad}_{H} y$ and $\operatorname{ad}_{H} h$ commute, ad y and ad h would commute; but this holds if and only if ad $z=0$. Hence $[z, x]=0$ and $[y, x] \in\langle x\rangle$. Since $\operatorname{dim}[H, x]=1$ we may choose y such that $[y, x]=0$; we get the Lie algebra \mathbf{a}_{6}.
Let $\operatorname{dim} H=4$, that is L nilpotent. If L isn't abelian there exists $x \neq 0$ such that $x \in Z(L) \cap[L, L]$. If $x=[y, z]$, since $H^{\prime \prime}=\langle x, y, z\rangle$ is a nilpotent subalgebra, $\operatorname{dim} H^{\prime \prime}=3$ and $H^{\prime \prime}$ is a Heisenberg Lie algebra. Since L is nilpotent $\left[h, H^{\prime \prime}\right] \subseteq H^{\prime \prime}$ for any $h \in L$. Since $[h, x]=0$ it is possible to choose h, x, y, z such that $h \notin H^{\prime \prime}$, the matrix of $\operatorname{ad}_{H^{\prime \prime}} h$ with respect to the basis $\{x, y, z\}$ is in Jordan canonical form and $[h, y]=0$ (in fact if $[h, y]=x$ then $[h+z, y]=0$). We get the Lie algebras \mathbf{a}_{7} and \mathbf{a}_{8}.

5. The variety of the Lie algebras of dimension 4

For any Lie algebra L let $Z(L)$ be the center of L.

Proposition 5.1. $\quad \mathcal{L}_{4}$ is the union of the following closed subsets:

$$
\begin{aligned}
\mathcal{C}_{1}= & \left\{[\alpha] \in \mathcal{L}_{4}: L_{\alpha} \text { has an abelian ideal of dimension 3 }\right\}, \\
\mathcal{C}_{2}= & \left\{[\alpha] \in \mathcal{L}_{4}: L_{\alpha} \text { has a nilpotent ideal } J_{\alpha} \text { of dimension } 3\right. \text { such } \\
& \text { that } \left.\frac{1}{2} \operatorname{tr} \operatorname{ad} v \text { is eigenvalue of } \operatorname{ad}_{J_{\alpha}} v \text { for any } v \in L_{\alpha}\right\}, \\
\mathcal{C}_{3}= & \left\{[\alpha] \in \mathcal{L}_{4}: \operatorname{dim}\left[L_{\alpha}, L_{\alpha}\right] \leq 2, \operatorname{ad}_{\left[L_{\alpha}, L_{\alpha}\right]} L_{\alpha} \text { is abelian }\right\}, \\
\mathcal{C}_{4}= & \left\{[\alpha] \in \mathcal{L}_{4}: Z\left(L_{\alpha}\right) \neq\{0\}, \operatorname{tr} \operatorname{ad} v=0 \text { for any } v \in L_{\alpha}\right\}
\end{aligned}
$$

and $\mathcal{C}_{i} \nsubseteq \bigcup_{j \neq i} \mathcal{C}_{j}$ for $i, j=1, \ldots, 4$.

Proof. Since by Theorem 4.1 each one of these subsets is the union of the orbits of the following Lie algebras:

$$
\begin{array}{ll}
\mathcal{C}_{1}: & \mathbf{g}_{[[\beta, \gamma]]}, \mathbf{g}_{c}, \mathbf{a}_{2}, \mathbf{a}_{6}, \mathbf{a}_{7}, \mathbf{a}_{8} \\
\mathcal{C}_{2}: & \mathbf{g}_{[[\gamma+1, \gamma]]}, \mathbf{g}_{[[\beta]]}, \mathbf{g}_{0}, \mathbf{g}_{2}, \mathbf{a}_{1}, \mathbf{a}_{5}, \mathbf{a}_{7}, \mathbf{a}_{8} \\
\mathcal{C}_{3}: & \mathbf{g}_{[[0, \gamma]]}, \mathbf{g}_{[[0]]}, \mathbf{g}_{0}, \mathbf{a}_{3}, \mathbf{a}_{6}, \mathbf{a}_{7}, \mathbf{a}_{8} \\
\mathcal{C}_{4}: & \mathbf{g}_{[[0,-1]]}, \mathbf{a}_{4}, \mathbf{a}_{5}, \mathbf{a}_{7}, \mathbf{a}_{8}
\end{array}
$$

where $\beta, \gamma, c \in \mathbb{C}$, we get the claim.
For any $i=1, \ldots, 4$ let $\mathcal{A}_{i}=\left\{J \in G_{3,4}: e_{i} \notin J\right\}$ and let $\left\{i_{1}, i_{2}, i_{3}\right\}=$ $\{1, \ldots, 4\} \backslash\{i\}, i_{1}<i_{2}<i_{3}$. If $J \in \mathcal{A}_{i}$ let $J=\left\langle e_{i_{1}}^{J}, e_{i_{2}}^{J}, e_{i_{3}}^{J}\right\rangle$, where, with respect to the basis $\left\{e_{i_{1}}, e_{i_{2}}, e_{i_{3}}, e_{i}\right\}$, for $j=1,2,3$ the j-th coordinate of $e_{i_{j}}^{J}$ is 1 and for $k \in\{1,2,3\}, k \neq j$ the k-th coordinate of $e_{i_{j}}^{J}$ is 0 . Let

$$
\mathcal{C}_{1}^{\prime}=\left\{(J,[\alpha]) \in G_{3,4} \times \mathcal{C}_{1}: J \text { is an abelian ideal of } L_{\alpha}\right\}
$$

and let p_{1}, p_{1}^{\prime} be the canonical projections of \mathcal{C}_{1}^{\prime} onto $G_{3,4}$ and \mathcal{C}_{1} respectively.

Proposition 5.2. $\quad \mathcal{C}_{1}$ is irreducible, $\operatorname{dim} \mathcal{C}_{1}=11$ and p_{1}^{\prime} is a resolution of singularities of \mathcal{C}_{1}. The set of the singular points of \mathcal{C}_{1} is $\mathcal{Z}_{1}=\left\{[\alpha] \in \mathcal{C}_{1}: L_{\alpha}\right.$ is nilpotent and $\left.\operatorname{dim}\left[L_{\alpha}, L_{\alpha}\right] \leq 1\right\}$, that is the orbit of \mathbf{a}_{7}, and $\operatorname{dim} \mathcal{Z}_{1}=5$.

Proof. Let $\mathcal{A}_{i}^{\prime}:=\left(p_{1}\right)^{-1}\left(\mathcal{A}_{i}\right), i=1, \ldots, 4$. The map $\xi_{i}: \mathcal{A}_{i} \times \mathbb{P}\left(M_{3}\right) \rightarrow \mathcal{A}_{i}^{\prime}$ defined by $\xi_{i}(J,[A])=(J,[\alpha])$ where $[\alpha]$ is such that in $L_{\alpha} \operatorname{ad}_{J} e_{i}$ is represented by A with respect to the basis $\left\{e_{i_{1}}^{J}, e_{i_{2}}^{J}, e_{i_{3}}^{J}\right\}$ is an isomorphism, hence \mathcal{C}_{1}^{\prime}, with the map p_{1}, is a vector bundle and $\operatorname{dim} \mathcal{C}_{1}^{\prime}=11$.
The map p_{1}^{\prime} is birational and $\left(p_{1}^{\prime}\right)^{-1}$ is regular in the open subset of \mathcal{C}_{1} of all $[\alpha]$ such that L_{α} is not nilpotent or there exists $x \in L_{\alpha}$ such that $\operatorname{dim}\left[x, L_{\alpha}\right] \geq 2$ (we set $\left(p_{1}^{\prime}\right)^{-1}([\alpha])=(J,[\alpha])$ where J is the subspace of all the nilpotent elements x of L_{α} such that $\left.\operatorname{dim}\left[x, L_{\alpha}\right] \leq 1\right)$. It isn't regular in the points of $\mathcal{Z}_{1}=\left\{[\alpha] \in \mathcal{C}_{1}\right.$: L_{α} is nilpotent and $\left.\operatorname{dim}\left[L_{\alpha}, L_{\alpha}\right] \leq 1\right\}$, that is the orbit of \mathbf{a}_{7}, since the fibers of p_{1}^{\prime} on the elements of \mathcal{Z}_{1} have dimension 1 . The variety $\mathcal{Z}_{1}^{\prime}:=\left(p_{1}^{\prime}\right)^{-1}\left(\mathcal{Z}_{1}\right)$, with the map $\left.p_{1}\right|_{\mathcal{Z}_{1}^{\prime}}$, is a bundle on $G_{3,4}$ whose fibers are isomorphic to $\mathbb{P}\left(N_{3}^{\prime}\right)$, where N_{3}^{\prime} is the variety of all the nilpotent 3×3 matrices over \mathbb{C} of rank less or equal 1 ; hence it is irreducible of dimension 6 , which shows the claim.

Let

$$
\begin{aligned}
\mathcal{C}_{2}^{\prime}= & \left\{(J,[\alpha]) \in G_{3,4} \times \mathcal{C}_{2}: J \text { is a nilpotent ideal of } L_{\alpha}\right. \text { and } \\
& \text { for any } \left.v \in L_{\alpha} \frac{1}{2} \operatorname{tr} \operatorname{ad} v \text { is eigenvalue of } \operatorname{ad}_{J} v\right\} .
\end{aligned}
$$

Lemma 5.3. If $(J,[\alpha]) \in \mathcal{C}_{2}^{\prime}$ and $v \in L_{\alpha}$ then $[J, J]$ is contained in the eigenspace of $\operatorname{ad}_{J} v$ corresponding to $\frac{1}{2} \operatorname{tr} \operatorname{ad} v$.

Proof. Let $y \neq 0$ belong to the previous eigenspace but $[J, J] \nsubseteq\langle y\rangle$. Then we may choose a basis $\{y, x, z\}$ of J such that $[J, J] \subseteq\langle x\rangle$. Since $[x, v] \in\langle x\rangle$ (in fact $0=[x,[y, v]]=[y,[x, v]]$, hence $[x, v] \in\langle x, y\rangle$, in the same way $[x, v] \in\langle x, z\rangle)$, there exist $a, b, c, d \in \mathbb{C}$ such that $[v, y]=a y,[v, x]=b x,[v, z]=(a-b) z+c x+d y$, hence by the condition $[y,[z, v]]=[z,[y, v]]+[v,[z, y]]$ we get $a=b$.

Let

$$
\begin{aligned}
\mathcal{S}^{\prime}= & \left\{(H,[(A, B)]) \in \mathbb{P}^{2}(\mathbb{C}) \times \mathbb{P}\left(S_{3} \times M_{3}\right): \operatorname{Im} A \subseteq H,\right. \\
& \left.H \subseteq \operatorname{ker}\left(B-\left(\frac{1}{2} \operatorname{tr} B\right) I_{3}\right)\right\}
\end{aligned}
$$

let \mathcal{S} be the image of the canonical projection of \mathcal{S}^{\prime} on $\mathbb{P}\left(S_{3} \times M_{3}\right)$ and let s, s^{\prime} be the canonical projections of \mathcal{S}^{\prime} on $\mathbb{P}^{2}(\mathbb{C})$ and \mathcal{S} respectively.

Lemma 5.4. \mathcal{S} is irreducible, $\operatorname{dim} \mathcal{S}=8$ and s^{\prime} is a resolution of singularities of \mathcal{S}. The set of the singular points of \mathcal{S} is

$$
\widehat{\mathcal{S}}=\left\{[(A, B)] \in \mathcal{S}: A=0, \operatorname{dim} \operatorname{ker}\left(B-\left(\frac{1}{2} \operatorname{tr} B\right) I_{3}\right) \geq 2\right\}
$$

which is irreducible of dimension 4 .
Proof. The variety \mathcal{S}^{\prime} with the map s is a vector bundle on $\mathbb{P}^{2}(\mathbb{C})$ with fibers of dimension 6. The map s^{\prime} is birational and $\left(s^{\prime}\right)^{-1}$ is regular in the open subset of all $[(A, B)]$ such that $A \neq 0$ or dim $\operatorname{ker}\left(B-\left(\frac{1}{2} \operatorname{tr} B\right) I_{3}\right)=1$. It isn't regular in the points of $\hat{\mathcal{S}}$, where the generic fiber of s^{\prime} has dimension 1 , and $\widehat{\mathcal{S}}^{\prime}:=\left(s^{\prime}\right)^{-1}(\widehat{\mathcal{S}})$ is irreducible of dimension 5 (the fiber of $\left.s\right|_{\hat{\mathcal{S}}^{\prime}}$ in H is birational to $\left\{(V,[B]) \in G_{2,3} \times \mathbb{P}\left(M_{3}\right): H \subset V \subseteq \operatorname{ker}\left(B-\left(\frac{1}{2} \operatorname{tr} B\right) I_{3}\right)\right\}$, hence has dimension $3)$, which shows the claim.
Let p_{2} and p_{2}^{\prime} be the canonical projections of \mathcal{C}_{2}^{\prime} on $G_{3,4}$ and \mathcal{C}_{2} respectively.
Lemma 5.5. $\quad \mathcal{C}_{2}^{\prime}$, with the map p_{2}, is a bundle on $G_{3,4}$ with fibers isomorphic to \mathcal{S}.

Proof. Let $\mathcal{U}_{i}=\left(p_{2}\right)^{-1}\left(\mathcal{A}_{i}\right), i=1, \ldots, 4$. For any $(J,[\alpha]) \in \mathcal{C}_{2}^{\prime}$ let $\alpha_{J} \in$ $\operatorname{Hom}(J \wedge J, J)$ be defined by $\alpha_{J}\left(v \wedge v^{\prime}\right)=\left.\alpha\right|_{J \wedge J}\left(v \wedge v^{\prime}\right)$ for any $v, v^{\prime} \in J$. The map $\nu_{i}: \mathcal{A}_{i} \times \mathcal{S} \rightarrow \mathcal{U}_{i}$ such that $\nu_{i}(J,[(A, B)])=(J,[\alpha])$ where α is such that the matrix of α_{J} with respect to the bases $\left\{e_{i_{2}}^{J} \wedge e_{i_{3}}^{J}, e_{i_{3}}^{J} \wedge e_{i_{1}}^{J}, e_{i_{1}}^{J} \wedge e_{i_{2}}^{J}\right\}$ and $\left\{e_{i_{1}}^{J}, e_{i_{2}}^{J}, e_{i_{3}}^{J}\right\}$ is A and in L_{α} the matrix of ad ${ }_{J} e_{i}$ with respect to the basis $\left\{e_{i_{1}}^{J}, e_{i_{2}}^{J}, e_{i_{3}}^{J}\right\}$ is B is an isomorphism, which shows the claim.
For any $i=1, \ldots, 4$ and $J \in \mathcal{A}_{i}$ let $B_{i}^{J}=\left\{e_{i_{1}}^{J}, e_{i_{2}}^{J}, e_{i_{3}}^{J}, e_{i}\right\}$. Let $J \in \mathcal{A}_{i} \cap \mathcal{A}_{i^{\prime}}$ and let G_{J} be the matrix whose columns are the coordinates of the elements of B_{i}^{J} with respect to $B_{i^{\prime}}^{J}$. Let $\delta: S_{3} \times M_{3} \rightarrow M_{4 \times 6}$ be the isomorphism such that, by regarding $\delta((A, B))$ as a block matrix, we have

$$
\delta((A, B))=\left(\begin{array}{cc}
A & B \\
0 & 0
\end{array}\right) .
$$

Then, by using the notations of the proof of Lemma 5.5, we have that the automorphism $\left(\nu_{i^{\prime}}\right)^{-1} \circ \nu_{i}$ of $\left(\mathcal{A}_{i} \cap \mathcal{A}_{i^{\prime}}\right) \times \mathcal{S}$ is given by

$$
\left(\nu_{i^{\prime}}\right)^{-1} \circ \nu_{i}(J,[(A, B)])=\left(J,\left[\delta^{-1}\left(G_{J} \delta((A, B)) \widehat{G_{J}}\right)\right]\right) .
$$

Let $\mathcal{C}_{2}^{\prime \prime}$ be the vector bundle on $G_{3,4}$ which is the union of open subsets \mathcal{U}_{i}^{\prime}, $i=1, \ldots, 4$, with isomorphisms $\nu_{i}^{\prime}: \mathcal{A}_{i} \times \mathcal{S}^{\prime} \rightarrow \mathcal{U}_{i}^{\prime}$ such that

$$
\left(\nu_{i^{\prime}}^{\prime}\right)^{-1} \circ \nu_{i}^{\prime}(J,(H,[(A, B)]))=\left(J,\left(H_{J},\left[\delta^{-1}\left(G_{J} \delta((A, B)) \widehat{G_{J}}\right)\right]\right)\right)
$$

where if $H=\left[h_{1}, h_{2}, h_{3}\right]$ then $H_{J}=\left[h_{1}^{J}, h_{2}^{J}, h_{3}^{J}\right]$ is such that $\left(h_{1}^{J}, h_{2}^{J}, h_{3}^{J}, 0\right)=$ $G_{J}^{-1}\left(h_{1}, h_{2}, h_{3}, 0\right)$. Let $p^{\prime \prime}: \mathcal{C}_{2}^{\prime \prime} \rightarrow \mathcal{C}_{2}^{\prime}$ be the morphism such that $p^{\prime \prime}\left(\mathcal{U}_{i}^{\prime}\right)=\mathcal{U}_{i}$ and, if $p_{i}^{\prime \prime}$ is $\left.p^{\prime \prime}\right|_{\mathcal{A}_{i}^{\prime}}$ as map onto \mathcal{U}_{i}, we have $\nu_{i} \circ\left(\operatorname{id}_{\mathcal{A}_{i}} \times s^{\prime}\right)=p_{i}^{\prime \prime} \circ \nu_{i}^{\prime}$ for any $i=1, \ldots, 4$. Then $p^{\prime \prime}$ is a resolution of singularities of \mathcal{C}_{2}^{\prime}.

Proposition 5.6. $\quad \mathcal{C}_{2}$ is irreducible, $\operatorname{dim} \mathcal{C}_{2}=11$ and $p_{2}^{\prime} \circ p^{\prime \prime}$ is a resolution of singularities of \mathcal{C}_{2}. The set of the singular points of \mathcal{C}_{2} is $\mathcal{Z}_{2}=\widehat{\mathcal{Z}}_{2} \cup \widetilde{\mathcal{Z}}_{2}$ where $\widehat{\mathcal{Z}}_{2}=\left\{[\alpha] \in \mathcal{C}_{2}: L_{\alpha}\right.$ is nilpotent $\}$ and $\widetilde{\mathcal{Z}}_{2}=\left\{[\alpha] \in \mathcal{C}_{2}: L_{\alpha}\right.$ has an abelian ideal of dimension 3 and for any $\left.v \in L_{\alpha} \operatorname{dim} \operatorname{Im}\left(\operatorname{ad} v-\left(\frac{1}{2} \operatorname{tr} \operatorname{ad} v\right) \mathrm{id}\right) \leq 1\right\}$. We have that $\widehat{\mathcal{Z}}_{2}$ is irreducible of dimension 8 and is the union of the orbits of \mathbf{a}_{7} and $\mathbf{a}_{8} ; \widetilde{\mathcal{Z}}_{2}$ is irreducible of dimension 7 and is the union of the orbits of $\mathbf{g}_{[0,1]]}, \mathbf{g}_{0}$ and \mathbf{a}_{7}.

Proof. The map p_{2}^{\prime} is birational and the subset of \mathcal{C}_{2} in which $\left(p_{2}^{\prime}\right)^{-1}$ isn't regular is $\widehat{\mathcal{Z}}_{2}$, since $\left(p_{2}^{\prime}\right)^{-1}([\alpha])=(J,[\alpha])$ where J is the subspace of L_{α} of all the nilpotent elements and the generic fiber of p_{2}^{\prime} on $\widehat{\mathcal{Z}}_{2}$ has dimension 1. Let $\widehat{\mathcal{Z}}_{2}^{\prime}:=\left(p_{2}^{\prime}\right)^{-1}\left(\widehat{\mathcal{Z}}_{2}\right)$. If we set $\overline{\mathcal{S}}=\{[(A, B)] \in \mathcal{S}: B$ is nilpotent $\}$ we have that $\overline{\mathcal{S}}$ is irreducible and $\operatorname{dim} \overline{\mathcal{S}}=6$ (in fact, by Lemma 5.4, $\left(s^{\prime}\right)^{-1}(\overline{\mathcal{S}})$ has these properties). Since the fibers of $\left.p_{2}\right|_{\widehat{\mathcal{Z}}_{2}^{\prime}}$ are isomorphic to $\overline{\mathcal{S}}$ we get that $\widehat{\mathcal{Z}}_{2}^{\prime}$ is irreducible of dimension 9 and $\widehat{\mathcal{Z}}_{2}$ is irreducible of dimension 8 , hence by Theorem 2 of chap. II, $\S 4$ of [10] the points of $\widehat{\mathcal{Z}}_{2}$ are singular for \mathcal{C}_{2}. By Lemma 5.4 and Lemma $5.5 \widetilde{\mathcal{Z}}_{2}$ is irreducible of dimension 7 and the points of $\widetilde{\mathcal{Z}}_{2} \backslash \widehat{\mathcal{Z}}_{2}$ are singular for \mathcal{C}_{2}, hence we get the claim.
For any $n \in \mathbb{N}$ let $C_{n}=\left\{(A, B) \in M_{n} \times M_{n}:[A, B]=0\right\}$. If $\left(x_{0}, \ldots, x_{7}\right)$ are coordinates of \mathbb{C}^{8}, we set

$$
A=\left(\begin{array}{cc}
x_{0} & x_{2} \\
x_{4} & x_{0}+x_{6}
\end{array}\right), \quad B=\left(\begin{array}{cc}
x_{1} & x_{3} \\
x_{5} & x_{1}+x_{7}
\end{array}\right)
$$

and we regard C_{2} as a subvariety of \mathbb{C}^{8}. Let $\mathcal{V}^{\prime}=\left\{\left(x_{0}, \ldots, x_{7}\right) \in C_{2}\right.$: $\left.\left(x_{2}, \ldots, x_{7}\right) \neq(0, \ldots, 0)\right\}$; then the map $u: \mathcal{V}^{\prime} \rightarrow \mathbb{P}^{5}(\mathbb{C})$ such that $u\left(\left(x_{0}, \ldots, x_{7}\right)\right)=\left[x_{2}, \ldots, x_{7}\right]$ is a morphism. Let $\mathcal{V}=u\left(\mathcal{V}^{\prime}\right)$, let:

$$
\mathcal{W}=\left\{\left(\left(x_{0}, \ldots, x_{7}\right),\left[z_{2}, \ldots, z_{7}\right]\right) \in C_{2} \times \mathcal{V}: x_{i} z_{j}=z_{i} x_{j}, i, j=2, \ldots, 7\right\}
$$

and let r be the canonical projection of \mathcal{W} on C_{2}.
Lemma 5.7. $\quad C_{2}$ is irreducible, $\operatorname{dim} C_{2}=6$ and

$$
\mathcal{Y}=\left\{(A, B) \in C_{2}: A, B \in\left\langle I_{2}\right\rangle\right\}
$$

is the set of the singular points of C_{2}. The variety \mathcal{W} is irreducible and r is a resolution of singularities of C_{2}.

Proof. For any $n \in \mathbb{N} C_{n}$ is irreducible of dimension $n^{2}+n$ ([7], [4]). If $X=$ $\left(x_{i j}\right), Y=\left(y_{i j}\right)$ are the coordinates of $M_{n} \times M_{n}$ and $(A, B) \in C_{n}$ then $[A, X]+$ $[B, Y]=0$ are equations of the tangent space to C_{n} in (A, B). Hence the points (A, B) such that A or B is regular, that is has centralizer of minimum dimension n, are non singular for C_{n}, which shows the first claim. Since \mathcal{V} and C_{2} have the same equations, \mathcal{V} is an irreducible nonsingular variety of dimension 3. The map r is birational, since for any $\left(x_{0}, \ldots, x_{7}\right) \in C_{2}$ such that $\left(x_{2}, \ldots, x_{7}\right) \neq(0, \ldots, 0)$ we may set $r^{-1}\left(\left(x_{0}, \ldots, x_{7}\right)\right)=\left(\left(x_{0}, \ldots, x_{7}\right),\left[x_{2}, \ldots, x_{7}\right]\right)$; if $\left(x_{2}, \ldots, x_{7}\right)=$ $(0, \ldots, 0)$ we have $r^{-1}\left(\left\{\left(x_{0}, \ldots, x_{7}\right)\right\}\right)=\left\{\left(x_{0}, \ldots, x_{7}\right)\right\} \times \mathcal{V}$. Since for any $x_{0}, x_{1}, t \in \mathbb{C}$ and $\left[z_{2}, \ldots, z_{7}\right] \in \mathcal{V}$ we have that $\left(\left(x_{0}, x_{1}, t z_{2}, \ldots, t z_{7}\right),\left[z_{2}, \ldots, z_{7}\right]\right) \in$ \mathcal{W}, \mathcal{W} is irreducible. Since \mathcal{V} has the same equations as C_{2} the tangent space to \mathcal{W} in a point such that $\left(x_{2}, \ldots, x_{7}\right)=(0, \ldots, 0)$ has the same dimension as in a point of $\mathcal{W} \backslash r^{-1}(\mathcal{Y})$, hence we get the claim.

Let

$$
\begin{aligned}
\mathcal{G}^{\prime}= & \left\{\left(\left[y_{1}, y_{2}, x_{0}, \ldots, x_{7}\right],\left[z_{2}, \ldots, z_{7}\right]\right) \in \mathbb{P}^{9}(\mathbb{C}) \times \mathbb{P}^{5}(\mathbb{C}):\right. \\
& \left.:\left(\left(x_{0}, \ldots, x_{7}\right),\left[z_{2}, \ldots, z_{7}\right]\right) \in \mathcal{W}\right\} ;
\end{aligned}
$$

let \mathcal{G} be the image of the canonical projection of \mathcal{G}^{\prime} onto $\mathbb{P}^{9}(\mathbb{C})$ and let r^{\prime} be the canonical projection of \mathcal{G}^{\prime} on \mathcal{G}.

Corollary 5.8. The map r^{\prime} is a resolution of singularities of \mathcal{G}.
Let

$$
\mathcal{C}_{3}^{\prime}=\left\{(W,[\alpha]) \in G_{2,4} \times \mathcal{C}_{3}:\left[L_{\alpha}, L_{\alpha}\right] \subseteq W, \operatorname{ad}_{W} L_{\alpha} \text { is abelian }\right\}
$$

and let p_{3}, p_{3}^{\prime} be the canonical projections of \mathcal{C}_{3}^{\prime} on $G_{2,4}$ and \mathcal{C}_{3} respectively.
For any $i, j \in\{1, \ldots, 4\}, i<j$ let $\mathcal{A}_{i j}=\left\{W \in G_{2,4}: W \cap\left\langle e_{i}, e_{j}\right\rangle=\{0\}\right\}$. Let $\left\{i_{0}, j_{0}\right\}=\{1, \ldots, 4\} \backslash\{i, j\}, i_{0}<j_{0}$; if $W \in \mathcal{A}_{i j}$ let $W=\left\langle e_{i_{0}}^{W}, e_{j_{0}}^{W}\right\rangle$ where the first two coordinates of $e_{i_{0}}^{W}$ and $e_{j_{0}}^{W}$ with respect to the basis $\left\{e_{i_{0}}, e_{j_{0}}, e_{i}, e_{j}\right\}$ are 1,0 and 0,1 respectively.

Lemma 5.9. \mathcal{C}_{3}^{\prime} with the map p_{3} is a bundle on $G_{2,4}$ with fibers isomorphic to \mathcal{G}.
Proof. Let $\mathcal{U}_{i j}=\left(p_{3}\right)^{-1}\left(\mathcal{A}_{i j}\right), i, j \in\{1, \ldots, 4\}, i<j$. The map $\eta_{i j}$: $\mathcal{A}_{i j} \times \mathcal{G} \rightarrow \mathcal{U}_{i j}$ defined by $\eta_{i j}\left(W,\left[\left(y_{1}, y_{2}, A, B\right)\right]\right)=(W,[\alpha])$ where α is such that in $L_{\alpha}\left[e_{i} e_{j}\right]=y_{1} e_{i_{0}}^{W}+y_{2} e_{j_{0}}^{W}$ and $\operatorname{ad}_{W} e_{i}, \operatorname{ad}_{W} e_{j}$ are represented, with respect to the basis $\left\{e_{i_{0}}^{W}, e_{j_{0}}^{W}\right\}$, respectively by A and B is an isomorphism, which shows the claim.

For any $i, j \in\{1, \ldots, 4\}, i<j$, and $W \in \mathcal{A}_{i j}$ let $B_{i j}^{W}=\left\{e_{i_{0}}^{W}, e_{j_{0}}^{W}, e_{i}, e_{j}\right\}$. Let $W \in \mathcal{A}_{i j} \cap \mathcal{A}_{i^{\prime} j^{\prime}}$ and let G_{W} be the matrix whose columns are the coordinates of the elements of $B_{i j}^{W}$ with respect to $B_{i^{\prime} j^{\prime}}^{W}$. Let $\zeta: \mathbb{C}^{2} \times M_{2} \times M_{2} \rightarrow M_{4 \times 6}$ be the isomorphism such that, by regarding $\zeta\left(\left(y_{1}, y_{2}, A, B\right)\right)$ as a block matrix, we have:

$$
\zeta\left(\left(y_{1}, y_{2}, A, B\right)\right)=\left(\begin{array}{cccc}
0 & Y & A & B \\
0 & 0 & 0 & 0
\end{array}\right), \quad Y=\binom{y_{1}}{y_{2}} .
$$

Then, by using the notations of the proof of Lemma 5.9, we have that the automorphism $\left(\eta_{i^{\prime} j^{\prime}}\right)^{-1} \circ \eta_{i j}$ of $\left(\mathcal{A}_{i j} \cap \mathcal{A}_{i^{\prime} j^{\prime}}\right) \times \mathcal{G}$ is given by

$$
\begin{aligned}
\left(\eta_{i^{\prime} j^{\prime}}\right)^{-1} \circ \eta_{i j} & \left(W,\left[y_{1}, y_{2}, x_{0}, \ldots, x_{7}\right]\right)= \\
= & \left(W,\left[\zeta^{-1}\left(G_{W} \zeta\left(\left(y_{1}, y_{2}, x_{0}, \ldots, x_{7}\right)\right) \widehat{G_{W}}\right)\right]\right)
\end{aligned}
$$

Let $\bar{u}: \mathbb{C}^{2} \times \mathcal{V}^{\prime} \rightarrow \mathcal{V}$ be defined by $\bar{u}\left(\left(y_{1}, y_{2}, x_{0}, \ldots, x_{7}\right)\right)=\left[x_{2}, \ldots, x_{7}\right]$. Let $\mathcal{C}_{3}^{\prime \prime}$ be the vector bundle on $G_{2,4}$ which is the union of open subsets $\mathcal{U}_{i j}^{\prime}, i, j \in\{1, \ldots, 4\}$, $i<j$, with isomorphisms $\eta_{i j}^{\prime}: \mathcal{A}_{i j} \times \mathcal{G}^{\prime} \rightarrow \mathcal{U}_{i j}^{\prime}$, such that

$$
\begin{aligned}
\left(\eta_{i^{\prime} j^{\prime}}^{\prime}\right)^{-1} \circ \eta_{i j}^{\prime} & \left(W,\left(\left[y_{1}, y_{2}, x_{0}, \ldots, x_{7}\right],\left[z_{2}, \ldots, z_{7}\right]\right)\right) \widehat{=} \\
= & \left(W,\left(\left[\zeta^{-1}\left(G_{W} \zeta\left(\left(y_{1}, y_{2}, x_{0}, \ldots, x_{7}\right)\right)\right) \overline{G_{W}}\right)\right],\right. \\
& \bar{u} \circ \zeta^{-1}\left(G_{W} \zeta\left(\left(0, \ldots, 0, z_{2}, \ldots, z_{7}\right)\right)\right)
\end{aligned}
$$

and let $q^{\prime \prime}: \mathcal{C}_{3}^{\prime \prime} \rightarrow \mathcal{C}_{3}^{\prime}$ be the morphism such that $q^{\prime \prime}\left(\mathcal{U}_{i j}^{\prime}\right)=\mathcal{U}_{i j}$ and, if $q_{i j}^{\prime \prime}$ is $\left.q^{\prime \prime}\right|_{\mathcal{U}_{i j}^{\prime}}$ as map onto $\mathcal{U}_{i j}$, we have $\eta_{i j} \circ\left(\operatorname{id}_{\mathcal{A}_{i j}} \times r^{\prime}\right)=q_{i j}^{\prime \prime} \circ \eta_{i j}^{\prime}$ for any $i, j \in\{1, \ldots, 4\}, i<j$. Then $q^{\prime \prime}$ is a resolution of singularities of \mathcal{C}_{3}^{\prime}.

Proposition 5.10. $\quad \mathcal{C}_{3}$ is irreducible, $\operatorname{dim} \mathcal{C}_{3}=11$ and $p_{3}^{\prime} \circ q^{\prime \prime}$ is a resolution of singularities of \mathcal{C}_{3}. The set of the singular points of \mathcal{C}_{3} is $\mathcal{Z}_{3}=\left\{[\alpha] \in \mathcal{C}_{3}\right.$: $\left.\operatorname{ad}_{\left[L_{\alpha}, L_{\alpha}\right]} L_{\alpha} \subseteq\langle\mathrm{id}\rangle\right\}$, that is the union of the orbits of $\mathbf{g}_{[0,0]]}, \mathbf{g}_{[0,1]]}$ and \mathbf{a}_{7}, which is irreducible of dimension 7.

Proof. The map p_{3}^{\prime} is birational and the subset of \mathcal{C}_{3} in which $\left(p_{3}^{\prime}\right)^{-1}$ isn't regular is $\widehat{\mathcal{Z}}_{3}:=\left\{[\alpha] \in \mathcal{C}_{3}: \operatorname{dim}\left[L_{\alpha}, L_{\alpha}\right]<2\right\} \quad$ (since $\left(p_{3}^{\prime}\right)^{-1}([\alpha])=\left(\left[L_{\alpha}, L_{\alpha}\right],[\alpha]\right)$ and the generic fiber of p_{3}^{\prime} on $\widehat{\mathcal{Z}}_{3}$ has dimension 2). By Theorem 4.1 we have $\widehat{\mathcal{Z}}_{3} \subset \mathcal{Z}_{3}$ and by Lemma 5.7 and Lemma 5.9 the points of $\mathcal{Z}_{3} \backslash \widehat{\mathcal{Z}}_{3}$ are singular for \mathcal{C}_{3}. If $\mathcal{Z}_{3}^{\prime}:=\left(p_{3}^{\prime}\right)^{-1}\left(\mathcal{Z}_{3}\right)$, the fibers of $\left.p_{3}\right|_{\mathcal{Z}_{3}^{\prime}}$ are isomorphic to $\mathbb{P}^{3}(\mathbb{C})$, hence \mathcal{Z}_{3} is irreducible of dimension 7 . Since the subset of the singular points is closed this shows the claim.

Let

$$
\mathcal{C}_{4}^{\prime}=\left\{(T,[\alpha]) \in \mathbb{P}^{3}(\mathbb{C}) \times \mathcal{C}_{4}: T \subseteq Z\left(L_{\alpha}\right)\right\}
$$

and let p_{4}^{\prime} be the canonical projections of \mathcal{C}_{4}^{\prime} on \mathcal{C}_{4}.

Proposition 5.11. $\quad \mathcal{C}_{4}$ is irreducible, $\operatorname{dim} \mathcal{C}_{4}=11$ and p_{4}^{\prime} is a resolution of singularities of \mathcal{C}_{4}. The set of the singular points of \mathcal{C}_{4} is $\mathcal{Z}_{4}=\left\{[\alpha] \in \mathcal{C}_{4}\right.$: $\left.\operatorname{dim} Z\left(L_{\alpha}\right) \geq 2\right\}$, that is the orbit of \mathbf{a}_{7}.

Proof. Let $\mathcal{C}_{4}^{\prime \prime}=\left\{(J, T,[\alpha]) \in G_{3,4} \times \mathcal{C}_{4}^{\prime}: J\right.$ is an ideal of $\left.L_{\alpha}\right\}$ and let q_{1}, q_{2} be the canonical projections of $\mathcal{C}_{4}^{\prime \prime}$ on $G_{3,4} \times \mathbb{P}^{3}(\mathbb{C})$ and on \mathcal{C}_{4}^{\prime} respectively. If $(J, T) \in G_{3,4} \times \mathbb{P}^{3}(\mathbb{C})$ is such that $T \nsubseteq J$ the fiber of q_{1} in (J, T) is isomorphic to $\mathbb{P}\left(S_{3}\right)$. If $(J, T) \in G_{3,4} \times \mathbb{P}^{3}(\mathbb{C})$ is such that $T \subset J$ then J is a nilpotent ideal such that $[J, J] \subset T$ for any L_{α} such that $(J, T,[\alpha]) \in \mathcal{C}_{4}^{\prime \prime}$, hence the fiber of q_{1} in (J, T) is also a projective subspace of dimension 5 . This proves that \mathcal{C}_{4}^{\prime} is irreducible and $\operatorname{dim} \mathcal{C}_{4}^{\prime}=11$, since q_{2} is birational $\left(\left(q_{2}\right)^{-1}\right.$ is regular in the open subset of all the elements $(T,[\alpha])$ such that $\left.\operatorname{dim}\left[L_{\alpha}, L_{\alpha}\right]=3\right)$.
For any $i \in\{1, \ldots, 4\}$ let $\mathcal{A}^{i}=\left\{T \in \mathbb{P}^{3}(\mathbb{C}): T \cap\left\langle e_{i_{1}}, e_{i_{2}}, e_{i_{3}}\right\rangle=\{0\}\right\}$; for any $T \in \mathcal{A}^{i}$ we set $T=\left\langle e^{T}\right\rangle$ where the first coordinate of e^{T} with respect to the basis $\left\{e_{i}, e_{i_{1}}, e_{i_{2}}, e_{i_{3}}\right\}$ is 1 . Let

$$
\begin{gathered}
\mathcal{U}^{i}=\left\{(T,[\alpha]) \in \mathcal{C}_{4}^{\prime}: T \in \mathcal{A}^{i}, \alpha\left(e_{i_{1}} \wedge e_{i_{3}}\right) \neq 0\right\} \\
\mathcal{U}^{\prime \prime}=\left\{\left[x_{1}, \ldots, x_{8}\right] \in \mathbb{P}^{7}(\mathbb{C}):\left(x_{1}, \ldots, x_{4}\right) \neq(0, \ldots, 0)\right\} .
\end{gathered}
$$

The map $\psi: \mathcal{A}^{i} \times \mathcal{U}^{\prime \prime} \rightarrow \mathcal{U}^{i}$ defined by $\psi\left(T,\left[x_{1}, \ldots, x_{8}\right]\right)=(T,[\alpha])$ where α is such that $\alpha\left(e_{i_{1}} \wedge e_{i_{2}}\right)=x_{5} e^{T}+x_{1} e_{i_{2}}+x_{6} e_{i_{3}}, \alpha\left(e_{i_{1}} \wedge e_{i_{3}}\right)=x_{2} e^{T}+x_{3} e_{i_{1}}+x_{4} e_{i_{2}}-x_{1} e_{i_{3}}$, $\alpha\left(e_{i_{2}} \wedge e_{i_{3}}\right)=x_{7} e^{T}+x_{8} e_{i_{1}}-x_{3} e_{i_{2}}$ is an isomorphism, hence \mathcal{C}_{4}^{\prime} is nonsingular. The map p_{4}^{\prime} is birational and the subset of \mathcal{C}_{4} in which $\left(p_{4}^{\prime}\right)^{-1}$ isn't regular is $\mathcal{Z}_{4}=\left\{[\alpha] \in \mathcal{C}_{4}: \operatorname{dim} Z\left(L_{\alpha}\right) \geq 2\right\}$, that is the orbit of \mathbf{a}_{7}, where the fibers of p_{4}^{\prime} have dimension 1. By Proposition $5.2\left(p_{4}^{\prime}\right)^{-1}\left(\mathcal{Z}_{4}\right)$ is irreducible of dimension 6, which shows the claim.

Corollary 5.12. The varieties $\mathcal{C}_{i}, i=1, \ldots, 4$, are the irreducible components of \mathcal{L}_{4} and the set of the singular points of \mathcal{L}_{4} is $\bigcup_{i \neq j} \mathcal{C}_{i} \cap \mathcal{C}_{j}, i, j=1, \ldots, 4$, that is the union of the orbits of the following Lie algebras: $\mathbf{g}_{[0, \gamma]]}, \gamma \in \mathbb{C}, \mathbf{g}_{[[\gamma+1, \gamma]]}, \gamma \in$ $\mathbb{C}, \mathbf{g}_{[[0]]}, \mathbf{g}_{c}, c=0,2, \mathbf{a}_{5}, \mathbf{a}_{6}, \mathbf{a}_{7}, \mathbf{a}_{8}$.

By the equations of the space of 2-cocycles of a Lie algebra we have found that the dimension of the tangent space to \mathcal{L}_{4} in $\mathbf{g}_{[[\beta, \gamma]]}, \beta=0$ or $\beta=\gamma+1$, $[[\beta, \gamma]] \neq[[0,1]],[[0,-1]],[[0,0]], \mathbf{g}_{[[0]]}, \mathbf{g}_{c}, c=0,2, \mathbf{a}_{5}, \mathbf{a}_{6}$ is 12 . It is 13 in $\mathbf{g}_{[[0,1]]}, \mathbf{g}_{[[0,-1]]}, \mathbf{g}_{[[0,0]]}$. In \mathbf{a}_{7} and \mathbf{a}_{8} it is 18 and 14 respectively.

Acknowledgements

I thank Lucio Guerra for introducing me to the subject of this paper and for some useful suggestions. Moreover I thank Nicola Ciccoli for some helpful discussions.

References

[1] Burde, D., and C. Steinhoff, Classification of Orbit Closures of 4-Dimensional Complex Lie Algebras, J. Algebra 214 (1999), 729-739.
[2] Carles, R., et Y. Diakité, Sur les variétés d'Algèbres de Lie de dimension ≤ 7, J. Algebra 91 (1984), 53-63.
[3] Fulton, W., and J. Harris, "Representation Theory: A First Course," SpringerVerlag, Berlin, Heidelberg, New York, 1991.
[4] Gerstenhaber, M., On Dominance and Varieties of Commuting Matrices, Ann. of Math. 73 (1961), 324-348.
[5] Gerstenhaber, M., and S. D. Schack, "Algebraic Cohomology and Deformation Theory," in: Deformation Theory of Algebras and Structures and Application, NATO-ASI series, Kluwer 1988.
[6] Kirillov, A. A., and Yu. A. Neretin, The Variety A_{n} of n-dimensional Lie Algebra Structures, Transl., II Ser., Amer. Math. Soc. 137, (1987), 21-30.
[7] Motzkin, T. S., O. Taussky, Pairs of Matrices with Property L II, Trans. Amer. Math. Soc. 80 (1955), 387-401.
[8] Onishchik, A. L., E. B. Vinberg, and V. V. Gorbatsevich, "Lie Groups and Lie Algebras III. Structure of Lie Groups and Lie Algebras," Encyclopaedia of Mathematical Sciences 41, Springer-Verlag, Berlin, 1994.
[9] Patera, J., H. Zassenhaus, Solvable Lie Algebras of Dimension ≤ 4 over Perfect Fields, Linear Algebra Appl. 142 (1990), 1-17.
[10] Shafarevic, I. R., "Basic Algebraic Geometry," Springer-Verlag, New York, Heidelberg, Berlin, 1988.

Roberta Basili
Dipartimento di Matematica
e Informatica
Università di Perugia
Via Vanvitelli 1
06123 Perugia Italy

Received March 19, 2001
and in final form March 26, 2002

