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Abstract. There are two notions of the extended affine root systems in the
literature which both are introduced axiomatically. One, extended affine root
system (SAERS for short), consists only of nonisotropic roots, while the other,
extended affine root system (EARS for short), contains certain isotropic roots
too. We show that there is a one to one correspondence between (reduced)
SEARSs and EARSs. Namely the set of nonisotropic roots of any EARS is
a (reduced) SEARS, and conversely, there is a unique way of adding certain
isotropic elements to a SEARS to get an EARS. (It is known that some of
extended affine root systems are not the root system of any extended affine Lie
algebra.)

Introduction

In 1985 K. Saito [8] introduced the notion of an extended affine root system. An
extended affine root system is a subset R of a finite dimensional real vector space
V , equipped with a positive semidefinite bilinear form, satisfying some axioms
which are a very natural generalization of axioms for a finite and affine irreducible
root system. Namely, R is discrete and spans V , elements of R are nonisotropic,
the reflections based on roots stabilize R , 2(α, β)/(α, α) is an integer for any
α, β ∈ R , and finally R is irreducible. Finite and affine irreducible root systems
are examples of extended affine root systems. In fact when the nullity of the root
system (which is by definition the dimension of the radical of the form) is 1, these
axioms imply Macdonald’s axioms [7] for an affine root system. Saito achieved a
complete classification of the root system when the nullity is 2 and the quotient of
the root system modulo a certain 1-dimensional space, called a marking, is reduced
(see Remark 1.2). Saito’s motivation for defining such root systems were possible
applications to the theory of singularities.

In 1990 R. Høegh-Krohn and B. Torresani [6] introduced a system of axioms
for a new class of Lie algebras over the field of complex numbers. They call these
algebras, quasi-simple Lie algebras. As part of their work, they extract a root
system for the algebras and try to analyze the structure of such a root system by
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assigning a finite root system to it, and then describing the set of isotropic roots
through its connection with the finite root system. Unfortunately, in their analysis
of isotropic roots there was some inaccuracies. Namely, they assumed that the set
of isotropic roots is always a lattice. This could have been avoided if they were
aware of Saito’s work.

In 1997 B. Allison, S. Azam, S. Berman, Y. Gao and A. Pianzola in [1],
provide a firm foundation for the class of quasi-simple Lie algebras and their root
systems. With slight modification in axioms, they call these algebras extended
affine Lie algebras. They show that the root system of an extended affine Lie
algebra satisfies certain axioms which are a natural generalization of axioms for
finite irreducible root systems. Then independently of Lie algebras, they introduce
the axiomatic version of such root systems and call them extended affine root
systems. Therefore, there are two notions of extended affine root systems in the
literature, one from Saito and one from [1]. Unlike Saito’s root systems, the root
systems given in [1] contain isotropic roots. To distinguish these two class of roots
in our work, we refer to a root system from [1] as an extended affine root system
(EARS for short), and refer to a root system from Saito as Saito’s extended affine
root system (SEARS for short). In [1], the authors give a complete description of
EARSs using the concept of a semilattice (instead of a lattice in [6]’s work).

The purpose of this work is to clarify the relation between SEARSs and
EARSs. We show that there exists a one to one correspondence between the
classes of EARSs and (reduced) SEARSs. Namely, the set of nonisotropic roots of
any EARS is a reduced SEARS, and conversely given a reduced SEARS R , there
is a (unique) way to extend R to an EARS, by adding some isotropic roots to R .
The paper also contains some remarks regarding the notion of a marking showing
that it reduces significantly the number of roots. (It is known that some of the
extended affine root systems are not the root system of any extended affine Lie
algebra, see [2].)

The author would like to thank Professors B. Allison and A. Pianzola for
their hospitality during his visit to the University of Alberta in the summer of
1999, where they first suggested the present project.

Extended affine root systems

We start by a brief introduction of the two notions of extended affine root systems
from [8] and [1]. We first recall Saito’s definition for an extended affine root system.

Definition 1. (Saito’s Definition [8, §1]) Suppose V is a finite dimensional real
vector space equipped with a symmetric bilinear form (·, ·). A nonempty subset R
of V is called a root system belonging to (·, ·), if it satisfies the following axioms:

• (SR1) The additive subgroup of V generated by R is a lattice in V . (That
is, the additive subgroup of V generated by R is the Z-span of an R-basis
of V .)

• (SR2) (α, α) 6= 0 for all α ∈ R .

• (SR3) β − (β, 2α
(α,α)

)α ∈ R for all α, β ∈ R .
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• (SR4) (β, 2α
(α,α)

) ∈ Z for all α, β ∈ R .

• (SR5) Irreducibility: R cannot be decomposed as a disjoint union R1 ] R2

where R1 and R2 are nonempty subsets of R satisfying (R1, R2) = {0} .

R is called reduced if whenever α, cα ∈ R for some real number c , then
c ∈ {±1} . A root system belonging to (·, ·) is called an extended affine root system
(SEARS for short) if (·, ·) is positive semidefinite.

For α ∈ V with (α, α) 6= 0, define wα ∈ GL(V) by

wα(λ) = λ− (λ,
2α

(α, α)
)α, (λ ∈ V). (2)

Then ( SR3) states that wα(R) = R for all α ∈ R .

Next, we recall the definition of an extended affine root system from [1].

Definition 3. [1, II.2.1] Assume that V is a finite dimensional real vector space
with a positive semidefinite bilinear form (·, ·) and that R is a subset of V . Let

R× = {α ∈ R | (α, α) 6= 0} and R0 = {α ∈ R | (α, α) = 0}.

R is called an extended affine root system (EARS for short) in V if R satisfies the
following 8 axioms:

• (R1) 0 ∈ R .

• (R2) −R = R .

• (R3) R spans V .

• (R4) α ∈ R× =⇒ 2α 6∈ R .

• (R5) R is discrete in V .

• (R6) If α ∈ R× and β ∈ R , then there exist nonnegative integers d and u
such that

{β + nα | n ∈ Z} ∩R = {−β − dα, . . . , β + uα}

and d− u = 2(α,β)
(α,α)

.

• (R7) R× cannot be decomposed as a disjoint union R1 ]R2 where R1 and
R2 are nonempty subsets of R× satisfying (R1, R2) = {0} .

• (R8) For any σ ∈ R0 , there exists α ∈ R× such that α + σ ∈ R .

Elements of R×(R0) are called nonisotropic (isotropic) roots.
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Lemma 4. Suppose R is an EARS in V . Then R× , the set of nonisotropic
roots of R , is a reduced SEARS in V .

Proof. We must show that (SR1)-(SR5) hold for R× and that R× is reduced.
Clearly (·, ·) is positive semidefinite on V and (SR2) holds. By [1, Chapter II],
R ⊆ Ṙ+ Λ ⊆ V where Ṙ is a finite root system and Λ is a lattice in the radical of
(·, ·). Thus 〈R〉 (the additive subgroup of V generated by R) is discrete. By (R8),
〈R×〉 = 〈R〉 and so by (R3), 〈R×〉 is a lattice in V . Hence (SR1) holds. (SR4)
and (SR3) hold by (R6). (SR5) holds by (R7). Thus R× is a SEARS. Moreover,
if α, cα ∈ R× for some real number c , then by (SR4), c ∈ {±1

2
,±1,±2} and so

by (R4), c ∈ {±1} . Thus R× is reduced.

Next we want to show that corresponding to any reduced SEARS R , there
exists a (unique) EARS R̃ which has R as the set of its nonisotropic roots. We
proceed as follows.

Let R be a SEARS in a finite dimensional real vector space V . Let V0 be
the radical of (·, ·) on V . Since (·, ·) is positive semidefinite, we have

V0 = {α ∈ V | (α, α) = 0}.

Let − : V → V/V0 be the canonical map. By (SR2), V 6= V0 and so V̄ 6= {0} .
Define a unique symmetric bilinear form on V̄ by

(ᾱ, β̄) = (α, β) for α, β ∈ V .

Then (·, ·) is positive definite on V̄ . Put

R̄ = {ᾱ | α ∈ R}.

For α ∈ V \ V0 , we set α∨ = 2α
(α,α)

. Let wα ∈ GL(V) be defined as in (2). Define

the isometry wᾱ on V̄ by

wᾱ(λ̄) = λ̄− (λ̄, ᾱ∨)ᾱ (λ ∈ V).

Clearly

wᾱ(λ̄) = wα(λ). (5)

Let W be the subgroup of GL(V) generated by wα, α ∈ R , and W̄ the subgroup
of GL(V̄) generated by wᾱ, α ∈ R . By (SR3), W stabilizes R . Now V̄ is a finite
dimensional real vector space with a positive definite bilinear form, and by (SR4),
(ᾱ, β̄∨) ∈ Z for all α, β ∈ R . Thus R̄ is a finite set (see [1, II. 2.9]). Now we have,

(a) R̄ is a finite set in V̄ which spans V̄ (since R spans V ).

(b) wᾱ(R̄) ⊆ R̄ for any ᾱ ∈ R̄ (by (SR3) and (5)).

(c) (ᾱ, β̄) ∈ Z for all ᾱ, β̄ ∈ R̄ (by (SR4)).

(d) R̄ cannot be decomposed as a disjoint union R̄1] R̄2 where R̄1 and R̄2

are nonempty subsets of R̄ satisfying (R̄1, R̄2) = {0} (by (SR5)).

Thus R̄ is an irreducible finite root system in V̄ .

Now fix a choice of a fundamental system Π̄ = {ᾱ1, ᾱ2, . . . , ᾱ`} for R̄ . Fix
a preimage α̇i in R of ᾱi under − . Let

V̇ = span
R
{α̇1, α̇2, . . . , α̇`}.
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Then V = V̇ ⊕ V0 and − restricted to V̇ is an isometry of V̇ onto V̄ .

Let Ṙ be the image of R under the projection V = V̇ ⊕ V0 → V̇ . Then
− maps Ṙ bijectively onto R̄ . Hence Ṙ is a finite root system in V̇ which is
isomorphic to R̄ under − . Note that

Ṙ = {α̇ ∈ V̇ | α̇ + σ ∈ R for some σ ∈ V0}. (6)

We can write Ṙ = Ṙsh]Ṙ`g]Ṙex where Ṙsh, Ṙlg and Ṙex denote the sets of short,
long and extra long roots of Ṙ , respectively. We make the convention that if Ṙ
is simply laced, then every root is a short root. (Note that Ṙlg and Ṙex might be
empty).

Definition 7. The nullity of R is defined to be the dimension ν of V0 . The
rank and type of R is defined to be the rank and type of the finite root system R̄
(which is the same as the rank and type of Ṙ).

Now set

S = {σ ∈ V0 | α̇ + σ ∈ R for some α̇ ∈ Ṙsh} (8)

L = {σ ∈ V0 | α̇ + σ ∈ R for some α̇ ∈ Ṙlg} ( if Ṙlg 6= Ø) (9)

E = {σ ∈ V0 | α̇ + σ ∈ R for some α̇ ∈ Ṙex} ( if Ṙex 6= Ø). (10)

Set
R̃ = (S + S) ∪R.

We call R̃ the isotropic-extension of R .

We want to show that the isotropic-extension R̃ of R is an EARS. In order
to show this result, we need to establish some lemmas first. Even though some of
the techniques which we will use here seem similar to those in [1, Chapter II], we
must however be careful because we are only allowed to use Saito’s axioms which
are different from those of [1]. Recall that a root α̇ in a finite root system is called
reduced if 1

2
α̇ is not a root.

Lemma 11. If α̇ ∈ Ṙ is reduced, then α̇ ∈ R . That is Ṙsh ∪ Ṙlg ⊆ R .

Proof. Let α̇ ∈ Ṙ . We have ¯̇α ∈ R̄ , and so ¯̇α = rβ̄ where β ∈ R, β̄ is reduced in
R̄ and r ∈ {1, 2} . Then

β̄ = w¯̇αi1
· · ·w¯̇αik

¯̇αik+1
= wα̇i1 · · ·wα̇ik α̇ik+1

for some i1, . . . , ik+1 ∈ {1, 2, . . . , `} . Let β̇ := wα̇i1 · · ·wα̇ik α̇ik+1
. Then β̇ ∈ R ∩ Ṙ

by (SR3), since α̇ij ∈ R∩ Ṙ , for 1 ≤ j ≤ k+ 1. Also β̄ = ¯̇β and so ¯̇α = r ¯̇β . Since
− : V̇ → V̄ is an isometry, we get α̇ = rβ̇, r ∈ {1, 2}. If α̇ is reduced, then r = 1
and so α̇ = β̇ ∈ R , as required.

Let Ẇ be the subgroup of GL(V) generated by wα̇, α̇ ∈ Ṙ . If α̇ ∈ Ṙ , then
α̇ = rβ̇ for some reduced β̇ ∈ Ṙ, r ∈ {1, 2} . By Lemma 11, β̇ ∈ R and so by
(SR3),

wα̇(R) = wrβ̇(R) = wβ̇(R) ⊆ R (α̇ ∈ Ṙ). (12)
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Lemma 13. R = (Ṙsh + S) ∪ (Ṙlg + L) ∪ (Ṙex + E).

Proof. Let α ∈ R ⊆ V = V̇ ⊕ V0 . So α = α̇ + σ for some α̇ ∈ V̇ and
σ ∈ V0 . By (6), α̇ ∈ Ṙ . Now by the way S, L and E are defined, we have
α ∈ (Ṙsh + S) ∪ (Ṙlg + L) ∪ (Ṙlg + E).

For the reverse inclusion, first let α̇ + σ ∈ Ṙsh + S , where α̇ ∈ Ṙsh and
σ ∈ S . By the way S is defined, there exists β̇ ∈ Ṙsh such that β̇ + σ ∈ R . Since
all roots of a given length in Ṙ are conjugate under Ẇ , there exists ẇ ∈ Ẇ such
that ẇβ̇ = α̇ . Now by (12), α̇+σ = ẇβ̇+σ = ẇ(β̇+σ) ∈ ẇ(R) ⊆ R . This shows
that Ṙsh + S ⊆ R. A similar argument shows that (Ṙlg + L) ∪ (Ṙex + E) ⊆ R .
This completes the proof of the Lemma.

Next, we normalize the bilinear form so that

(α̇, α̇) =

{
2 if α̇ ∈ Ṙsh

2k if α̇ ∈ Ṙlg, (if Ṙlg 6= Ø)
(14)

where k = 2 for types X = B`, C`, F4, BC` ; and k = 3 for type X = G2 . Then if
α̇ is an extra long root, that is α̇ is two times a short root, we have (α̇, α̇) = 8.

Note that, up to this point, we have just assumed that R is a SEARS. From
now on we assume that R is a reduced SEARS.

Lemma 15. (i) If Ṙlg 6= Ø, then kS + L ⊆ L and S + L ⊆ S .

(ii) If Ṙex 6= Ø and X = BC`(` ≥ 2), then

L+ 2S ⊆ L, S + L ⊆ S, E + 2L ⊆ E, L+ E ⊆ L and E ∩ 2S = Ø.

(iii) If Ṙex 6= Ø and X = BC1 , then

S + E ⊆ S, 4S + E ⊆ E and 2S ∩ E = Ø.

Proof. (i) Let δ ∈ S and λ ∈ L . There exist α̇ ∈ Ṙsh and β̇ ∈ Ṙlg such that
(α̇, β̇∨) = −1 and (β̇, α̇∨) = −k . By Lemma 13, α̇+ δ, β̇+λ ∈ R . Thus by (SR3),

α̇ + β̇ + δ + λ = wβ̇(α̇) + δ + λ = wβ̇+λ(α̇ + δ) ∈ R,
and

β̇ + kα̇ + kδ + λ = wα̇(β̇) + kδ + λ = wα̇+δ(β̇ + λ) ∈ R.
Now α̇ + β̇ = wβ̇(α̇) ∈ Ṙsh and β̇ + kα̇ = wα̇(β̇) ∈ Ṙlg . Therefore by the way S
and L are defined we have δ + λ ∈ S and kδ + λ ∈ L . This proves (i).

(ii) The proof of the first inclusion is similar to that of part (i). The proofs
of the third and the fourth parts are also similar to that of part (i), replacing
the roles of Ṙsh and Ṙlg with Ṙlg and Ṙex , respectively. To prove E ∩ 2S = Ø,
suppose on the contrary that δ ∈ E ∩ 2S. Then there exists λ ∈ S such that
δ = 2λ . Let α̇ ∈ Ṙsh , then 2α̇ ∈ Ṙex and so by Lemma 13, α̇ + λ ∈ R and
2α̇ + 2λ ∈ R . But this contradicts the fact that R is reduced.

(iii) In this case Ṙ has the form Ṙ = {±α̇,±2α̇} . Now let δ ∈ S and
λ ∈ E. Then ±α̇ + δ ∈ R and ±2α̇ + λ ∈ R . So

w−α̇+δ(2α̇ + λ) = −2α̇ + λ+ 4δ.

Thus λ+ 4δ ∈ E and hence S + 4E ⊆ E . Also

w−2α̇+λ(α̇ + δ) = −α̇ + δ + λ.

Thus δ + λ ∈ S , so E + S ⊆ S . The proof of 2S ∩ E = Ø is similar to that of
part (ii).
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We recall from [1, II.§1] that a semilattice in a finite dimensional real vector
space U is a subset S of U satisfying:

(S1) 0 ∈ S ,

(S2) S ± 2S ⊆ S ,

(S3) S spans U ,

(S4) S is discrete in U .

A nonempty subset S of U which satisfies (S2), (S3) and (S4) is called a translated
semilattice.

Lemma 16. S and L are semilattices in V0 and E is a translated semilattice
in V0 .

Proof. By Lemma 11, Ṙsh∪Ṙlg ⊆ R . So by the way S and L are defined, we have
0 ∈ S and 0 ∈ L . Thus (S1) holds for S and L . For (S2), let δ ∈ S and α̇ ∈ Ṙsh .
Then by Lemma 13, α̇ + δ ∈ R . By (SR3), R = −R , so −α̇ − δ ∈ R . Thus
−δ ∈ S , and S = −S . Now let δ, λ ∈ S and α̇ ∈ Ṙsh . Then α̇ + λ,−α̇ + δ ∈ R
and

wα̇+λ(−α̇ + δ) = α̇ + δ + 2λ.

Thus δ + 2λ ∈ S and so S ± 2S ⊆ S . A similar argument shows

L± 2L ⊆ L, and E ± 2E ⊆ E.

So (S2) holds for S, L and E .

Next, suppose dimV0 = ν . By (SR1), R spans V = V̇ ⊕ V0 and by (SR2),
elements of R are nonisotropic. Since the image of R under the projection V → V0

spans V0, there exists an R-basis {σ1, σ2, . . . , σν} of V0 such that β̇i + σi ∈ R ,
for some β̇i ∈ V̇ . By the way Ṙ, S, L and E are defined we have β̇i ∈ Ṙ and
σi ∈ S ∪L∪E for 1 ≤ i ≤ ν . But by Lemma 15 and the fact that 0 ∈ S , we have
S ∪ L ∪ E = S , so σi ∈ S for 1 ≤ i ≤ ν . Thus S spans V0 . Again by Lemma
15 and the fact that 0 ∈ L , we have kS ⊆ L . Thus L spans V0 . Finally from
Lemma 15 and the fact that E = −E , it follows that 8S ⊆ E+E and so E spans
V0 . Thus (S3) holds for S, L and E . Next we show (S4). Note that by Lemma
13, Ṙsh + S ⊆ R . Since Ṙsh = −Ṙsh, we have 2S ⊆ 〈R〉 . But by (SR1), 〈R〉 is a
lattice in V , so S is a subset of a discrete set and therefore is discrete. By Lemma
15, L ⊆ S and E ⊆ S , so L and E are also discrete.

Lemma 17. (i) If X = A`(` ≥ 2), D`, E`, F4, G2, C`(` ≥ 3), then S is a lattice.

(ii) If X = B`(` ≥ 3), F4, G2, BC`(` ≥ 3), then L is a lattice.

Proof. (i) In this case there exist roots α̇, β̇ ∈ Ṙsh such that (α̇, β̇∨) = −1. Now
if δ, λ ∈ S , then α̇ + δ, β̇ + λ ∈ R , so by (SR3),

wα̇+δ(β̇ + λ) = wȧ(β̇) + (δ + λ) ∈ R.

Since wα̇(β̇) ∈ Ṙsh , we have δ + λ ∈ S . Thus S + S ⊆ S and so S is a lattice.

(ii) In this case there exist roots α̇, β̇ ∈ Ṙlg such that (α̇, β̇∨) = −1. So
using a similar argument as in part (i), we see that L is a lattice.

We are now ready to state the main result of this work.
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Theorem 18. Any reduced SEARS is the set of nonisotropic roots of a unique
EARS . Also the set of nonisotropic roots of any EARS is a reduced SEARS. In
other words, there is a one to one correspondence between EARSs and reduced
SEARSs.

Proof. Let R be a reduced SEARS in a finite dimensional real vector space V .
Let Ṙ, S, L and E be defined by (6), (8), (9) and (10), respectively. As before set
R̃ = (S + S) ∪R . By Lemmas 13 and 16,

R̃ = (S + S) ∪ (Ṙsh + S) ∪ (Ṙlg + L) ∪ (Ṙex + E), (19)

where S and L are semilattices in V0 and E is a translated semilattice in V0 .
By Lemmas 15 and 16 and [1, II.2.36], R̃ is an EARS in V . (We remark here
that the finite root system Ṙ defined by (6) does not contain zero, while the finite
root system Ṙ which appears in [1, II.§2] contains zero. However, the proof of [1,
II.2.36] does not depend on this minor difference and so we can use this theorem
here.) Clearly R̃× = R , that is R is the set of nonisotropic roots of R̃ . To show
the uniqueness, let R̃1 be any EARS in a vector space V ′ containing V as a
subspace such that R̃×1 = R . By (R3) and (R8), R̃× = R = R̃×1 spans V and V ′ ,
so V = V ′ . Now let σ ∈ R̃0

1 , the set of isotropic roots of R̃1 . By (R8), there exists
α ∈ R̃×1 such that α + σ ∈ R̃×1 . Since

R̃×1 = R = (Ṙsh + S) ∪ (Ṙlg + L) ∪ (Ṙex + E),

there exist α̇ ∈ Ṙ and δ ∈ S such that α = α̇ + δ (note that E ⊆ L ⊆ S).
Therefore, σ + δ ∈ S and σ ∈ S + S = R̃0 . Thus R̃0

1 ⊆ R̃0 . A similar argument
shows R̃0 ⊆ R̃0

1 . This finishes the proof of the first statement. The proof of the
second statement is given in Lemma 3.

We close this paper with a few remarks:

Remark 1.1. (i) The type, the rank and the nullity of an EARS are defined
exactly as they are defined for a SEARS (see Definition 7 and [1, II. §2]).

(ii) The axioms for a reduced SEARS are equivalent to axioms for an EARS,
in the following sense. Axioms (R1)-(R8) for an EARS R̃ implies axioms (SR1)-
(SR5) for the SEARS R̃× (by Theorem 18). Also it follows that R̃× is reduced.
Conversely, axioms (SR1)-(SR5) for a reduced SEARS R implies axioms (R1)-(R8)
for the corresponding EARS R̃ .

(iii) When ν = 1, it is shown in [8, §1] that a SEARS satisfies axioms of
[7] for an affine root system. Therefore by (ii) an EARS of nullity 1 is the root
system of an affine Kac–Moody Lie algebra. (This is also shown in [ABGP] and
[3].)

Remark 1.2. (i) Let R be a Saito’s extended affine root system of nullity 2.
According to K. Saito [8], a 1-dimensional subspace G of the radical (·, ·) is called
a marking if G∩〈R〉 is a lattice in G . The pair (R,G) is called a marked SEARS.
It turns out that the image R/G of R in V/G under the natural map is an affine
root system (see [8, §1]). In [8], Saito has classified all marked SEARS (R,G) for
which the affine root system R/G is reduced. It is clear that the reduceness of
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R/G implies the reduceness of R . Thus by Theorem 18, the isotropic-extension of
any marked SEARS (R,G) with R/G reduced, is an EARS. However, the converse
is not true. For example, suppose Ṙ is a finite root system of type BC1 . Consider
a semilattice S and a translated semilattice E as follows. Let

S = Zδ1 ⊕ Zδ2, and E = [2Λ ∪ (Zδ1 ⊕ 2Zδ2) ∪ (2Zδ1 ⊕ Zδ2)] + δ1 + δ2.

Then
R̃ = (S + S) ∪ (Ṙsh + S) ∪ (Ṙex + E)

is an EARS of type BC1 and nullity 2 in V = (span
R
Ṙ)⊕Rδ1 ⊕Rδ2 . However if

we take G = Rδ1 , then R̃×/G is not reduced.

(ii) From (i) we conclude that, in the classification of root systems of nullity
2, we should have more EARSs than marked SEARSs (R,G) with reduced quotient
R/G . Clearly this difference must occur only in BC -type root systems. According
to [1, II. §4], any EARS of type BC`(` ≥ 2) is isomorphic to one and only one
EARS of the form R̃ = (S + S) ∪ (Ṙsh + S) ∪ (Ṙlg + L) ∪ (Ṙex + E), where the
triple (S, L,E) runs through the following table (for notation see [1, Chapter II]):

(S, L, E)
(S(0, δ1, δ2), 2Λ, 4Λ + 2δ1 + 2δ2)

(Λ,Λ(1), 2Λ(1) + δ2)
(Λ,Λ(1), 2Λ + δ2)
(Λ,Λ, 2Λ + δ2)
(Λ,Λ,Λ(1) + δ1)

(Λ,Λ, S(0, δ1, δ2) + δ1 + δ2)

Taking G = Rδ1 , one can see that the affine root systems R̃×/G corre-
sponding to the first and the last triples (S, L,E) given in the above table are not
reduced and the others are reduced. Also any EARS of type BC1 of nullity 2 is iso-
morphic to one and only one EARS of the form R̃ = (S+S)∪(Ṙsh+S)∪(Ṙex+E)
where the pair (S,E) runs through the following table:

(S, E)
(S(0, δ1, δ2), 2Λ, 4Λ + 2δ1 + 2δ2)

(Λ, 2Λ(1) + δ2)
(Λ, 2Λ + δ2)
(Λ,Λ(1) + δ1)

(Λ, S(0, δ1, δ2) + δ1 + δ2)

Again, taking G = Rδ1 , one can see that the affine root systems R̃×/G
corresponding to the first and the last pairs (S,E) given in the above table are
not reduced and the others are reduced. Therefore in the classification of EARS
of nullity 2 in [1, II.§4], for a given rank, there are four more root systems than in
the classification given in [8, §5].
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Remark 1.3. (i) Suppose R is a SEARS and G is a subspace of the radical of
its form such that G ∩ 〈R〉 is a lattice in G . Then according to [8, §1], R/G is a
SEARS. However, in general R/G does not inherit reduceness from R . Also, if R̃
is an EARS and G is a subspace of V0 such that G ∩ 〈R̃〉 is a lattice in G , then
R̃/G is not necessarily an EARS. In fact if R̃ has a type different from BC , then
R̃/G is an EARS but for type BC , it is not always the case. (See [4] and part (ii)
of this remark.)

(ii) In [8], K. Saito classifies the (marked) SEARs of nullity 2, using the
notion of marking. In fact he introduces a notion of marking for SEARS of
arbitrary nullity. A marking for a SEARS is a flag G0 = {0} ⊆ G1 ⊆ · · · ⊆ Gr = V0

of subspaces of V0 such that for each i , Gi ∩ 〈R〉 is a lattice in Gi . Saito gets
the concept of marking from a study of primitive forms for the period mapping of
simple elliptic singularities. He states that “sometimes it is convenient to fix such
a flag for the study of R .”

(iii) In Remark 1.2, we compared the classification of marked SEARSs with
reduced quotient and EARSs for ν = 2, and saw that the notion of marking with
reduced quotient decreases the number of SEARSs appearing in the classification.
Now we would like to see what happens to the classification for nullity 3, if we
apply such a notion of marking.

In [5], EARSs of type BC and nullity 3 are classified. Accordingly, any
EARS of type BC` (` ≥ 3) is isomorphic to one and only one EARS R̃ =
(S + S) ∪ (Ṙsh + S) ∪ (Ṙlg + L) ∪ (Ṙex + E) where the triple (S, L,E) runs
through the following table (for notation see [5]):
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(S, L,E)
1 (Λ,Λ, δ1 + δ2 + S(0, δ1, δ2, δ3))
2 (Λ,Λ, δ1 + δ3 + S(0, δ1, δ2, δ3, δ1 + δ2))
3 (Λ,Λ, δ2 + δ3 + S(0, δ1, δ2, δ3, δ1 + δ2, δ1 + δ3))
4 (Λ,Λ, δ1 + δ2 + δ3 + S(0, δ1, δ2, δ3, δ1 + δ2, δ1 + δ3, δ2 + δ3))

5 (Λ,Λ(1), δ2 + δ3 + 4Λ + S(0, δ2, δ3))

6 (Λ,Λ(1), δ2 + Λ(1,1,2))

7 (Λ,Λ, δ2 + Λ(2))
8 (Λ,Λ, δ1 + 2Λ)
9 (Λ, S(0, δ1, δ2) + Zδ3, δ1 + 2Λ)

10 (Λ,Λ, δ1 + Λ(1))
11 (Λ,Λ, δ1 + 2Λ + S(0, δ2, δ3))
12 (Λ,Λ, δ2 + δ3 + 2Λ + S(0, δ2, δ3))

13 (Λ,Λ(1), δ3 + 2Λ)

14 (Λ,Λ(1), δ2 + Λ(2))
15 (Λ,Λ(1), δ2 + 2Zδ2 + S(0, 2δ1, δ3))

16 (Λ,Λ(2), δ3 + 2Λ)
17 (Λ,Λ(2), δ3 + S(0, 2δ1, 2δ2) + 2Zδ3)
18 (S(0, δ1, δ2) + Zδ3,Λ

(2), δ3 + 2Λ)
19 (S(0, δ1, δ2) + Zδ3,Λ

(2), δ3 + S(0, 2δ1, 2δ2) + 2Zδ3)

20 (S(0, δ1, δ2) + Zδ3,Λ
(2), 2δ1 + 2δ2 + δ3 + 4Zδ1 + S(0, 2δ2, δ3))

21 (Λ,Λ(1), δ2 + δ3 + S(0, 2δ1, δ2, δ3))
22 (Λ,Λ(1), δ2 + δ3 + S(0, 2δ1, δ2, δ3, 2δ1 + δ2))
23 (Λ,Λ(1), δ2 + δ3 + S(0, 2δ1, δ2, δ3, 2δ1 + δ2, 2δ1 + δ3))

24 (S(0, δ1, δ2) + Zδ3,Λ
(2), 2δ1 + 2δ2 + δ3 + S(0, 2δ1, 2δ2, δ3))

25 (S(0, δ1, δ2) + Zδ3,Λ
(2), 2δ1 + 2δ2 + δ3 + S(0, 2δ1, 2δ2, δ3, 2δ1 + 2δ2))

26 (S(0, δ1, δ2, δ3), 2Λ, 2δ1 + 2δ2 + 2δ3 + 2S(0, δ1, δ2, δ3))
27 (S(0, δ1, δ2, δ3), 2Λ, 2δ1 + 2δ2 + 2δ3 + 4Zδ1 + S(0, 2δ2, 2δ3))
28 (S(0, δ1, δ2, δ3, δ2 + δ3), 2Λ, 2δ1 + 2δ2 + 2δ3 + 4Zδ1 + S(0, 2δ2, 2δ3))

29 (S(0, δ1, δ2, δ3), 2Λ, 2δ1 + 2δ2 + 2Λ(2))
30 (S(0, δ1, δ2, δ3, δ2 + δ3), 2Λ, 2δ1 + 2δ2 + 2Λ(2))
31 (S(0, δ1, δ2) + Zδ3, 2Λ, 2δ1 + 2δ2 + 2Λ(2))

32 (Λ,Λ(2), δ3 + Λ(1,2,3))
33 (S(0, δ1, δ2) + Zδ3,Λ

(2), δ3 + 2Λ(1,2,3))

34 (Λ,Λ(2), δ3 + Λ(2,2,3))
35 (S(0, δ1, δ2) + Zδ3,Λ

(2), δ3 + Λ(2,2,3))
36 (S(0, δ1, δ2) + Zδ3,Λ

(2), 2δ1 + 2δ2 + Λ(2,2,3))

37 (Λ,Λ(1), δ2 + Λ(1,1,3))

38 (S(0, δ1, δ2) + Zδ3,Λ
(2), 2δ1 + 2δ2 + Λ(2,2,2))

39 (S(0, δ1, δ2, δ3), 2Λ, 2δ1 + 2δ2 + 4Λ)
40 (S(0, δ1, δ2, δ3, δ1 + δ2), 2Λ, 2δ1 + 2δ3 + 4Λ)
41 (S(0, δ1, δ2, δ3, δ1 + δ2, δ1 + δ3), 2Λ, 2δ2 + 2δ3 + 4Λ)
42 (S(0, δ1, δ2, δ3, δ1 + δ2, δ1 + δ3, δ2 + δ3), 2Λ, 2δ1 + 2δ2 + 2δ3 + 4Λ)
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Taking a marking (R̃×, G1 ⊆ G2) where G1 = Rδ1 and G2 = Rδ1⊕Rδ2 , one
can see that the affine root systems R̃×/G2 corresponding to the triples from lines
1, 2, 4, 8, 9, 11, 20, 24–31, 36, 38, 39, 40 and 42 are not reduced. Also the SEARS
R̃×/G1 corresponding to the triples (S, L,E) from lines 1–4, 6–12, 14, 15, 20–31
and 36–42 are not reduced. Note also that any EARS of type BC1 of nullity 3 is
isomorphic to one and only one EARS of the form R̃ = (S+S)∪Ṙsh+S)∪(Ṙex+E)
where the pair (S,E) runs through the following table:

(S,E)
1 (Λ, δ1 + δ2 + S(0, δ1, δ2, δ3))
2 (Λ, δ1 + δ3 + S(0, δ1, δ2, δ3, δ1 + δ2))
3 (Λ, δ2 + δ3 + S(0, δ1, δ2, δ3, δ1 + δ2, δ1 + δ3))
4 (Λ, δ1 + δ2 + δ3 + S(0, δ1, δ2, δ3, δ1 + δ2, δ1 + δ3, δ2 + δ3))
5 (Λ, δ2 + δ3 + 4Λ + S(0, δ2, δ3))

6 (Λ, δ2 + Λ(1,1,2))

7 (Λ, δ1 + Λ(1))
8 (Λ, δ1 + 2Λ + S(0, δ2, δ3))

9 (Λ, δ2 + Λ(2))
10 (Λ, δ2 + 2Zδ2 + S(0, 2δ1, δ3))
11 (Λ, δ3 + 2Λ)
12 (Λ, δ3 + S(0, 2δ1, 2δ2) + 2Zδ3)
13 (S(0, δ1, δ2) + Zδ3, δ3 + 2Λ)
14 (S(0, δ1, δ2) + Zδ3, δ3 + S(0, 2δ1, 2δ2) + 2Zδ3)
15 (S(0, δ1, δ2) + Zδ3, 2δ1 + 2δ2 + δ3 + 4Zδ1 + S(0, 2δ2, δ3))
16 (Λ, δ2 + δ3 + S(0, 2δ1, δ2, δ3))
17 (Λ, δ2 + δ3 + S(0, 2δ1, δ2, δ3, 2δ1 + δ2))
18 (Λ, δ2 + δ3 + S(0, 2δ1, δ2, δ3, 2δ1 + δ2, 2δ1 + δ3))
19 (S(0, δ1, δ2) + Zδ3, 2δ1 + 2δ2 + δ3 + S(0, 2δ1, 2δ2, δ3))
20 (S(0, δ1, δ2) + Zδ3, 2δ1 + 2δ2 + δ3 + S(0, 2δ1, 2δ2, δ3, 2δ1 + 2δ2))
21 (S(0, δ1, δ2, δ3), 2δ1 + 2δ2 + 2δ3 + 2S(0, δ1, δ2, δ3))
22 (S(0, δ1, δ2, δ3), 2δ1 + 2δ2 + 2δ3 + 4Zδ1 + S(0, 2δ2, 2δ3))
23 (S(0, δ1, δ2, δ3, δ2 + δ3), 2δ1 + 2δ2 + 2δ3 + 4Zδ1 + S(0, 2δ2, 2δ3))

24 (S(0, δ1, δ2, δ3), 2δ1 + 2δ2 + 2Λ(2))
25 (S(0, δ1, δ2, δ3, δ2 + δ3), 2δ1 + 2δ2 + 2Λ(2))
26 (S(0, δ1, δ2) + Zδ3, 2δ1 + 2δ2 + 2Λ(2))

27 (Λ, δ3 + Λ(1,2,3))
28 (S(0, δ1, δ2) + Zδ3, δ3 + 2Λ(1,2,3))

29 (Λ, δ3 + Λ(2,2,3))
30 (S(0, δ1, δ2) + Zδ3, δ3 + Λ(2,2,3))

31 (S(0, δ1, δ2) + Zδ3, 2δ1 + 2δ2 + Λ(2,2,2))
32 (S(0, δ1, δ2, δ3), 2δ1 + 2δ2 + 4Λ)
33 (S(0, δ1, δ2, δ3, δ1 + δ2), 2δ1 + 2δ3 + 4Λ)
34 (S(0, δ1, δ2, δ3, δ1 + δ2, δ1 + δ3), 2δ2 + 2δ3 + 4Λ)
35 (S(0, δ1, δ2, δ3, δ1 + δ2, δ1 + δ3, δ2 + δ3), 2δ1 + 2δ2 + 2δ3 + 4Λ)
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Again taking G1 = Rδ1 and G2 = Rδ1 ⊕ Rδ2 , one can see that the affine
root systems R̃×/G2 corresponding to the pairs from lines 1, 2, 4, 8, 15, 19–26,
31–33 and 35 are not reduced. Also the SEARS R̃×/G1 corresponding to the pairs
(S,E) from lines 1–10, 15–26 and 31–35 are not reduced. The above discussion
shows that applying such a notion of marking with reduced quotients decreases
significantly the number of root systems. It is clear that as the nullity increases,
the number of roots omitted by the notion of marking with reduced quotients also
increases.
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