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Abstract

We study three partition statistics and the q-Stirling and q-Bell numbers that serve
as their generating functions, evaluating these numbers when q = −1. Among the
numbers that arise in this way are (1) Fibonacci numbers and (2) numbers occurring
in the study of fermionic oscillators.

1 Introduction

The notational conventions of this paper are as follows: N := {0, 1, 2, . . . }, P := {1, 2, . . . },
[0] := ∅, and [n] := {1, . . . , n} for n ∈ P. Empty sums take the value 0 and empty
products the value 1, with 00 := 1. The letter q denotes an indeterminate, with 0q := 0,
nq := 1 + q + · · · + qn−1 for n ∈ P, 0 !

q
:= 1, and n !

q
:= 1q2q · · ·nq for n ∈ P. The binomial

coefficient
(

n
k

)

is equal to zero if k is a negative integer or if 0 6 n < k.
Let ∆ be a finite set of discrete structures, with I : ∆→ N. The generating function

G(I,∆; q) :=
∑

δ∈∆

qI(δ) =
∑

k

|{δ ∈ ∆ : I(δ) = k}| qk

is a useful tool for studying the statistic I. Elementary examples include the binomial
theorem,

(1 + q)n =
∑

S⊂[n]

q|S| =
n
∑

k=0

(

n

k

)

qk, (1)

and
n !
q
=
∑

σ∈Sn

qi(σ), (2)
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where Sn is the set of permutations of [n] and i(σ) is the number of inversions in the
permutation σ = i1i2 . . . in, i.e., the number of pairs (r, s) with 1 6 r < s 6 n and ir > is [7,
Corollary 1.3.10].

Of course, G(I,∆; 1) = |∆|. On the other hand,

G(I,∆;−1) = |{δ ∈ ∆ : I(δ) is even}| − |{δ ∈ ∆ : I(δ) is odd}| . (3)

Hence if G(I,∆;−1) = 0, the set ∆ is “balanced” with respect to the parity of I. In
particular, setting q = −1 in (1) yields the familiar result that a finite nonempty set has as
many subsets of odd cardinality as it has subsets of even cardinality. Setting q = −1 in (2)
reveals that if n > 2, then among the permutations of [n] there are as many with an odd
number of inversions as there are with an even number of inversions.

In this note we consider three q-generalizations of Stirling numbers of the second kind,
denoted S∗q (n, k), Sq(n, k), and S̃q(n, k). These polynomials are generating functions for
three closely related statistics on the set of partitions of [n] with k blocks. Most of the
properties of these q-Stirling numbers, to be established below in § 3, have appeared in the
literature in various contexts, Carlitz [1] having apparently been the first to construe these
numbers as generating functions for partition statistics. See also [3], [4], [8], and [9]. Our
aim here is to offer a compact, unified treatment of these numbers. Our analysis is facilitated
by a powerful formal algebraic result of Comtet [2].

We derive in § 4 new results on the evaluation of S∗q (n, k), Sq(n, k), and S̃q(n, k) and their
associated q-Bell numbers (gotten by summing q-Stirling numbers over k for fixed n) when
q = −1. Apart from the interpretation of these results in terms of (3), the evaluation of
S−1(n, k) and its associated Bell numbers may be of additional interest, since these numbers
arise in the study of fermionic oscillators [6].

In § 5 we discuss an alternative approach to establishing our results by means of bijective
proofs.

In § 6 the numbers S∗−1(n, k), S−1(n, k), and S̃−1(n, k) are displayed as triangular arrays
for 1 6 k 6 n 6 8. Here, for immediate reference, we record these arrays in linearized form:

S∗−1(n, k) = −1, 1, −1, −1, 1, 1, 1, −1, −2, 1, −1, 1,
3, −2, −1, 1, −1, −4, 3, 3, −1, −1, 1, 5,

−4, −6, 3, 1, 1, −1, −6, 5, 10, −6, −4, 1, . . .

S−1(n, k) = 1, 1, −1, 1, −1, −1, 1, −1, −2, 1, 1, −1,
−3, 2, 1, 1, −1, −4, 3, 3, −1, 1, −1, −5,

4, 6, −3, −1, 1, −1, −6, 5, 10, −6, −4, 1, . . .

S̃−1(n, k) = 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1,
3, 2, 1, 1, 1, 4, 3, 3, 1, 1, 1, 5,
4, 6, 3, 1, 1, 1, 6, 5, 10, 6, 4, 1, . . .

2 Preliminaries

This section reviews some material to be used later in the paper.
2.1. Comtet Numbers. The following theorem, due to Comtet [2] greatly facilitates the

analysis of many combinatorial arrays:
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Theorem 2.1. Let D be an integral domain. If (un)n>0 is a sequence in D and x is

an indeterminate over D, then the following are equivalent characterizations of an array

(U(n, k))n,k>0:

U(n, k) = U(n− 1, k − 1) + ukU(n− 1, k), ∀ n, k ∈ P, (4)

with U(n, 0) = un0 and U(0, k) = δ0,k ∀ n, k ∈ N,

U(n, k) =
∑

d0+d1+···+dk=n−k
di∈N

ud0

0 u
d1

1 · · · udk

k , ∀ n, k ∈ N, (5)

∑

n>0

U(n, k)xn =
xk

(1− u0x)(1− u1x) · · · (1− ukx)
, ∀ k ∈ N, (6)

and

xn =
n
∑

k=0

U(n, k)pk(x), ∀ n ∈ N, (7)

where p0(x) := 1 and pk(x) := (x− u0) · · · (x− uk−1) for k ∈ P.

Proof. Straightforward algebraic exercise.

In what follows, we call the numbers U(n, k) the Comtet numbers associated with the

sequence (un)n>0.
2.2 Partitions of a Set. A partition of a set S is a set of nonempty, pairwise disjoint

subsets (called blocks) of S, with union S. For all n, k ∈ N, let S(n, k) denote the number of
partitions of [n] with k blocks. Then S(0, 0) = 1, S(n, 0) = S(0, k) = 0, ∀ n, k ∈ P, and

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k), ∀ n, k ∈ P, (8)

S(n − 1, k − 1) enumerating those partitions in which n is the sole element of one of the
blocks, and kS(n − 1, k) those in which the block containing n contains at least one other
element of [n]. From (8) it follows that the numbers S(n, k), called Stirling numbers of the

second kind, are the Comtet numbers associated with the sequence (0, 1, 2, . . . ). Hence by
Theorem 2.1

S(n, k) =
∑

d1+···+dk=n−k
di∈N

1d12d2 · · · kdk , ∀ n, k ∈ N,

∑

n>0

S(n, k)xn =
xk

(1− x)(1− 2x) · · · (1− kx)
, ∀ k ∈ N,

and

xn =
n
∑

k=0

S(n, k)xk, ∀ n ∈ N,
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where x0 := 1 and xk := x(x− 1) · · · (x− k + 1) for k ∈ P.
The total number of partitions of [n] is given by the Bell number Bn, where

Bn =
n
∑

k=0

S(n, k).

Clearly, B0 = 1, and

Bn+1 =
n
∑

k=0

(

n

k

)

Bk,

since
(

n
k

)

Bk enumerates those partitions of [n+ 1] for which the size of the block containing
the element n+ 1 is n− k + 1.

2.3 Restricted Sums of Binomial Coefficients. As we have already noted in § 1, setting
q = 1 and q = −1 in (1) yields the well known result

∑

k even

(

n

k

)

=
∑

k odd

(

n

k

)

= 2n−1, ∀ n ∈ P.

Here we recall a method for evaluating sums such as

∑

k≡0 (mod 3)

(

n

k

)

.

Let ω be either of the two complex cube roots of 1, e.g., ω = (−1 + i
√
3)/2. Then

(1 + x)n + (1 + ωx)n + (1 + ω2x)n =
n
∑

k=0

(

n

k

)

xk
(

1 + ωk + ω2k
)

= 3
∑

k≡0 (mod 3)

(

n

k

)

xk, (9)

since k ≡ 0 (mod 3) implies that 1 + ωk + ω2k = 3 and k ≡ 1 or 2 (mod 3) implies that
1 + ωk + ω2k = 1 + ω + ω2 = 0. Setting x = 1 in (9) yields

∑

k≡0 (mod 3)

(

n

k

)

=
1

3

(

2n + (1 + ω)n + (1 + ω2)n
)

. (10)

3 Partition Statistics and q-Stirling Numbers

Let Π(n, k) denote the set of all partitions of [n] with k blocks. Given a partition π ∈ Π(n, k),
let (E1, . . . , Ek) be the unique ordered partition of [n] comprising the same blocks as π,
arranged in increasing order of their smallest elements, and define statistics w∗, w, and w̃ by

w∗(π) :=
k
∑

i=1

i|Ei|,

w(π) :=
k
∑

i=1

(i− 1)|Ei| = w∗(π)− n,
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and

w̃(π) :=
k
∑

i=1

(i− 1)(|Ei| − 1) = w∗(π)− n−
(

k

2

)

.

If elements of [n] are regarded as labels on n unit masses, then w∗(π) is the moment about
x = 0 of the mass configuration in which the masses with labels in Ei are placed at x = i.
The statistics w(π) and w̃(π) admit of similar interpretations.

We wish to study the generating functions

S∗q (n, k) :=
∑

π∈Π(n,k)

qw
∗(π), (11)

Sq(n, k) :=
∑

π∈Π(n,k)

qw(π) = q−nS∗q (n, k), (12)

and

S̃q(n, k) :=
∑

π∈Π(n,k)

qw̃(π) = q−n−(
k
2)S∗q (n, k). (13)

Each of these polynomials furnishes a q-generalization of S(n, k), reducing to the latter when
q = 1. As closely related as these q-Stirling numbers appear to be, it might be thought that
one could carry out an analysis of any one of them, chosen arbitrarily, with properties of
the others derived as easy corollaries. Interestingly, it turns out that each is best suited for
elucidating a particular subset of their more or less common properties. We consider first
the matter of recursive formulas.

Theorem 3.1. The q-Stirling numbers S∗q (n, k) are generated by the recurrence relation

S∗q (n, k) = qkS∗q (n− 1, k − 1) + qkqS
∗
q (n− 1, k), ∀ n, k ∈ P, (14)

with S∗q (0, 0) = 1 and S∗q (n, 0) = S∗q (0, k) = 0, ∀ n, k ∈ P.

Proof. The boundary conditions are obvious. To establish the recurrence (14), let

c(n, k, t) := |{π ∈ Π(n, k) : w∗(π) = t}| .

Then,

c(n, k, t) = c(n− 1, k − 1, t− k) +
k
∑

i=1

c(n− 1, k, t− i), ∀ n, k ∈ P. (15)

For if w∗(π) = t, with (E1, . . . , Ek) being the ordered partition associated with π, then the
number n ∈ [n] is either (i) in Ek alone (there are clearly c(n − 1, k − 1, t − k) such π’s)
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or (ii) in some Ei, where 1 6 i 6 k, with at least one element of [n − 1] (there are clearly
c(n− 1, k, t− i) such π’s). From (15) it follows that

S∗q (n, k) =
∑

t

c(n, k, t)qt

=
∑

r

c(n− 1, k − 1, r)qr+k +
k
∑

i=1

qi
∑

r

c(n− 1, k, r)qr

= qkS∗q (n− 1, k − 1) + qkqS
∗
q (n− 1, k).

Recurrence relations for Sq(n, k) and S̃q(n, k) follow immediately from (14), along with
(12) and (13), respectively. We have

Sq(n, k) = qk−1Sq(n− 1, k − 1) + kqSq(n− 1, k), ∀ n, k ∈ P, (16)

and

S̃q(n, k) = S̃q(n− 1, k − 1) + kqS̃q(n− 1, k), ∀ n, k ∈ P. (17)

By (17), the numbers S̃q(n, k) are the Comtet numbers associated with the sequence (nq)n>0.
By Theorem 2.1 it follows immediately that

S̃q(n, k) =
∑

d1+···+dk=n−k
di∈N

(1q)
d1(2q)

d2 · · · (kq)dk , ∀ n, k ∈ N, (18)

∑

n>0

S̃q(n, k)x
n =

xk

(1− 1qx)(1− 2qx) · · · (1− kqx)
, ∀ k ∈ N, (19)

and

xn =
n
∑

k=0

S̃q(n, k)φk(x), ∀ n ∈ N, (20)

where φ0(x) := 1 and φk(x) := x(x− 1q) · · · (x− (k − 1)q), ∀ k ∈ P.
Variants of (18)–(20) that hold for Sq(n, k) and S∗q (n, k) follow immediately from the

relations Sq(n, k) = q(
k
2)S̃q(n, k) and S

∗
q (n, k) = qnSq(n, k). To cite a few examples, we have

∑

n>0

S∗(n, k)xn =
q(

k+1
2 )xk

(1− qx)(1− qx− q2x) · · · (1− qx− · · · − qkx)
,

∀ k ∈ N,

and

xn =
n
∑

k=0

Sq(n, k)ψk(x) =
n
∑

k=0

S∗q (n, k)ψk

(

x

q

)

, (21)
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where ψk(x) := q−(
k
2)φk(x).

Using the method of linear functionals [5, pp. 89–90] one can derive from (21) the
recurrence [8, Theorem 5.4]

Sq(n+ 1, k) =
n
∑

j=0

(

n

j

)

qjSq(j, k − 1), ∀ n ∈ N, k ∈ P, (22)

from which the variant recurrences

S∗q (n+ 1, k) = qn+1
n
∑

j=0

(

n

j

)

S∗q (j, k − 1), ∀ n ∈ N, k ∈ P,

and

S̃q(n+ 1, k) =
n
∑

j=0

(

n

j

)

qj−k+1S̃q(j, k − 1), ∀ n ∈ N, k ∈ P (23)

follow immediately.
Summing the q-Stirling numbers S∗q (n, k), Sq(n, k) and S̃q(n, k) over k yields the respec-

tive q-Bell numbers B∗q (n), Bq(n), and B̃q(n). From (22) it follows that

Bq(n+ 1) =
n
∑

j=0

(

n

j

)

qjBq(j), ∀ n ∈ N. (24)

Since B∗q (n) = qnBq(n), the recurrence (24) yields

B∗q (n+ 1) = qn+1
n
∑

j=0

(

n

j

)

B∗q (j), ∀ n ∈ N. (25)

Due to the factor q−k in (23), we do not get any recurrence for B̃q(n) analogous to (24)
and (25), this being the single exception to the general parallelism between properties of the
three q-Stirling numbers under consideration. The uniqueness of B̃q(n) is further manifested
when q = −1, as we shall see in the next section.

4 The Case q = −1

In this section we derive simple expressions for the foregoing q-Stirling and q-Bell numbers
when q = −1.

Theorem 4.1. The number S̃−1(n, k) is given by the formula

S̃−1(n, k) =

(

n−
⌊

k
2

⌋

− 1
⌊

k−1
2

⌋

)

, 1 6 k 6 n. (26)
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Proof. Note that

iq|q=−1 = ωi :=

{

1, if i is odd;

0, if i is even.

Hence by (18), if 1 6 m 6 bn/2c,

S̃−1(n, 2m) =
∑

d1+d3+···+d2m−1=n−2m
di∈N

1 =

(

n−m− 1

m− 1

)

, (27)

since the number of sequences (t1, . . . , tm) of nonnegative integers summing to s is
(

s+m−1
m−1

)

[7, p. 15]. Similarly, if 0 6 m 6 b(n− 1)/2c,

S̃−1(n, 2m+ 1) =

(

n−m− 1

m

)

. (28)

Formula (26) incorporates (27) and (28).

In tabulating the numbers S̃−1(n, k) it is of course more efficient to use the recurrence

S̃−1(n, k) = S̃−1(n− 1, k − 1) + ωkS̃−1(n− 1, k),

representing the case q = −1 of (17).
Let F0 = F1 = 1, with Fn = Fn−1 + Fn−2 if n > 2. As is well known,

Fn =

bn/2c
∑

m=0

(

n−m

m

)

, ∀n ∈ N. (29)

Theorem 4.2. For all n ∈ N,

B̃−1(n) :=
n
∑

k=0

S̃−1(n, k) = Fn. (30)

Proof. It is easy to check that (30) holds for n = 0, 1. If n > 2, then by (27), (28), and
(29),

B̃−1(n) =

b(n−1)/2c
∑

m=0

(

n−m− 1

m

)

+

bn/2c
∑

m=1

(

n−m− 1

m− 1

)

=

b(n−1)/2c
∑

m=0

(

(n− 1)−m

m

)

+

b(n−2)/2c
∑

m=0

(

(n− 2)−m

m

)

= Fn−1 + Fn−2 = Fn.
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From (26) and the fact that S∗q (n, k) = q(
k
2)+nS̃q(n, k), we have

S∗−1(n, k) = (−1)(k
2)+n

(

n−
⌊

k
2

⌋

− 1
⌊

k−1
2

⌋

)

, 1 6 k 6 n.

On the other hand, the Bell numbers B∗−1(n) are quite different from the numbers B̃−1(n).

Theorem 4.3. For all n ∈ N,

B∗−1(n) :=
n
∑

k=0

S∗−1(n, k) =











1, if n ≡ 0 (mod 3);

−1, if n ≡ 1 (mod 3);

0, if n ≡ 2 (mod 3).

(31)

Proof. Noting that B∗−1(0) = 1, we prove (31) by induction on n. In what follows

br(n) :=
∑

j≡r (mod 3)

(

n

j

)

.

From (25) with q = −1, we have

B∗−1(n+ 1) = (−1)n+1
n
∑

j=0

(

n

j

)

B∗−1(j) = (−1)n+1b0(n) + (−1)nb1(n)

= (−1)n+1b0(n) + (−1)nb0(n− 1) + (−1)nb1(n− 1).

Similarly, B∗−1(n) = (−1)nb0(n− 1) + (−1)n−1b1(n− 1), and so

B∗−1(n+ 1) = (−1)n+1b0(n) + 2(−1)nb0(n− 1)−B∗−1(n)

=
1

3

[

ω2n−1 − ω2n−2 + ωn+1 − ωn−1
]

−B∗−1(n), (32)

by (10), where ω is either of the two complex cube roots of 1. Taking n+ 1 = 3m, 3m+ 1,
and 3m+ 2, respectively, in (32) yields

B∗−1(3m) = 1−B∗−1(3m− 1) = 1,

B∗−1(3m+ 1) = 0−B∗−1(3m) = −1, and

B∗−1(3m+ 2) = −1−B∗−1(3m+ 1) = 0.

It is easy to check that one can write (31) more compactly as

B∗−1(n) =
1

1− ω
ωn − ω

1− ω
ω2n,

from which we get the nice exponential generating function

∞
∑

n=0

B∗−1(n)
xn

n!
=

1

1− ω
eωx − ω

1− ω
eω

2x. (33)
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From (26) and the fact that Sq(n, k) = q(
k
2)S̃q(n, k), we have

S−1(n, k) = (−1)(k
2)
(

n−
⌊

k
2

⌋

− 1
⌊

k−1
2

⌋

)

, 1 6 k 6 n.

By (12),

B−1(n) :=
n
∑

k=0

S−1(n, k) = (−1)nB∗−1(n),

and so by (31)

B−1(n) =











(−1)n, if n ≡ 0 (mod 3);

(−1)n+1, if n ≡ 1 (mod 3);

0, if n ≡ 2 (mod 3),

(34)

and by (33)
∞
∑

n=0

B−1(n)
xn

n!
=

1

1− ω
e−ωx − ω

1− ω
e−ω

2x. (35)

In a paper which showed how the numbers S−1(n, k) and B−1(n) arise in the study of
fermionic oscillators, Schork [6] posed the problem of finding a closed form and a generating
function for the numbers B−1(n). Formulas (34) and (35) furnish solutions to Schork’s
problem.

To conclude this section we remark that our list of partition statistics might have been
rounded out to include the statistic

ŵ(π) :=
k
∑

i=1

i(|Ei| − 1) = w̃(π) + n− k,

with generating function

Ŝq(n, k) :=
∑

π∈Π(n,k)

qŵ(π) = q(n−k)S̃q(n, k). (36)

Formula (36) and Theorem 4.1 yield an easy evaluation of Ŝ−1(n, k). As for

B̂−1(n) :=
n
∑

k=0

Ŝ−1(n, k),

we have B̂−1(0) = B̂−1(1) = 1, B̂−1(2) = 0, and

B̂−1(n) = (−1)n−1Fn−3, ∀n > 3, (37)

the proof of which we leave to interested readers.
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5 Bijective Proofs

We conclude by returning to the opening theme of this paper. If G(I,∆;−1) = 0, then,
as already noted, |∆0| = |∆1|, where ∆i = {δ ∈ ∆ : I(δ) ≡ i (mod 2)}. One gains a
deeper understanding (and bijective proof) of such results by identifying an I-parity changing
involution of ∆. For the statistic |S| in (1), the map

S 7→
{

S ∪ {1}, if 1 /∈ S;
S − {1}, if 1 ∈ S,

furnishes such an involution. For the statistic i(σ) in (2), switching positions of the elements
1 and 2 (or of k and k + 1, for any fixed k) in a permutation furnishes such an involution.

A similar task arises when (3) is nonzero. Suppose, for example, thatG(I,∆;−1) = c > 0.
Here one wishes to identify a subset ∆+ of ∆0, with |∆+| = c, and an I-parity changing
involution of ∆−∆+.

My student, Mark Shattuck, has recently succeeded in finding such bijective proofs of
formulas (26), (30), (31), (34), and (37). Details will appear in a forthcoming paper.

6 Tables

Table 1: The numbers S∗−1(n, k) for 1 6 k 6 n 6 8.

k = 1 2 3 4 5 6 7 8

n = 1 −1
2 1 −1
3 −1 1 1
4 1 −1 −2 1
5 −1 1 3 −2 −1
6 1 −1 −4 3 3 −1
7 −1 1 5 −4 −6 3 1
8 1 −1 −6 5 10 −6 −4 1

Table 2: The numbers S−1(n, k) for 1 6 k 6 n 6 8.

k = 1 2 3 4 5 6 7 8

n = 1 1
2 1 −1
3 1 −1 −1
4 1 −1 −2 1
5 1 −1 −3 2 1
6 1 −1 −4 3 3 −1
7 1 −1 −5 4 6 −3 −1
8 1 −1 −6 5 10 −6 −4 1

Table 3: The numbers S̃−1(n, k) for 1 6 k 6 n 6 8.
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k = 1 2 3 4 5 6 7 8

n = 1 1
2 1 1
3 1 1 1
4 1 1 2 1
5 1 1 3 2 1
6 1 1 4 3 3 1
7 1 1 5 4 6 3 1
8 1 1 6 5 10 6 4 1
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