Journal of Integer Sequences, Vol. 7 (2004), Article 04.2.5

On k-colored Motzkin words

A. Sapounakis and P. Tsikouras
Department of Informatics
University of Piraeus
Karaoli \& Dimitriou 80
18534 Piraeus
Greece
arissap@unipl.gr
pgtsik@unipi.gr

Abstract

This paper deals with the enumeration of k-colored Motzkin words according to various parameters, such as the length, the number of rises, the length of the initial rise and the number of prime components.

1 Introduction

There exists an extended literature on Dyck and Motzkin paths and their relationship with many other combinatorial objects [17, 10, 11, 15, 16, 19, 21]. It is well known that the sets of Dyck paths of length $2 n$ and Motzkin paths of length n are enumerated by the Catalan numbers C_{n} (A000108) and the Motzkin numbers M_{n} (A001006), respectively. More generally, there is great interest in k-colored Motzkin paths [2], which have horizontal steps colored by means of k colors.

This paper deals with the set of k-colored Motzkin words (or equivalently paths) and with some subsets of it, defined by various parameters.

In section 2 , some basic definitions and notations referring to the sets \mathcal{M}_{k} and \mathcal{M}_{k}^{c} of (k-colored) Motzkin and c-Motzkin words respectively are given.

In section 园, using the generating functions F_{k} and G_{k} of \mathcal{M}_{k} and \mathcal{M}_{k}^{c} respectively, according to the parameters "length", "number of rises" and "length of the initial rise", the cardinalities of several subsets of \mathcal{M}_{k} are evaluated. Furthermore, using the Lagrange inversion formula, the coefficients of the powers of F_{k} are determined.

Finally, in section π^{4}, the decomposition of the elements of \mathcal{M}_{k}^{c} to prime words is studied. The generating function G_{k} of \mathcal{M}_{k}^{c} according to the three previous parameters and to the parameter "number of prime components" is determined. This is used to show that the number of all $u \in \mathcal{M}_{k}^{c}$ with s prime components and length of the initial rise equal to m is equal to the number of all $u \in \mathcal{M}_{k}^{c}$ with m prime components and length of the initial rise equal to s.

2 Preliminaries

Throughout this paper, let E be an alphabet with $k+2$ letters, where $k \in \mathbb{N}$ and a, \bar{a} are two given elements of E. For $k \neq 0$, the elements of the set $E \backslash\{a, \bar{a}\}=\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{k}\right\}$ are called colors of E. The number of occurrences of the letter $x \in E$ in the word u is denoted by $|u|_{x}$, the length of u by $l(u)$, and the number of rises of u by $r(u)$.

We denote by E^{*} the set which contains all the words with letters in E as well as the empty word ϵ. A word $u \in E^{*}$ is called k-colored Motzkin word if $|u|_{a}=|u|_{\bar{a}}$ and for every factorization $u=w v$ we have $|w|_{\bar{a}} \leq|w|_{a}$.

A Motzkin path of length n is a lattice path of \mathbb{N}^{2} running from $(0,0)$ to $(n, 0)$ that never passes below the x-axis and whose permitted steps are the up diagonal step $(1,1)$, the down diagonal step $(1,-1)$ and the horizontal step $(1,0)$, called rise, fall and level step, respectively. If the level steps are labelled by k colors we obtain the k-colored Motzkin paths.

It is clear that each k-colored Motzkin path is coded by a k-colored Motzkin word $u=$ $u_{1} u_{2} \cdots u_{n} \in E^{*}$ so that every rise (resp., fall) corresponds to the letter a (resp., \bar{a}) and every colored level corresponds to a certain color of E; see Fig. 1.

Figure 1: A 2-colored Motzkin path and its corresponding Motzkin word

We denote by $\mathcal{M}_{k, n}$ (resp., $\mathcal{M}_{k, n, r}$) the set of all $u \in \mathcal{M}_{k}$ with $l(u)=n$ (resp., $l(u)=n$ and $r(u)=r)$ and we set $\mu_{k, n}=\left|\mathcal{M}_{k, n}\right|$ (resp., $\mu_{k, n, r}=\left|\mathcal{M}_{k, n, r}\right|$).

It is well known that if $k=0,1$ we obtain the sets of Dyck and Motzkin words, respectively. The 2-colored Motzkin words have been studied in [9]. More precisely, we have:

$$
\mu_{0, n}=\left\{\begin{array}{ll}
C_{\frac{n}{2}}, & \text { if } n \text { is even; } \\
0, & \text { if } n \text { is odd, }
\end{array} \quad \mu_{1, n}=M_{n}, \quad \mu_{2, n}=C_{n+1}\right.
$$

The 3-colored Motzkin paths correspond to the tree-like polyhexes defined by Harary [13], as we will see in the next section.

Let $u=u_{1} u_{2} \cdots u_{n} \in \mathcal{M}_{k, n}$. Two indices $i, j \in[n]=\{1,2, \ldots, n\}$ with $i<j$ are called conjugates with respect to u if and only if j is the smallest number in $\{i+1, i+2, \ldots, n\}$ for which the segment $u_{i} u_{i+1} \cdots u_{j}$ of u is a k-colored Motzkin word.

A word $u \in \mathcal{M}_{k, n}$ is called (k-colored) c-Motzkin word if and only if every $i \in[n]$ with $u_{i} \notin\{a, \bar{a}\}$, lies between two conjugate indices. It is clear that the c-Motzkin words code exactly those k-colored paths that have no level steps on the x-axis; see Fig. . .

Figure 2: A 2-colored Motzkin path and its corresponding c-Motzkin word

The c-Motzkin words have been introduced and studied in the case $k=1$, [18].
In the following sections we will refer to the sets $\mathcal{M}_{k, n}^{c}=\mathcal{M}_{k}^{c} \cap \mathcal{M}_{k, n}$ and $\mathcal{M}_{k, n, r}^{c}=$ $\mathcal{M}_{k}^{c} \cap \mathcal{M}_{k, n, r}$ with cardinalities $\mu_{k, n}^{c}$ and $\mu_{k, n, r}^{c}$, respectively.

3 Enumeration of sets of k-colored Motzkin words

In this section we evaluate the cardinal number of several subsets of \mathcal{M}_{k} defined by various parameters. We first need the following definition.

The initial rise of a non-empty word $u=u_{1} u_{2} \cdots u_{n} \in \mathcal{M}_{k}$ with $u_{1}=a$ is the segment $u_{1} u_{2} \cdots u_{j}$ where $u_{\nu}=a$ for every $\nu \in[j]$ and $u_{j+1} \neq a$. If $u=\epsilon$ or $u_{1} \neq a$, the initial rise of u is the empty word. We denote by $p(u)$ the length of the initial rise of u.

Let F_{k} and G_{k} be the generating functions of \mathcal{M}_{k} and \mathcal{M}_{k}^{c}, respectively, according to the parameters $l, r, p(\operatorname{coded}$ by $x, y, z)$, i.e.,

$$
F_{k}(x, y, z)=\sum_{u \in \mathcal{M}_{k}} x^{l(u)} y^{r(u)} z^{p(u)}
$$

and

$$
G_{k}(x, y, z)=\sum_{u \in \mathcal{M}_{k}^{c}} x^{l(u)} y^{r(u)} z^{p(u)} .
$$

Proposition 3.1 The generating functions F_{k}, G_{k} are given by the formulae

$$
\begin{equation*}
F_{k}(x, y, z)=\frac{1+k x F_{k}(x, y)}{1-x^{2} y z F_{k}(x, y)} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{k}(x, y, z)=\frac{1}{1-x^{2} y z F_{k}(x, y)} \tag{2}
\end{equation*}
$$

where the generating function $F_{k}(x, y)=F_{k}(x, y, 1)$ satisfies the equation

$$
\begin{equation*}
x^{2} y F_{k}^{2}(x, y)+(k x-1) F_{k}(x, y)+1=0 \tag{3}
\end{equation*}
$$

and hence

$$
\begin{equation*}
F_{k}(x, y)=\frac{1-k x-\sqrt{(1-k x)^{2}-4 x^{2} y}}{2 x^{2} y} \tag{4}
\end{equation*}
$$

Proof: We can easily verify that for $k \neq 0$ each nonempty $u \in \mathcal{M}_{k}$ can be uniquely written in either of the forms $u=\beta_{\nu} v$ for some $v \in \mathcal{M}_{k}$ and $\nu \in[k]$, or $u=a w \bar{a} v$ for some $v, w \in \mathcal{M}_{k}$, where indices $1, l(w)+2$ are conjugates with respect to u.

Obviously, since in the first case $p(u)=0, r(u)=r(v)$ and in the second case $r(u)=$ $r(w)+r(v)+1, p(u)=p(w)+1$, we obtain that

$$
\begin{aligned}
F_{k}(x, y, z) & =1+\sum_{\nu=1}^{k} \sum_{v} x^{l\left(\beta_{\nu} v\right)} y^{r(v)}+\sum_{w, v} x^{l(w)+l(v)+2} y^{r(w)+r(v)+1} z^{p(w)+1} \\
& =1+k x F_{k}(x, y)+x^{2} y z F_{k}(x, y, z) F_{k}(x, y) .
\end{aligned}
$$

Thus,

$$
F_{k}(x, y, z)=\frac{1+k x F_{k}(x, y)}{1-x^{2} y z F_{k}(x, y)}
$$

Moreover, applying the above equality for $z=1$ we deduce that

$$
x^{2} y F_{k}^{2}(x, y)+(k x-1) F_{k}(x, y)+1=0
$$

The proof of (11) for $k=0$ follows as above with some simple modifications.
The proof of (2) is similar and it is omitted.

Remark The generating function F_{k} can be obtained as an application of a continued fraction result [12]. More precisely if we apply theorem 1 of 12 by counting the rises by $x y$, the falls by x and the level steps by $k x$ we conclude that

$$
F_{k}(x, y)=\frac{1}{1-k x-\frac{x^{2} y}{1-k x-\frac{x^{2} y}{1-k x-\frac{x^{2} y}{\cdots}}}}
$$

which easily leads to equation (3).
Example We compute the number of k-colored c-Motzkin words of length n, for $k=1$ and $k=2$, using the generating functions $C(x)$ and $M(x)$ of Catalan and Motzkin numbers, respectively. For this we use formula (2) for the generating function $G_{k}(x)=G_{k}(x, 1,1)$ of \mathcal{M}_{k}^{c} according to the length.

1) For $k=1$, we have that

$$
\begin{aligned}
G_{1}(x) & =\frac{1}{1-x^{2} F_{1}(x)}=\frac{1}{1-x^{2} M(x)}=\frac{1+x M(x)}{1+x} \\
& =\left(\sum_{n=0}^{\infty}(-1)^{n} x^{n}\right)\left(\sum_{n=0}^{\infty} \gamma_{n} x^{n}\right) \\
& =\sum_{n=0}^{\infty}\left(\sum_{i=0}^{n}(-1)^{i} \gamma_{n-i}\right) x^{n},
\end{aligned}
$$

where

$$
\gamma_{n}= \begin{cases}M_{n-1}, & \text { if } n \geq 1 \\ 0, & \text { if } n=0\end{cases}
$$

Thus,

$$
\mu_{1, n}^{c}=\sum_{i=0}^{n}(-1)^{i} \gamma_{n-i}=\sum_{i=0}^{n-2}(-1)^{i} M_{n-i-1}
$$

for every $n \geq 2$.
We note that from the above formula we deduce that for every $n \geq 2$,

$$
\mu_{1, n}^{c}+\mu_{1, n-1}^{c}=M_{n-1}
$$

which implies that the number of c-Motzkin paths of length n is equal to the number of Motzkin paths of length $n-1$ with at least one level step on the x-axis [14].
2) For $k=2$ and since

$$
F_{2}(x)=\sum_{n=0}^{\infty} \mu_{2, n} x^{n}=\sum_{n=0}^{\infty} C_{n+1} x^{n}=\frac{1}{x}[C(x)-1]=C^{2}(x),
$$

we obtain that

$$
G_{2}(x)=\frac{1}{1-x^{2} C^{2}(x)}
$$

So, the generating function $G_{2}(x)$ coincides with the generating function of Fine numbers f_{n} [因] and hence we conclude that $\mu_{2, n}^{c}=f_{n}$.

In the following result we give recursive formulae for the sequences $\mu_{k, n, r}$ and $\mu_{k, n}$.
Proposition 3.2 For every $k, \nu, n, r \in \mathbb{N}$ with $r \leq\left[\frac{n}{2}\right]$ we have that

$$
\begin{equation*}
\mu_{k+\nu, n, r}=\sum_{m=2 r}^{n}\binom{n}{m} \mu_{k, m, r} \nu^{n-m}=\sum_{m=2 r}^{n}\binom{n}{m} \mu_{\nu, m, r} k^{n-m} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{k+\nu, n}=\sum_{m=0}^{n}\binom{n}{m} \mu_{k, m} \nu^{n-m}=\sum_{m=0}^{n}\binom{n}{m} \mu_{\nu, m} k^{n-m} \tag{6}
\end{equation*}
$$

Proof: From relation (国) we easily obtain that

$$
F_{k+\nu}(x, y)=\frac{F_{k}\left(\frac{x}{1-\nu x}, y\right)}{1-\nu x}=\frac{F_{n}\left(\frac{x}{1-k x}, y\right)}{1-k x}
$$

for every $k, \nu \in \mathbb{N}$.
On the other hand, we have that

$$
\begin{aligned}
\frac{F_{k}\left(\frac{x}{1-\nu x}, y\right)}{1-\nu x} & =\sum_{m=0}^{\infty} \sum_{r=0}^{\left[\frac{m}{2}\right]} \mu_{k, m, r} x^{m} y^{r} \frac{1}{(1-\nu x)^{m+1}} \\
& =\sum_{m=0}^{\infty} \sum_{r=0}^{\left[\frac{m}{2}\right]} \mu_{k, m, r} x^{m} y^{r} \sum_{j=0}^{\infty}\binom{-m-1}{j}(-\nu x)^{j} \\
& =\sum_{m=0}^{\infty} \sum_{r=0}^{\left[\frac{m}{2}\right]} \sum_{j=0}^{\infty} \mu_{k, m, r}\binom{m+j}{j} \nu^{j} x^{j+m} y^{r} \\
& =\sum_{n=0}^{\infty} \sum_{r=0}^{\left[\frac{n}{2}\right]}\left[\sum_{m=2 r}^{n} \mu_{k, m, r}\binom{n}{m} \nu^{n-m}\right] x^{n} y^{r} .
\end{aligned}
$$

It follows that

$$
\mu_{k+\nu, n, r}=\sum_{m=2 r}^{n}\binom{n}{m} \mu_{k, m, r} \nu^{n-m} .
$$

Moreover, using the above relations we obtain that

$$
\mu_{k+\nu, n}=\sum_{r=0}^{\left[\frac{n}{2}\right]} \mu_{k+\nu, n, r}=\sum_{m=0}^{n}\binom{n}{m} \nu^{n-m} \sum_{r=0}^{\left[\frac{m}{2}\right]} \mu_{k, m, r}=\sum_{m=0}^{n}\binom{n}{m} \mu_{k, m} \nu^{n-m} .
$$

The proofs of the second parts of relations (5) and (6) are similar and they are omitted.
Remark 1 Since

$$
\mu_{0, m, r}= \begin{cases}C_{r}, & \text { if } m=2 r \\ 0, & \text { if } m \neq 2 r\end{cases}
$$

and

$$
\mu_{0, m}= \begin{cases}C_{\frac{m}{2}}, & \text { if } m \text { is even } \\ 0, & \text { if } m \text { is odd }\end{cases}
$$

setting $\nu=0$ in relations (5) and (6) we obtain that

$$
\begin{equation*}
\mu_{k, n, r}=\binom{n}{2 r} C_{r} k^{n-2 r}=\frac{1}{n+1}\binom{n+1}{r+1, r, n-2 r} k^{n-2 r} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{k, n}=\sum_{r=0}^{\left[\frac{n}{2}\right]}\binom{n}{2 r} C_{r} k^{n-2 r} \tag{8}
\end{equation*}
$$

which give (for $k=1$) the well-known corresponding relations for Motzkin words [1].
Furthermore, for $k=2$, relation (8) gives the well-known relation of Touchard

$$
C_{n+1}=\sum_{r=0}^{\left[\frac{n}{2}\right]}\binom{n}{2 r} 2^{n-2 r} C_{r} .
$$

Remark 2 From relation (6) we can easily deduce relations

$$
\begin{equation*}
\mu_{k+1, n}=\sum_{m=0}^{n}\binom{n}{m} \mu_{k, m} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{k+1, n+1}=\sum_{m=0}^{n}\binom{n}{m}\left(\mu_{k, m}+\mu_{k, m+1}\right) . \tag{10}
\end{equation*}
$$

It is easy to check that from the above two relations, for $k=0$ and $k=1$, relations ($\mathbb{\mathbb { L }}$), (2), (3) and (4) of (10) follow.

Remark 3 Applying relation (8) for $k=2$, we obtain the number of all 3-colored Motzkin words of length n :

$$
\mu_{3, n}=\sum_{m=0}^{n}\binom{n}{m} C_{m+1} .
$$

This number also gives the cardinality of the set of all tree-like polyhexes with $n+1$ hexagons (A002212) (for detailed definitions see [13]), which can be coded by the 3-colored Motzkin words in the following, recursive way:

If the polyhex consists of the root hexagon $A B C D E F$ only (with root edge $A B$), then the corresponding 3 -colored Motzkin word is ϵ. If the polyhex consists of $n+1$ hexagons, then we have the following cases: If the only points of $A B C D E$ with degree 3 are $C, D(D, E$ or E, F, respectively) then the corresponding $u \in \mathcal{M}_{3, n}$ is $\beta_{1} w\left(\beta_{2} w\right.$ or $\beta_{3} w$, respectively), where the word $w \in \mathcal{M}_{3, n-1}$ corresponds to the polyhex with n hexagons and root edge $C D$ ($D E$ or $E F$, respectively) that we obtain if we delete the points of the root hexagon that have degree 2, as well as the edges incident with these points; see Fig. 园 a,b,c.

Figure 3: The recursive coding of polyhexes

If on the other hand the only points of the root hexagon with degree 3 are C, D, E, F then the corresponding $u \in \mathcal{M}_{3, n}$ is the word $a w_{1} \bar{a} w_{2}$, where w_{1} (resp., w_{2}) is the 3-colored Motzkin word which corresponds to the polyhex with less than n-hexagons and root edge $C D$ (resp., $E F$) that we obtain if we delete the points A, B as well as the edges $A B, B C$, $D E$ and $F A$; see Fig. ${ }^{3}$ d.

We continue by evaluating the coefficients of the powers of $F_{k}(x, y)$.
Proposition 3.3 The coefficients of $F_{k}^{s}(x, y)$, with $s \in \mathbb{N}^{*}$, are given by the formula

$$
\begin{equation*}
\left[x^{n} y^{r}\right] F_{k}^{s}=\frac{s}{n+s}\binom{n+s}{s+r, r, n-2 r} k^{n-2 r} \tag{11}
\end{equation*}
$$

where $n, r \in \mathbb{N}$, with $r \leq\left[\frac{n}{2}\right]$.
Proof: We define the function $H(x)=x F_{k}(x, y)$. It follows easily by equation (3) that

$$
H(x)=x\left[y H^{2}(x)+k H(x)+1\right] .
$$

Thus, if we set $P(\lambda)=y \lambda^{2}+k \lambda+1$ we obtain that $H(x)=x P(H(x))$ and $P(0)=1$. Using Lagrange inversion formula [20] we obtain

$$
\left[x^{n}\right] H^{s}=\frac{1}{n}\left[\lambda^{n-1}\right]\left\{s \lambda^{s-1}(P(\lambda))^{n}\right\} .
$$

Moreover, we have

$$
\begin{aligned}
\frac{s}{n} \lambda^{s-1}(P(\lambda))^{n} & =\frac{s}{n} \lambda^{s-1} \sum_{i=0}^{n}\binom{n}{i} \lambda^{i}(y \lambda+k)^{i} \\
& =\frac{s}{n} \lambda^{s-1} \sum_{i=0}^{n}\binom{n}{i} \lambda^{i} \sum_{\nu=0}^{i}\binom{i}{\nu} y^{\nu} \lambda^{\nu} k^{i-\nu} \\
& =\frac{s}{n} \sum_{m=0}^{2 n} \sum_{\nu=(m-n)^{+}}^{\left[\frac{m}{2}\right]}\binom{n}{m-\nu}\binom{m-\nu}{\nu} k^{m-2 \nu} y^{\nu} \lambda^{m+s-1}
\end{aligned}
$$

where $(m-n)^{+}=\max \{0, m-n\}$.
Thus, for $m=n-s$ we deduce that

$$
\left[x^{n}\right] H^{s}=\frac{s}{n} \sum_{\nu=0}^{\left[\frac{n-s}{2}\right]}\binom{n}{n-s-\nu}\binom{n-s-\nu}{\nu} k^{n-s-2 \nu} y^{\nu}
$$

for every $n \geq s$.
Finally, applying the above equality for $n+s$ instead of s and setting $\nu=r$, we conclude that

$$
\begin{aligned}
{\left[x^{n} y^{r}\right] F_{k}^{s} } & =\frac{s}{n+s}\binom{n+s}{n-r}\binom{n-r}{r} k^{n-2 r} \\
& =\frac{s}{n+s}\binom{n+s}{s+r, r, n-2 r} k^{n-2 r}
\end{aligned}
$$

We note that relation (7) is a special case of relation (11), for $s=1$.
We use the last proposition in order to prove the following result:
Proposition 3.4 The number of all $u \in \mathcal{M}_{k, n, r}^{c}$ that have initial rise of length s is equal to

$$
\left[x^{n} y^{r} z^{s}\right] G_{k}=\frac{s}{n-s}\binom{n-s}{r, r-s, n-2 r} k^{n-2 r}
$$

where $1 \leq s \leq r \leq\left[\frac{n}{2}\right]$.
Proof: By relation (2) and proposition 3.3 we obtain that

$$
\begin{aligned}
{\left[x^{n} y^{r} z^{s}\right] G_{k} } & =\left[x^{n} y^{r} z^{s}\right]\left\{\sum_{s=0}^{\infty} x^{2 s} y^{s} F_{k}^{s}(x, y) z^{s}\right\} \\
& =\left[x^{n} y^{r}\right]\left\{x^{2 s} y^{s} F_{k}^{s}(x, y)\right\} \\
& =\left[x^{n-2 s} y^{r-s}\right] F_{k}^{s} \\
& =\frac{s}{n-s}\binom{n-s}{r, r-s, n-2 r} k^{n-2 r} .
\end{aligned}
$$

Using proposition 3.1 and the same arguments as in the proof of proposition 3.4 we obtain the following result:

Proposition 3.5 The number of all $u \in \mathcal{M}_{k, n, r}$ that have initial rise of length s is equal to

$$
\left[x^{n} y^{r} z^{s}\right] F_{k}=\frac{n s-r s+n+s-2 r}{(n-s)(n-s+1)}\binom{n-s+1}{r+1, r-s, n-2 r} k^{n-2 r}
$$

where $1 \leq s \leq r \leq\left[\frac{n}{2}\right]$.
Notice that if $n=2 r$ then both propositions 3.4 and 3.5 give the number of Dyck words with prescribed height of the first peak [6].

4 Decomposition into prime words

A non-empty word $u \in \mathcal{M}_{k}^{c}$ is called prime if and only if it is not the product of two nonempty c-Motzkin words. It is clear that the k-colored Motzkin paths coded by a prime word are the paths whose only intersections with the x -axis are their initial and final points. It is evident that the word $u \in \mathcal{M}_{k}$ is prime if and only if the indices $1, l(u)$ are conjugates with respect to u.

The following result, known for Dyck 17 and c-Motzkin 118 words is naturally extended to k-colored c-Motzkin words.

Proposition 4.1 Every $u \in \mathcal{M}_{k}^{c}$ is uniquely decomposed into a product of prime words.
It is clear that the words $u \in \mathcal{M}_{k, n}^{c}$ which are decomposed into s prime words (components) are the ones whose corresponding k-colored Motzkin paths meet the x-axis at exactly $s-1$ points, in addition to the points $(0,0)$ and $(n, 0)$.

In this section, among others, the number of all $u \in \mathcal{M}_{k, n}^{c}$ with a fixed number of prime components is evaluated. This is a well-known result in the case of $k=0$ (i.e., for Dyck words, [7, 17]) and it is extended here for arbitrary k. For this, we consider one more parameter d of \mathcal{M}_{k}^{c}, defined by the number of prime components. Let G_{k} be the generating function of \mathcal{M}_{k}^{c} according to the parameters $l, r, p, d(\operatorname{coded}$ by $x, y, z, \phi)$, i.e.,

$$
G_{k}(x, y, z, \phi)=\sum_{u} x^{l(u)} y^{r(u)} z^{p(u)} \phi^{d(u)} .
$$

Proposition 4.2 The generating function $G_{k}(x, y, z, \phi)$ is given by the formula

$$
G_{k}(x, y, z, \phi)=1+\frac{x^{2} y z \phi\left(1+k x F_{k}(x, y)\right)}{\left(1-x^{2} y z F_{k}(x, y)\right)\left(1-x^{2} y \phi F_{k}(x, y)\right)} .
$$

Proof: Every non-empty $u \in \mathcal{M}_{k}^{c}$ can be uniquely written in the form $u=a w \bar{a} v$, where $w \in \mathcal{M}_{k}, v \in \mathcal{M}_{k}^{c}, r(u)=r(w)+r(v)+1, p(u)=p(w)+1$ and $d(u)=d(v)+1$. Thus, by proposition 3.1 follows that

$$
\begin{aligned}
G_{k}(x, y, z, \phi) & =1+\sum_{w, v} x^{l(w)+l(v)+2} y^{r(w)+r(v)+1} z^{p(w)+1} \phi^{d(w)+1} \\
& =1+x^{2} y z \phi\left(\sum_{w} x^{l(w)} y^{r(w)} z^{p(w)}\right)\left(\sum_{v} x^{l(v)} y^{r(v)} \phi^{d(v)}\right) \\
& =1+x^{2} y z \phi F_{k}(x, y, z) G_{k}(x, y, 1, \phi) \\
& =1+x^{2} y z \phi \frac{1+k x F_{k}(x, y)}{1-x^{2} y z F_{k}(x, y)} G_{k}(x, y, 1, \phi)
\end{aligned}
$$

Further, applying the previous equality for $z=1$ and using relation (3) we conclude that

$$
G_{k}(x, y, 1, \phi)=\frac{1}{1-x^{2} y \phi F_{k}(x, y)}
$$

which implies the required formula.
Remark Since $G_{k}(x, y, 1, \phi)=G_{k}(x, y, z, 1)$, we obtain that the parameters p and d are equidistributed. This is a well-known result for Dyck paths, i.e., for the case $k=0$, see [7, 5, [6, 7].

Furthermore, since $G_{k}(x, y, z, \phi)=G_{k}(x, y, \phi, z)$ we obtain the following result.
Proposition 4.3 The number of all $u \in \mathcal{M}_{k, n, r}^{c}$ with s prime components and length of the initial rise equal to m, is equal to the number of all $u \in \mathcal{M}_{k, n, r}^{c}$ with m prime components and length of the initial rise equal to s.

Proposition 4.3 can also be proved directly, by constructing an involution of \mathcal{M}_{k}^{c} as follows:

We first define the mapping

$$
\phi:\left\{u \in \mathcal{M}_{k}^{c}: p(u) \geq 2\right\} \rightarrow\left\{u \in \mathcal{M}_{k}^{c}: d(u) \geq 2\right\}
$$

such that if $u=a a w \bar{a} v \bar{a} z$ with $w, v \in \mathcal{M}_{k}, z \in \mathcal{M}_{k}^{c}, l(w)+3$ conjugate of 2 and $l(w)+l(v)+4$ conjugate of 1 , then $\phi(u)=a w \bar{a} a v \bar{a} z$. Obviously, ϕ is a bijection. Next we define the mapping

$$
\theta: \mathcal{M}_{k}^{c} \rightarrow \mathcal{M}_{k}^{c}
$$

with $\theta(u)=\phi^{p(u)-d(u)}(u)$, for every $u \in \mathcal{M}_{k}^{c}$; (here ϕ^{j} stands for $\left.\phi \circ \cdots \circ \phi\right)$. This mapping is well defined, with $l(\theta(u))=l(u)$ and $r(\theta(u))=r(u)$.

It is easy to check, by induction on the number $\nu(u)=|p(u)-d(u)|$ that $p(\theta(u))=d(u)$ and $d(\theta(u))=p(u)$ for every $u \in \mathcal{M}_{k}^{c}$. It follows that θ is the required involution of \mathcal{M}_{k}^{c}.

In order to construct $\theta(u)$ from $u \in \mathcal{M}_{k}^{c}$, we note that if $p(u)=d(u)$ then $\theta(u)=u$. If $p(u)>d(u)$, we delete the first $\nu(u) a$'s of u and we insert one a after each \bar{a} of u which corresponds to a conjugate of $2,3, \ldots, \nu(u)+1$. Finally, if $p(u)<d(u)$, we add $\nu(u) a$'s in the beginning of u, whereas we delete the initial a from each one of the 2 nd, 3 rd, \ldots, $(\nu(u)+1)$ st prime component of u.

For example, for
we obtain

This is illustrated by the corresponding 2-colored paths of u and $\theta(u)$ in Fig. ⿴囗

Figure 4: The 2-colored Motzkin paths corresponding to u and $\theta(u)$

Remark From propositions 3.4 and 4.3 follows that the number of all $u \in \mathcal{M}_{k, n, r}^{c}$ with s prime components is equal to

$$
\frac{s}{n-s}\binom{n-s}{r, r-s, n-2 r} k^{n-2 r},
$$

where $1 \leq s \leq r \leq\left[\frac{n}{2}\right]$.
This extends a well-known result on Dyck words (i.e., for $k=0$) [7, 17], to k-colored c-Motzkin words for arbitrary k.

Furthermore, by summing the above numbers for all $s \in[r]$ we easily obtain that the number of all k-colored c-Motzkin words of length n, with r rises is given by the formula

$$
\mu_{k, n, r}^{c}=\frac{1}{n-r+1}\binom{n}{r}\binom{n-r-1}{r-1} k^{n-2 r} .
$$

This formula has been proved for $k=1$ in a different way (18).

References

[1] L. Alonzo, Uniform generation of a Motzkin word, Theoret. Comput. Sci., 134 (1994), 529-536.
[2] E. Barrucci, A. Del Lungo, E. Pergola and R. Pinzani, A construction for enumerating k-coloured Motzkin paths, Proc. of the First Annual International Conference on Computing and Combinatorics, Springer, 1995, pp. 254-263.
[3] S. Benchekroun and P. Moszkowski, A new bijection between ordered trees and legal bracketings, European J. Combin. 17 (1996), 605-611.
[4] E. Deutsch, A bijection on Dyck paths and its consequences, Discrete Math. 179 (1998), 253-256.
[5] E. Deutsch, A bijection on Dyck paths and its consequences-Corrigendum, Discrete Math. 187 (1998), 297.
[6] E. Deutsch, An involution on Dyck paths and its consequences, Discrete Math. 204 (1999), 163-166.
[7] E. Deutsch, Dyck path enumeration, Discrete Math. 204 (1999), 167-202.
[8] E. Deutsch and L. Shapiro, A survey of the Fine numbers, Discrete Math. 241 (2001), 241-265.
[9] E. Deutsch and L. W. Shapiro, A bijection between ordered trees and 2-Motzkin paths, and its many consequences, Discrete Math. 256 (2002), 655-670.
[10] R. Donaghey, Restricted plane tree representations on four Motzkin-Catalan equations, J. Combin. Theory Ser. B 22 (1977), 114-121.
[11] R. Donaghey and L. W. Shapiro, Motzkin numbers, J. Combin. Theory Ser. A 23 (1977), 291-301.
[12] P. Flajolet, Combinatorial aspects of continued fractions, Discrete Math. 32 (1980), 125-161.
[13] F. Harary and R. C. Read, The enumeration of tree-like polyhexes, Proc. Edinbourgh Math. Soc. 17 (1970), 1-13.
[14] K. N. Manoj, Problem 10816, Amer. Math. Monthly, attp://www.geocities.com/ kummini/maths/10816.ps
[15] T. Mansour, Counting peaks at height k in a Dyck path, J. Integer Seq. 5 (2002), Article 02.1.1.
[16] P. Paert and W.-J. Woan, Dyck paths with no peaks at height k, J. Integer Seq. 4 (2001), Article 01.1.3.
[17] A. Panayotopoulos and A. Sapounakis, On the prime decomposition of Dyck words, J. Combin. Math. Comb. Comput. 40 (2002), 33-39.
[18] A. Panayotopoulos and A. Sapounakis, On Motzkin words and noncrossing partitions, Ars Combin. 69 (2003), 109-116.
[19] R. Pattisina and V. Vajnovszki, On the reconstruction of a Motzkin tree from its code, J. Inf. Optim. Sci. 24 (2003), 583-589.
[20] R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press, 1999.
[21] R. A. Sulanke, Bijective recurrences for Motzkin paths, Adv. in Appl. Math. 27 (2001), 627-640.

2000 Mathematics Subject Classification: Primary 05A15; Secondary 05A19.
Keywords: Motzkin words, Motzkin numbers, Dyck words, Catalan numbers, Polyhexes.
(Concerned with sequences A000108, A001006 and A002212.)

Received April 1 2004; revised version received June 8 2004. Published in Journal of Integer Sequences, June 82004.

Return to Journal of Integer Sequences home page.

