
23 11

Article 04.2.4
Journal of Integer Sequences, Vol. 7 (2004),2

3

6

1

47

Partitions Excluding Specific Polygonal
Numbers As Parts

James A. Sellers
Department of Mathematics

The Pennsylvania State University
University Park, PA 16802
sellersj@math.psu.edu

Abstract

Many results appear in the literature involving partitions of an integer n into parts
which are certain polygonal numbers (such as triangular numbers or squares). However,
few results appear which deal with partition functions that exclude specific polygonal
numbers as parts. We consider such functions in this note, and prove two families of
partition identities.

1 Introduction

A partition λ of the nonnegative integer n is a sequence of nonnegative integers λ1 ≥ λ2 ≥
· · · ≥ λr with λ1 + λ2 + · · · + λr = n. Each value λi, 1 ≤ i ≤ r, is called a part of the
partition. In this note, we consider partitions of n with parts related to k-gonal numbers for
some fixed integer k ≥ 3.

Various works have appeared involving partitions into polygonal parts. For example, M.
D. Hirschhorn and the author have written a number of papers on partitions into a specified
number of triangular numbers or squares [3]–[5]. Also, Andrews [2, Theorem 4.1] considers
partitions into an unlimited number of triangular numbers. (Several sequences related to
such partitions appear in Sloane’s Online Encyclopedia of Integer Sequences [6], including
A001156, A002635, A002636, and A007294.)

In contrast, few results appear in the literature in which polygonal numbers are excluded
as parts. Andrews [1, Corollary 8.5] highlights one such instance when he considers the
number of partitions of n with no square parts. Interestingly enough, Sloane [6] recently
published this sequence of values (A087153) in August 2003.

Our goal here is two-fold. First, we consider Andrews’ result above and extend it to all
2k-gons for k ≥ 2. Afterwards, we prove a similar result for 2k + 1-gons.
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Some brief comments on polygonal numbers, or k-gons, are in order. For a fixed integer
k ≥ 3, the nth k-gonal number is given by

(

k − 2

2

)

n2 −

(

k − 4

2

)

n.

So, for example, the 3-gonal numbers, or triangular numbers (A000217), are given by

(

3− 2

2

)

n2 −

(

3− 4

2

)

n =
n2

2
+
n

2

while the 4-gons, or squares (A000290), are given by

(

4− 2

2

)

n2 −

(

4− 4

2

)

n = n2.

2 Partitions Excluding 2k–gons as Parts

We now state Andrews’ result [1, Corollary 8.5].

Theorem 2.1. Let p1(n) be the number of partitions of n wherein each part i appears at
most i− 1 times and let p2(n) be the number of partitions of n with no square parts. Then,
for all nonnegative integers n, p1(n) = p2(n).

Before proving this result, which involves a straightforward generating function argument,
we consider one example to confirm our result. The partitions of the integer 6 (with no
restrictions on the parts) are given by

6, 5 + 1, 4 + 2, 4 + 1 + 1, 3 + 3, 3 + 2 + 1, 3 + 1 + 1 + 1, 2 + 2 + 2,

2 + 2 + 1 + 1, 2 + 1 + 1 + 1 + 1, and 1 + 1 + 1 + 1 + 1 + 1.

Note that those partitions above with no square parts are

6, 3 + 3, and 2 + 2 + 2,

while those wherein each part i appears at most i− 1 times are

6, 4 + 2, and 3 + 3.

Thus, p1(6) = p2(6) = 3.
We now turn to a generating function proof of Theorem 2.1.

Proof. First, it is clear that

∞
∑

n=0

p2(n)q
n =

∞
∏

i=1

1− qi2

1− qi

=
1− q1

1− q1
·
1− q4

1− q2
·
1− q9

1− q3
·
1− q16

1− q4
· · ·
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Next, we note that each of the ratios in the product above can be rewritten as a finite
geometric series thanks to the following fact:

1− xaj

1− xa
= 1 + xa + x2a + · · ·+ x(j−1)a (1)

Hence, we see that
∞
∑

n=0

p2(n)q
n can be written as

(1)(1 + q2)(1 + q3 + q6)(1 + q4 + q8 + q12)(1 + q5 + q10 + q15 + q20) · · ·

or
∞
∏

i=1

(1 + qi + q2i + · · ·+ qi(i−1)).

This is the generating function for p1(n), which yields the result.

What fundamentally drives the proof above is the fact that i | i2 for each positive integer
i, as this allows for the use of (1) in our proof. This insight allows us to extend Theorem 2.1
in a natural fashion.

Theorem 2.2. Let k ≥ 2 be a fixed integer. Let p3(n, k) be the number of partitions of n
wherein each part i appears at most (k − 1)(i − 1) times and let p4(n, k) be the number of
partitions of n wherein no 2k–gons can be used as parts. Then, for all nonnegative integers
n, p3(n, k) = p4(n, k).

Note that Theorem 2.1 is just a corollary of Theorem 2.2 upon setting k = 2.

Proof. As above, the proof we provide here is simply a generating function manipulation.
From (1) we see that

1− q(
2k−2

2 )i2−( 2k−4

2 )i

1− qi
= 1 + qi + q2i + · · ·+ qi[(k−1)i−(k−2)−1].

Hence,

∞
∑

n=0

p4(n, k)q
n =

∞
∏

i=1

1− q(
2k−2

2 )i2−( 2k−4

2 )i

1− qi

=
∞
∏

i=1

(

1 + qi + q2i + · · ·+ qi[(k−1)i−(k−2)−1]
)

=
∞
∏

i=1

(

1 + qi + q2i + · · ·+ qi(k−1)(i−1)
)

after simplification.

This last infinite product is, by definition, the generating function for p3(n, k), which proves
the theorem.
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3 Partitions Excluding 2k + 1–gons as Parts

One may naturally ask whether a similar result exists for partitions of n which contain no
2k+1–gons as parts. Unfortunately, a perfect analogue does not exist, because it is not the
case that i divides

(

2k + 1− 2

2

)

i2 −

(

2k + 1− 4

2

)

i

for all positive integers i. However, it is the case that such divisibility occurs when i is odd.
Indeed,

(

2k + 1− 2

2

)

(2j − 1)2 −

(

2k + 1− 4

2

)

(2j − 1)

= (2j − 1)

[(

2k − 1

2

)

(2j − 1)−

(

2k − 3

2

)]

= (2j − 1)(j(2k − 1)− (2k − 2))

so that 2j − 1 divides the (2j − 1)st 2k + 1–gon. This observation leads to the following
result.

Theorem 3.1. Let p5(n, k) be the number of partitions of n wherein the part 2i− 1 (i ≥ 1)
appears at most (2k − 1)(i − 1) times (and the frequency of the even parts is unbounded).
Let p6(n, k) be the number of partitions of n wherein no odd–subscripted 2k + 1–gons can be
used as parts. Then, for all nonnegative integers n, p5(n, k) = p6(n, k).

An example may be beneficial before proving Theorem 3.1. We consider the case where
n = 10 and k = 1. The partitions enumerated by p5(10, 1) are those wherein no 1s and at
most one 3, two 5s, and three 7s can appear as parts (and even parts can appear with no
restrictions on their number of occurrences). These partitions are as follows:

10, 8 + 2, 7 + 3, 6 + 4, 6 + 2 + 2, 5 + 5,

5 + 3 + 2, 4 + 4 + 2, 4 + 2 + 2 + 2, and 2 + 2 + 2 + 2 + 2

On the other hand, those partitions enumerated by p6(10, 1) are those in which odd–subscripted
triangular numbers are not allowed as parts. (These unallowed parts would be 1, 6, 15, . . . .)
These partitions are as follows:

10, 8 + 2, 7 + 3, 5 + 5, 5 + 3 + 2, 4 + 4 + 2,

4 + 3 + 3, 4 + 2 + 2 + 2, 3 + 3 + 2 + 2, and 2 + 2 + 2 + 2 + 2

Hence, p5(10, 1) = p6(10, 1).

Proof. It is clear that

∞
∑

n=0

p6(n, k)q
n =

∞
∏

i=1

(

1− q(
2k+1−2

2 )(2i−1)2−( 2k+1−4

2 )(2i−1)

1− qi

)

.
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This can be manipulated to yield

∞
∏

i=1

(

1− q(2i−1)[( 2k+1−2

2 )(2i−1)−( 2k+1−4

2 )]

(1− q2i−1)(1− q2i)

)

=
∞
∏

i=1

1

(1− q2i)
·
(

1 + q2i−1 + q(2i−1)2 + · · ·+ q(2i−1)(2ik−i−2k+2−1)
)

=
∞
∏

i=1

1

(1− q2i)
·
(

1 + q2i−1 + q(2i−1)2 + · · ·+ q(2i−1)(2k−1)(i−1))
)

.

This last infinite product is the generating function for p5(n, k), which completes the proof
of Theorem 3.1.

4 Closing Thoughts

Several thoughts are fitting as we close. First, for those dissatisfied with the concise gener-
ating function proofs given above for Theorems 2.1, 2.2, and 3.1, we offer a combinatorial
proof of Theorem 2.1 which is generalizable to proofs of Theorems 2.2 and 3.1.

Combinatorial Proof of Theorem 2.1. We provide a bijection between the partitions counted
by p1(n) and those counted by p2(n). The bijection is described as follows. Let λ be a
partition counted by p2(n), and assume that the part λi appears in λ exactly `i times. If
`i < λi, then we map these `i occurrences of λi to themselves. Next, we consider those parts
λi such that `i ≥ λi. This means that we can sum many of these copies of λi to obtain at
least one copy of λ2

i . We build as many copies of λ2
i as possible in this fashion. If there are

some “leftover” copies of λi which could not be used to build an additional copy of λ2
i , then

these copies of λi are simply mapped to themselves. Now we iterate the process. If there are
fewer than λ2

i copies of λ
2
i at this stage, then we map them to themselves. However, if there

are at least λ2
i copies of λ2

i , then we sum them to obtain as many copies of λ4
i as possible.

We continue in this iterative fashion until it is no longer possible to create additional squares
of the form λ2j

i . The result is the corresponding partition counted by p1(n).
The inverse of this function is straightforward. Namely, the nonsquare parts in the

partition λ∗ counted by p1(n) are mapped to themselves. Then each of the square parts in
λ∗ are reduced (via square roots) in an iterative fashion until no squares are present. The
result is the original partition counted by p2(n).

An example of this bijection may prove useful. First, note the following partitions of the
integer 36:

2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2

3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3

6 + 6 + 6 + 6 + 6 + 6
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All three of these partitions are counted by p2(36). Their corresponding partitions via
the above bijection are

16 + 16 + 4, 9 + 9 + 9 + 9, and 36

respectively. Moreover, it is clear from the proof given above that these three partitions
counted by p1(36) are mapped back to the appropriate partitions via the inverse map de-
scribed.

As a more complete example, we provide a list of some of the partitions counted by
p1(18) and p2(18). Note that those partitions counted by p1(18) which do not contain any
square parts are simply mapped to themselves, so these partitions have been omitted from
this table. In the left–hand column below, we present the 22 partitions counted by p1(18)
which contain at least one square part, and we write these in lexicographical order. In the
right–hand column we present the corresponding partitions counted by p2(18) as generated
by the bijection described above.

16 + 2 ←→ 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2

14 + 4 ←→ 14 + 2 + 2

12 + 4 + 2 ←→ 12 + 2 + 2 + 2

11 + 4 + 3 ←→ 11 + 3 + 2 + 2

10 + 4 + 4 ←→ 10 + 2 + 2 + 2 + 2

9 + 9 ←→ 3 + 3 + 3 + 3 + 3 + 3

9 + 7 + 2 ←→ 7 + 3 + 3 + 3 + 2

9 + 6 + 3 ←→ 6 + 3 + 3 + 3 + 3

9 + 5 + 4 ←→ 5 + 3 + 3 + 3 + 2 + 2

9 + 4 + 3 + 2 ←→ 3 + 3 + 3 + 3 + 2 + 2 + 2

8 + 6 + 4 ←→ 8 + 6 + 2 + 2

8 + 4 + 4 + 2 ←→ 8 + 2 + 2 + 2 + 2 + 2

8 + 4 + 3 + 3 ←→ 8 + 3 + 3 + 2 + 2

7 + 7 + 4 ←→ 7 + 7 + 2 + 2

7 + 5 + 4 + 2 ←→ 7 + 5 + 2 + 2 + 2

7 + 4 + 4 + 3 ←→ 7 + 3 + 2 + 2 + 2 + 2

6 + 6 + 4 + 2 ←→ 6 + 6 + 2 + 2 + 2

6 + 5 + 4 + 3 ←→ 6 + 5 + 3 + 2 + 2

6 + 4 + 4 + 4 ←→ 6 + 2 + 2 + 2 + 2 + 2 + 2

6 + 4 + 3 + 3 + 2 ←→ 6 + 3 + 3 + 2 + 2 + 2

5 + 5 + 4 + 4 ←→ 5 + 5 + 2 + 2 + 2 + 2

5 + 4 + 4 + 3 + 2 ←→ 5 + 3 + 2 + 2 + 2 + 2 + 2

We close by noting that Andrews treats Theorem 2.1 as a special case of a broader theorem
on partition ideals of order one. Indeed, all the theorems in this paper fall into this genre,
so that they can be proven with his technique as well.
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