Journal of Integer Sequences, Vol. 7 (2004), Article 04.1.4

The Greatest Common Divisor of Two Recursive Functions

Jan-Christoph Schlage-Puchta and Jürgen Spilker
Mathematisches Institut
Eckerstr. 1
79104 Freiburg
Germany
jcp@math.uni-freiburg.de
Juergen.Spilker@math.uni-freiburg.de

Abstract

Let g, h be solutions of a linear recurrence relation of length 2 . We show that under some mild assumptions the greatest common divisor of $g(n)$ and $h(n)$ is periodic as a function of n and compute its mean value.

1. Problems and Results

Let a, b be coprime integers, $b \neq 0$, and consider the recurrence relation

$$
\begin{equation*}
f(n+2)=a f(n+1)+b f(n), \quad n \in \mathbb{N}_{0} \tag{1}
\end{equation*}
$$

Let $g, h: \mathbb{N}_{0} \rightarrow \mathbb{Z}$ be solutions of ((B^{2}) with

$$
\begin{equation*}
|g(n)|+|h(n)|>0 \tag{2}
\end{equation*}
$$

for all $n \in \mathbb{N}_{0}$. We define the gcd function $t(n)=\operatorname{gcd}(g(n), h(n))$ and consider two problems.
Problem 1. Under which conditions on g and h is the function $t(n)$ periodic?
Problem 2. If $t(n)$ is periodic, what is the mean value of $t(n)$?
We first need a
Definition. We call a function $f: \mathbb{N}_{0} \rightarrow \mathbb{Z}$ periodic and $q \in \mathbb{N}$ a period of f, iff there exists some $n_{0} \in \mathbb{N}_{0}$ such that $f(n)=f(n+q)$ for all $n \geq n_{0}$. If one can choose $n_{0}=0, f$ is called simply periodic.

In this note we prove the following two theorems．
Theorem 1．Let $g, h: \mathbb{N}_{0} \rightarrow \mathbb{Z}$ be solutions of（）satisfying（2），and assume that $c:=$ $g(1) h(0)-g(0) h(1) \neq 0$ ．Then
（a）the function $t(n)$ is periodic，moreover，if $\operatorname{gcd}(b, c)=1$ ，it is simply periodic；
（b）every common period of $g(n) \bmod |c|$ and $h(n) \bmod |c|$ is a period of $t(n)$ ；
（c）for all $n \in \mathbb{N}_{0}$ we have $t(n) \mid c$ ．
Theorem 2．Let $g, h: \mathbb{N}_{0} \rightarrow \mathbb{Z}$ be solutions of（⿴囗）satisfying（2），and assume that $g(0)=0$ ， $g(1)=1, c:=h(0) \neq 0$ and $\operatorname{gcd}(b, c)=1$ ．Then the mean value of $t(n)$ equals $\sum_{d \mid c} \frac{\varphi(d)}{k(d)}$ ， where $k(d):=\min \{n \in \mathbb{N}: d \mid g(n)\}$ ．

Examples．1．In the case $g(0)=0, g(1)=1, h(0)=2, h(1)=a$ ，McDaniel［1］has shown， that $t(n)$ is 1 or 2 for $n \in \mathbb{N}$ ．This follows also from our Theorem 1 （c）．If further $a=b=1$ ， we obtain the Fibonacci function（resp．，Lucas function）．Since $g(n) \bmod 2$ and $h(n) \bmod 2$ are simply periodic with period 3 ，we get

$$
t(n)=\left\{\begin{array}{lll}
2, & n \equiv 0 & (\bmod 3) ; \\
1, & n \not \equiv 0 & (\bmod 3)
\end{array}\right.
$$

with mean value $\frac{4}{3}$ ．This is a well－known result（see e．g．，［2］，［3］）．
2．Defining g and h by $a=1, b=2, g(0)=h(0)=1, g(1)=2, h(1)=0$ ，we obtain the gcd function

$$
t(n)= \begin{cases}1, & n=0 \\ 2, & n \geq 1\end{cases}
$$

which is periodic，but not simply periodic．
Remarks．1．The assumption $\operatorname{gcd}(a, b)=1$ in Theorem 1 is necessary，since for every common divisor d of a and b we have

$$
d^{n} \mid t(2 n), \quad n \in \mathbb{N} .
$$

If $d>1, t(n)$ is unbounded，hence not periodic．
2．The gcd functions of recurrences of higher order need not be periodic．The companion polynomial $(x-1)(x-2)(x-3)$ corresponds to

$$
f(n+3)=6 f(n+2)-11 f(n+1)+6 f(n), \quad n \in \mathbb{N}_{0}
$$

It has solutions $g(n)=2^{n+1}-1$ and $h(n)=3^{n+1}-1$ with $c=-2$ ．If $p \geq 5$ is a prime，and $n \equiv-1(\bmod p-1)$ ，then

$$
t(n)=\operatorname{gcd}\left(2^{n+1}-1,3^{n+1}-1\right) \equiv 0 \quad(\bmod p)
$$

and $t(n) \geq p$ ；hence，$t(n)$ is not bounded and a forteriori not periodic．
3．The function $\ell(d)$ does not depend on the period q of $t(n) \bmod d$ ．If $f(n)$ is the solution of（罒）with initial values $f(0)=0, f(1)=1$（the generalized Fibonacci function），one can take any period q of $f(n) \bmod d$ ：We have

$$
g(n)=(g(1)-a g(0)) f(n)+g(0) f(n+1), \quad n \in \mathbb{N}_{0}
$$

hence，q is a period of $g(n) \bmod d$ ，and similarly for $h(n) \bmod d$ ，thus q is a period of $t(n) \bmod d$ ，too．

4．The mean value M of $t(n)$ depends only on the determinant c of the initial values of g and h ．It is unbounded as a function of $m=|c|$ ，even if $g(0)=0, g(1)=1$ ，since $k(d) \leq d 4^{\omega(d)}$ （see［3］）implies

$$
M \geq \sum_{d \mid m} \frac{\varphi(d)}{d 4^{\omega(d)}}=\prod_{p^{j} \| m}\left(1+\frac{p-1}{4 p} j\right) \geq\left(\frac{9}{8}\right)^{\omega(m)}
$$

5．The assumption $\operatorname{gcd}(b, c)=1$ in Theorem 2 is necessary，however，there is always some n_{0} such that the function $\tilde{t}(n)=t\left(n+n_{0}\right)$ has the same mean value as $t(n)$ and the mean value formula holds true for \tilde{t} ．

2．Proofs

We first need two lemmas，which are well－known for the classical Fibonacci function（see （2］）．

Lemma 1．Let $f: \mathbb{N}_{0} \rightarrow \mathbb{Z}$ be a solution of（1），and $d \in \mathbb{N}$ ．Then the function $n \mapsto$ $f(n) \bmod d$ is periodic，and simply periodic if $\operatorname{gcd}(b, d)=1$ ．

Proof．There are positive integers $n_{1}<n_{2}$ ，such that both $f\left(n_{1}\right) \equiv f\left(n_{2}\right)(\bmod d)$ and $f\left(n_{1}+1\right) \equiv f\left(n_{2}+1\right)(\bmod d)$ ．Then $q=n_{2}-n_{1}$ is a period of $f(n) \bmod d$ ，since by（四）， $f(n+q) \equiv f(n)(\bmod d)$ for all $n \geq n_{1}$ ．Assume that $f\left(n_{0}+q\right) \not \equiv f\left(n_{0}\right)(\bmod d)$ ，and choose n_{0} maximal with this property．Then by（罒），we have mod d the congruences

$$
\begin{aligned}
b f\left(n_{0}\right) & =f\left(n_{0}+2\right)-a f\left(n_{0}+1\right) \\
& \equiv f\left(n_{0}+q+2\right)-a f\left(n_{0}+q+1\right) \\
& =b f\left(n_{0}+q\right)
\end{aligned}
$$

If $\operatorname{gcd}(b, d)=1$ ，this gives the contradiction $f\left(n_{0}\right) \equiv f\left(n_{0}+q\right)(\bmod d)$ ．
Lemma 2．Let $f: \mathbb{N}_{0} \rightarrow \mathbb{Z}$ be the generalized Fibonacci solution of（⿴囗），i．e．，$f(0)=0, f(1)=$ 1．Then
（a） $\operatorname{gcd}(f(n), f(n+1))=1, n \in \mathbb{N}_{0}$ ；
（b）$f(m+n)=f(m+1) f(n)+b f(m) f(n-1), m \in \mathbb{N}_{0}, n \in \mathbb{N}$ ；
（c）if $d, n \in \mathbb{N}$ ，and $k(d)=\min \{n \in \mathbb{N}: d \mid f(n)\}$ ，then $(d|f(n) \Leftrightarrow k(d)| n)$ ．
Proof．（a）．Let p be a prime，and n be the least integer with $p|f(n), p| f(n+1)$ ；in particular， $n>1$ ．The equation $f(n+1)=a f(n)+b f(n-1)$ implies $p \mid b f(n-1)$ ，hence，$p \mid b$ ．Similarly， $f(n)=a f(n-1)+b f(n-2)$ implies $p \mid a f(n-1)$ ，thus $p \mid a$ ．This contradicts the assumption $\operatorname{gcd}(a, b)=1$ ．
（b）．This follows by induction on n ．
（c）．Let $L:=\left\{n \in \mathbb{N}_{0}: d \mid f(n)\right\}$ ．If $m, n \in L$ ，we get $m+n \in L$ by（b）．，and if $m>n$ ，we have $f(m)=f(m-n) f(n+1)+b f(m-n-1) f(n)$ ，hence，$d \mid f(m-n) f(n+1)$ ，so $m-n \in L$ by（a）．Take $n \in L$ and write $n=m k(d)+t$ with $0 \leq t<k(d)$ ．Since $t=n-m k(d) \in L$ ， we have $t=0$ and $L=k(d) \cdot \mathbb{N}_{0}$ ．This proves the last claim．

Proof of Theorem 1．Let $f: \mathbb{N}_{0} \rightarrow \mathbb{Z}$ be the solution of（罒）with initial values $f(0)=$ $0, f(1)=1$ ．We have

$$
\begin{equation*}
c f(n)=h(0) g(n)-g(0) h(n), \quad n \in \mathbb{N}_{0}, \tag{3}
\end{equation*}
$$

since both sides solve (\mathbb{D}^{2}) , and the initial values are 0 and c. Similarly,

$$
\begin{equation*}
c f(n+1)=(a h(0)-h(1)) g(n)-(a g(0)-g(1)) h(n), \quad n \in \mathbb{N}_{0} . \tag{4}
\end{equation*}
$$

Fix $n \in \mathbb{N}_{0}$ and let t be a common divisor of $g(n)$ and $h(n)$. Then $t \mid c(f(n), f(n+1))$ by (3) and (目), hence $t \mid c$ by Lemma 2 (a) From this we deduce

$$
\begin{equation*}
t(n) \mid c, \quad \text { for all } n \in \mathbb{N}_{0} \tag{5}
\end{equation*}
$$

By Lemma 1, a common period q of $g(n) \bmod |c|$ and $h(n) \bmod |c|$ exists, so, by (5),

$$
t(n)=\operatorname{gcd}(g(n), h(n), c)=\operatorname{gcd}(g(n+q), h(n+q), c)=t(n+q), \quad \text { if } n \geq n_{0}
$$

This proves Theorem 1.
Proof of Theorem 2. Set $m:=|c|$, and let q be a period of $t(n) \bmod m$, which exists by Lemma 1. Then, since t is simply periodic, the mean value of $t(n)$ is

$$
M=\frac{1}{q} \sum_{1 \leq n \leq q} t(n)
$$

and by Theorem 1 (c), this quantity is equal to $\frac{1}{q} \sum_{d \mid m} d \ell(d)$, where $\ell(d)=\#\{n \leq q$: $\operatorname{gcd}(t(n), m)=d\}$. Further, we have

$$
M=\frac{1}{q} \sum_{1 \leq n \leq q} \operatorname{gcd}(t(n), m)=\frac{1}{q} \sum_{s \mid m} s\left(\sum_{\substack{1 \leq n \leq q \\ \operatorname{gcd}(t(n), m)=s}} 1\right)
$$

Since

$$
\sum_{k \mid n} \mu(k)= \begin{cases}1, & n=1 \tag{6}\\ 0, & n>1\end{cases}
$$

the inner sum can be written as

$$
\sum_{\substack{1 \leq n \leq q \\ s \backslash t(n)}} \sum_{k \mid \operatorname{gcd}(t(n) / s, m / s)} \mu(k)=\sum_{k \left\lvert\, \frac{m}{s}\right.}\left(\mu(k) \sum_{\substack{1 \leq n \leq q \\ s k \mid t(n)}} 1\right) .
$$

Set $d:=s k$; then

$$
M=\sum_{d \mid m}\left(\ell(d) \sum_{k \mid d} \mu(k) \frac{d}{k}\right) .
$$

We use $\sum_{d \mid n} \varphi(d)=n$ together with (6) and see $\sum_{k \mid d} \mu(k) \frac{d}{k}=\varphi(d)$. Hence,

$$
M=\frac{1}{q} \sum_{d \mid m} \varphi(d) \#\{n \leq q: d \mid t(n)\}
$$

Since $g(0)=0, g(1)=1$, we have

$$
h(n)=(h(1)-a h(0)) g(n)+h(0) g(n+1),
$$

and by Lemma 2 (a), we obtain

$$
t(n)=\operatorname{gcd}(g(n), h(0) g(n+1))=\operatorname{gcd}(g(n), h(0))=\operatorname{gcd}(g(n), m)
$$

We finally get by Lemma 2 (c) for every $d \mid m$

$$
\#\{n \leq q: d \mid t(n)\}=\sum_{\substack{1 \leq n \leq q \\ d \backslash g(n)}} 1=\sum_{\substack{1 \leq n \leq q \\ k(d) \backslash n}} 1=\frac{q}{k(d)}
$$

and Theorem 2 is proven.

References

[1] W. L. McDaniel, The g.c.d in Lucas sequences and Lehmer number sequences. Fibonacci Quart. 29 (1991), 24-29.
[2] V. E. Hoggatt, Fibonacci and Lucas numbers, Boston etc.: Houghton Mifflin Company IV, 1969.
[3] D. D. Wall, Fibonacci series modulo m, Amer. Math. Monthly 67 (1960), 525-532.

2000 Mathematics Subject Classification: Primary 11B37; Secondary 11B39, 11A05.
Keywords: Greatest common divisor, recursive functions, periodic functions, mean values.

Received October 8 2003; revised version received January 27 2004. Published in Journal of Integer Sequences, February 162004.

Return to Journal of Integer Sequences home page.

