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Abstract

A convolution summability method introduced as an extension of the random-walk

method generalizes the classical Euler, Borel, Taylor and Meyer-König type matrix

methods. This corresponds to the distribution of sums of independent and identically

distributed integer-valued random variables. In this paper, we discuss the strong regu-

larity concept of Lorentz applied to the convolution method of summability. Later, we

obtain the summability functions and absolute summability functions of this method.

1 Introduction

The methods that sum all almost convergent sequences are called strongly regular. We will
show in section 2 that the matrix transformation corresponding to the regular convolution
method generated by an independent and identically distributed sequence of aperiodic non-
negative integer-valued random variables with finite third moment and positive variance is
strongly regular.

Summability functions [7] in some sense determine the strength of the regularity of
method for bounded sequences. It may also be used to show that Tauberian conditions
of a certain kind may not be improved. Under the existence of first three moments, in sec-
tion 3, it is shown that Ω(n) = o(

√
n) are the summability functions for the convolution

methods, thus extending some of previously known results for other methods such as Borel
and Euler. The optimality of class of summability functions is also ascertained to show that
all functions of the form, Ω(n) = o(

√
n) (are only these functions) are summability func-

tions for the C(p, q) methods with some moment conditions. We conclude this paper with a
discussion of absolute summability functions for this method.
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The discussion will now revolve around the following types of summability methods [11]
and [13]. This is a larger class of summability methods that includes random-walk method
and many others.

Definition 1 Let {pk}k≥0 and {qk}k≥0 be two sequences of nonnegative numbers with
∑∞

k=0 pk = 1 and
∑∞

k=0 qk = 1. Define a summability matrix, C = [Cn,k], whose entries

are given by C0,k = qk and Cn+1,k := (Cn,· ∗ p)k =
∑k

j=0 pjCn,k−j for n, k ≥ 0. The matrix C
is called a convolution summability matrix.

A useful probabilistic interpretation of C is the following. Let Y,X1, X2, . . . be a sequence
of independent non-negative integer valued random variables such that Y has probability
function q and theX ′

is are identically distributed with probability function p. Let S0 = Y and
Sn = Y +X1+ . . .+Xn for n ≥ 1. Let {pj}j≥0 and {qj}j≥0 be the probability distributions of

X1, X2, . . . and Y respectively. The nth row kth column entry of the convolution summability
matrix C is the probability Cn,k = P (Sn = k). The method C is regular if and only if P (X1 =
0) < 1 [6]. Some classical summability methods are examples of the method C. For instance,
when Y = 0 and X1 ∼ Binomial(1, 1), then C becomes the Euler method denoted by Er.
When Y ∼ X1 ∼ Poisson(1) we get the Borel matrix method. When Y ∼ Geometric(1− r)
and X1 ∼ Y + 1, then we get the Taylor method. And when Y ∼ X1 ∼ Geometric(1 − r)
we get the Meyer-König method. We shall call C a convolution method and when Y = 0
with probability 1, it is called the random-walk method. The method C can be extended to
non-identically distributed random variables (for example, Jakimovski family of summability
methods [13]); however, it will serve our purpose adequately for the time being, as it is. The
regular convolution summability matrix {Cn,k≥0}, referred to everywhere in this paper has
the above construction with appropriate moment conditions and in section 4 with finite
moment generating function of {Xi, i ≥ 1}.

2 Strong Regularity

Given below is a definition of almost convergence of a sequence, which is as we see, a
generalization of ordinary convergence.

Definition 2 A bounded sequence {xi}i≥0 is called almost convergent, if there is a number
s such that

lim
`→∞

xn + xn+1 + . . .+ xn+`−1
`

= s holds uniformly in n.

We denote s by Lim xn.

Example 1 For a complex z on the boundary of the unit circle Limzn = 0 holds everywhere
except for z = +1, as follows from

1

`
(zn + zn+1 + · · ·+ zn+`−1) =

zn

`

(1− z`

1− z

)

.

We now use the following theorem of Lorentz [7]. For more details on these concepts, see
[7].
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Theorem 1 (Lorentz [7]) In order that regular matrix method (transformation) A = {an,k}
sum all almost convergent sequences, it is necessary and sufficient that

lim
n→∞

∞
∑

k=0

|an,k − an,k+1| = 0.

In view of the above result, we now give below the definition for strong regularity of an
almost convergent sequence.

Definition 3 A summability method A is called strongly regular, if for any almost conver-
gent sequence {xi}i≥0 with Limxn = l, we have limn→∞(Ax)n = l.

Lorentz [7] showed that the Cesàro method Cα of order α > 0 and the Euler method Er,
with parameter r, are strongly regular. In an attempt to generalize these results, we will
prove that the random-walk method is strongly regular for a probability function with finite
third moment. Then using this result, we show that the convolution summability method is
also strongly regular.

Theorem 2 Let ξ1, ξ2, ξ3, . . . be an i.i.d. sequence of aperiodic nonnegative integer-valued
random variables with finite third moment and positive variance. Then the matrix transfor-
mation corresponding to the random-walk method of the above sequence of random variables
is strongly regular.

Prior to the proof of this theorem, we need an important theorem due to Bikelis and
Jasjunas [1], which gives the rate of convergence for the central limit theorem:

Theorem 3 (Bikelis & Jasjunas [1]) For a sequence {ξi}i≥1, i.i.d. aperiodic nonnegative
integer-valued random variables with mean µ, positive variance σ2, and finite third moment,
the following holds:

∞
∑

j=−∞
(1 + |j − nµ

σ
√
n
|3)|P (Sn = j)− 1

σ(2πn)
1
2

exp{−1

2
(j − nµ)2/(nσ2)}| = O(n−1/2),

where Sn = ξ1 + · · ·+ ξn.

Proof of theorem 2

As suggested in Theorem 1, we now consider

∞
∑

k=0

|an,k+1 − an,k| =
∞
∑

k=0

|P (Sn = k + 1)− P (Sn = k)|, where Sn =
n
∑

i=0

ξi and ξ0 = 0.

If the mean of ξi is µ and standard deviation of ξi is σ, we write

∞
∑

k=0

|P (Sn = k + 1)− P (Sn = k)|
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=
∞
∑

k=0

|{P (Sn = k + 1)− 1

σ(2πn)
1

2

exp{−1

2
(k + 1− nµ)2/(nσ2)}}

+{ 1

σ(2πn)
1

2

exp{−1

2
(k − nµ)2/(nσ2)} − P (Sn = k)}

+{ 1

σ(2πn)
1

2

exp{−1

2
(k + 1− nµ)2/(nσ2)} − 1

σ(2πn)
1

2

exp{−1

2
(k − nµ)2/(nσ2)}}|

≤
∞
∑

k=0

|P (Sn = k + 1)− 1

σ(2πn)
1

2

exp{−1

2
(k + 1− nµ)2/(nσ2)}|

+
∞
∑

k=0

| 1

σ(2πn)
1
2

exp{−1

2
(k − nµ)2/(nσ2)} − P (Sn = k)|

+
∞
∑

k=0

| 1

σ(2πn)
1

2

exp{−1

2
(k + 1− nµ)2/(nσ2)} − 1

σ(2πn)
1

2

exp{−1

2
(k − nµ)2/(nσ2)}|.

Subject to the finiteness of the third moment, considering the fact that (1+ | j−nµ√
nσ2
|3) ≥ 1 and

restricting the values of j, for j ≥ 0, we obtain from Bikelis and Jasjunas theorem 3 that

∞
∑

j=0

|P (Sn = j)− 1

σ(2πn)
1

2

exp{−1

2
(j − nµ)2/(nσ2)}| = O(n−1/2).

This implies that the first two sums of the above are in fact of O(n−1/2).
For the last sum, we look at the telescopic series in the following form, noting that as

k →∞, the terms increase until k = nµ and then decreases to 0 thereafter:

1

σ(2πn)
1

2

{(exp{−1

2
(1− nµ)2/(nσ2)} − exp{−1

2
(0− nµ)2/(nσ2)})

+(exp{−1

2
(2− nµ)2/(nσ2)} − exp{−1

2
(1− nµ)2/(nσ2)}) + · · ·

+ · · ·+ (..................................− ..................................) + · · ·

+ · · ·+ (exp{−1

2
(i+ 1− nµ)2/(nσ2)} − exp{−1

2
(i− nµ)2/(nσ2)}) + · · ·

+ · · ·+ (..................................− ..................................) + · · ·

+ · · ·+ (exp{−1

2
(nµ− nµ)2/(nσ2)} − exp{−1

2
(nµ− 1− nµ)2/(nσ2)})}

+
1

σ(2πn)
1

2

{(exp{−1

2
(nµ+ 1− nµ)2/(nσ2)} − exp{−1

2
(nµ+ 2− nµ)2/(nσ2)})

+(exp{−1

2
(nµ+ 2− nµ)2/(nσ2)} − exp{−1

2
(nµ+ 3− nµ)2/(nσ2)}) + · · ·

+ · · ·+ (..................................− ..................................) + · · ·

+ · · ·+ (exp{−1

2
(j − nµ)2/(nσ2)} − exp{−1

2
(j + 1− nµ)2/(nσ2)}) + · · ·

+ · · ·+ (..................................− ..................................)};
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for 0 ≤ i ≤ nµ− 1 and nµ+ 1 < j <∞.
Since limj→∞ exp{−1

2
(j − nµ)2/(nσ2)} = 0, the above series sums to

1

σ(2πn)
1
2

{−e− 1

2
n2µ2/nσ2

+ 1 + e−
1

2
/nσ2}

=
1

σ(2πn)
1
2

{−e−nµ2/2σ2

+ 1 + e−1/2nσ
2} = O(1/

√
n).

This together with above leads to the fact that

∞
∑

k=0

|P (Sn = k + 1)− P (Sn = k)| = O(1/
√
n).

Now, by the Lorentz criteria, we have the strong regularity of the random-walk method.

We will use the above result to prove the following generalization for the convolution
summability method C defined in section 1.

Theorem 4 Let Y, {Xi, i ≥ 1} be independent and let {Xi, i ≥ 1} be identically distributed
aperiodic nonnegative integer-valued random variables with finite third moment. Let C be
the convolution summability method. Then the following are equivalent.

(i) Var(X1) > 0,

(ii) C is strongly regular.

Proof.

We will first show that (i) implies (ii).
Let {qj} and {pj} be the probability weights associated with random variables Y and

{Xi, i ≥ 1}. The weight of the convolution summability method is

Cn,k = P (Y + Sn = k) =
k
∑

j=0

qj{P (Sn = k − j)}, where Sn =
n
∑

i=1

Xi.

Now,

∞
∑

k=0

|Cn,k+1 − Cnk|

=
∞
∑

k=0

|
k+1
∑

j=0

qjP (Sn = k + 1− j)−
k
∑

j=0

qjP (Sn = k − j)|

=
∞
∑

k=0

|
k
∑

j=0

qjP (Sn = k + 1− j)−
k
∑

j=0

qjP (Sn = k − j) + qk+1P (Sn = 0)|
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≤
∞
∑

k=0

k
∑

j=0

qj|P (Sn = k + 1− j)− P (Sn = k − j)|+
∞
∑

k=0

qk+1P (Sn = 0)

≤
∞
∑

j=0

qj

∞
∑

k=j

|P (Sn = k + 1− j)− P (Sn = k − j)|+ P (Sn = 0)

as
∑∞

k=0 qk = 1.
Change of summation index k − j → k gives

∞
∑

k=0

|Cn,k+1 − Cnk|

≤
∞
∑

j=0

qj

∞
∑

k=0

|P (Sn = k + 1)− P (Sn = k)|+ (p0)
n

≤
∞
∑

k=0

|P (Sn = k + 1)− P (Sn = k)|+ (p0)
n

as
∑∞

k=0 qk = 1. As already seen in the previous proof, the first term is of O(n−1/2), provided
that the {Xi}′s have finite third moment and positive variance, whereas the second term
tends to 0. Since we assumed that Var(X1) > 0, it must be that p0 < 1. Hence

∞
∑

k=0

|Cn,k+1 − Cn,k| →n 0 (n→∞).

To prove that (ii) implies (i), assume that (ii) holds and (i) fails. When Var(X1) = 0
there exists a nonnegative integer m such that P (X1 = m) = 1. Hence,

Cn,j = P (Y + Sn = j) = P (Y = j − nm)

=

{

0 if j < nm
qj−nm if j ≥ nm.

Therefore,
∞
∑

j=0

|Cn,j+1 − Cn,j| ≥
∞
∑

j=0

|qj+1 − qj| 6= 0,

as
∑∞

j=0 qj = 1, and qi ≥ 0 for i ≥ 0. This contradiction gives the result.

Remark 1 It should be noted that with the condition p0 < 1, Khan [6] proved the regularity
of the convolution summability method. Our condition Var(X1) > 0 implies that p0 < 1.
Furthermore, it follows as a result of Theorem 4 that Taylor and Meyer-König methods are
strongly regular.
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3 Summability Functions

The concept of summability functions was introduced by Lorentz [7]. There are many uses
of the summability functions. Summability functions, in some sense, determine the strength
of the regularity of the method for bounded sequences and also may be used to show that
Tauberian conditions of a certain kind cannot be improved.

Definition 4 The class U is the set of regular matrix methods A = {an,k} for which

lim
n→∞

{max
k
|an,k|} = 0

is fulfilled.

Every regular convolution summability method satisfies this property, so they form a
subset of U . For,

Cn,k =
k
∑

j=0

qj{P (
n
∑

i=1

Xi = k − j)},

where {Cn,k} are the convolution summability weights under consideration. Now with µ =
EX1 and 0 < σ2 = Var(X1) <∞,

Cn,k =
k
∑

j=0

qj[(
1

2 πnσ2
)1/2 exp{−1

2
(k − j − nµ)2/nσ2}+ o(1/

√
n)],

uniformly in k − j. Since
∑∞

j=0 qj = 1 and qj ≥ 0, ∀ j ≥ 0, we have

max
k
|Cn,k| = O(

1√
n
)→n 0.

The methods of the class U are characterized by the fact that they all possess summability
functions. We now give the precise definition of the summability function.

Definition 5 Given a matrix A = {an,k}, a nonnegative sequence Ω(n) that increases to
∞ is called a summability function for A if sn → 0 (A) holds whenever sn = O(1) and
A(n, s) =

∑

ν≤n, sν 6=0 1 ≤ Ω(n). The sequence A(n, s) is sometimes called a counting function
of the sequence {sn}.

Theorem 5 (Lorentz [7]) The condition limm→∞{maxn |am,n|} = 0 is necessary as well as
sufficient for the existence of an integer-valued function Ω(n) that increases to ∞, such that
every bounded sequence x = {xn} for which the indices nν , with xnν 6= 0 have a counting
function A(n, x) ≤ Ω(n) is A−summable to zero.

The following theorem gives sufficient conditions under which the existence of summa-
bility functions can be determined.

7



Theorem 6 (Lorentz [7]) Let A = {an,k} be a regular matrix summability method. If the
integer-valued function of k, f(k), is such that 0 < f(k) ↑ ∞ and if

∞
∑

k=0

f(k)|an,k − an,k+1| = O(1),

then every nonnegative sequence Ω(n) that increases to ∞, Ω(n) = o(f(n)) is a summability
function for A.

We make use of the above theorem to show that Ω(k) = o(
√
k) is a summability function

for the convolution summability methods generated by a sequence of aperiodic nonnegative
integer-valued random variables with finite third moment. The optimality of the summa-
bility function so obtained is also ascertained. In this connection, we shall show that all
functions Ω(n) = o(

√
n) and only these functions are summability functions for the methods

{Cn,k}n,k≥1. Lorentz [7] showed that all functions of the form Ω(n) = o(
√
n) and only these

functions are summability functions for the Euler method Eα with α > 0. We use this fact
in the proof of the following theorem.

There are cases where Theorem 6 does not give all summability functions. For an example,
the Nölund method Np, with pn = 1/(n + 1); Theorem 6 gives that Ω(n) = o(log(n)) are
its summability functions. However, it is known that any function Ω(n) = O(nεn) with
0 < εn → 0 is a summability function for Np (p. 61, [12]).

The following theorem provides summability functions for a convolution summability
method.

Theorem 7 Let Y, {Xi, i ≥ 1} be independent with E(Y ) = µY < ∞, and {Xi, i ≥ 1} be
identically distributed aperiodic nonnegative integer-valued random variables with finite third
moment and positive variance. Then for the matrix transformation corresponding to the
regular convolution summability method C = {Cn,k}, any function 0 < Ω(n) ↑ ∞ of the form
Ω(n) = o(

√
n) gives a summability function of C. Furthermore, 0 < Ω(n) = o(

√
n) with

Ω(n) ↑ ∞ are the only functions which are summability functions over the class of regular
convolution methods under consideration.

Proof.

The weight of the convolution summability method is given by

Cn,k = P (Y + Sn = k) =
k
∑

j=0

qj{P (Sn = k − j)} where Sn =
n
∑

i=1

Xi.

Now consider,

∞
∑

k=0

√
k|Cn,k+1 − Cnk|

=
∞
∑

k=0

√
k|

k+1
∑

j=0

qjP (Sn = k + 1− j)−
k
∑

j=0

qjP (Sn = k − j)|
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=
∞
∑

k=0

√
k|

k
∑

j=0

qjP (Sn = k + 1− j)−
k
∑

j=0

qjP (Sn = k − j) + qk+1P (Sn = 0)|

≤
∞
∑

k=0

√
k

k
∑

j=0

qj|P (Sn = k + 1− j)− P (Sn = k − j)|+
∞
∑

k=0

√
kqk+1P (Sn = 0)

≤
∞
∑

j=0

qj

∞
∑

k=j

√
k|P (Sn = k + 1− j)− P (Sn = k − j)|+ P (Sn = 0)

∞
∑

k=0

√
kqk+1.

Making the change of summation index k − j → k in the first sum and k + 1 → k in the
second sum, we obtain

=
∞
∑

j=0

qj

∞
∑

k=0

√

k + j|P (Sn = k + 1)− P (Sn = k)|+ P (Sn = 0)
∞
∑

k=1

√
k − 1qk.

Since the sequence {q} has a finite first moment, say µY , it follows that

∞
∑

k=0

√
k|Cn,k+1 − Cnk| ≤

∞
∑

j=0

qj

∞
∑

k=0

(
√
k +

√

j)|P (Sn = k + 1)− P (Sn = k)|+ µY (p0)
n.

Note that the last term tends to 0, since Var(X1) > 0, which implies that p0 < 1.

∞
∑

k=0

√
k|Cn,k+1 − Cnk|

≤ µY

∞
∑

k=0

|P (Sn = k + 1)− P (Sn = k)|+
∞
∑

k=0

√
k|P (Sn = k + 1)− P (Sn = k)|+ o(1).

The first sum also tends to 0, since Var(X1) > 0 is a necessary and sufficient condition for
the strong regularity of the convolution summability method. Now what remains is to show
that ∞

∑

k=0

√
k|P (Sn = k + 1)− P (Sn = k)| = O(1).

We begin with the following.

√
k =

√

(k − nµ) + nµ ≤
√

|k − nµ|+ nµ ≤
√

|k − nµ|+ (nµ)1/2

≤ |k − nµ

σ
√
n
|1/2(σ

√
n)1/2 + (nµ)1/2.

With the assumption of the finiteness of the third moment of the sequence {pj} of i.i.d.
random variables Theorem 3 of Bikelis and Jasjunas [1] gives

∞
∑

j=−∞
(1 + |j − nµ

σ
√
n
|3)|P (Sn = j)− 1

σ(2πn)
1

2

exp{−1

2
(j − nµ)2/(nσ2)}| = O(n−1/2),
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where Sn = X1 +X2 + · · ·+Xn. Then

∞
∑

k=0

√
k|P (Sn = k + 1)− P (Sn = k)|

≤ (σ
√
n)1/2

∞
∑

k=0

|k − nµ

σ
√
n
|1/2|P (Sn = k + 1)− P (Sn = k)|

+(nµ)1/2
∞
∑

k=0

|P (Sn = k + 1)− P (Sn = k)| =
∑

1

+
∑

2

say.

We have already shown in the proof of Theorem 2 that
∑

2 = O(1).
For

∑

1, we will proceed as follows:

∑

1

≤ (σ
√
n)1/2

∞
∑

k=0

|k − nµ

σ
√
n
|1/2|P (Sn = k + 1)

− 1

σ(2πn)
1

2

exp{−1

2
(k + 1− nµ)2/(nσ2)}|

+(σ
√
n)1/2

∞
∑

k=0

|k − nµ

σ
√
n
|1/2| 1

σ(2πn)
1

2

exp{−1

2
(k − nµ)2/(nσ2)} − P (Sn = k)|

+(σ
√
n)1/2

∞
∑

k=0

|k − nµ

σ
√
n
|1/2 1

σ(2πn)
1

2

| exp{−1

2
(k + 1− nµ)2/(nσ2)}

− exp{−1

2
(k − nµ)2/(nσ2)}|.

Note that
(

1 + |k − nµ

σ
√
n
|3
)

> |k − nµ

σ
√
n
|1/2 for all k ≥ 0 and all n ≥ 0.

This shows that the first two sums are of order O(1) as we expected. Now we consider the
last sum:

(σ
√
n)1/2

1

σ(2πn)
1
2

∞
∑

k=0

|k − nµ

σ
√
n
|1/2| exp{−1

2
(k + 1− nµ)2/(nσ2)}

− exp{−1

2
(k − nµ)2/(nσ2)}|.

Let tn,k =
k−nµ
σ
√
n

and let ∆tn,k = tn,k+1 − tn,k =
1

σ
√
n
. The last sum is

√

σ
√
n√

2π

∞
∑

k=0

1

σ
√
n
|tn,k|1/2

∣

∣

∣
e−

1

2
t2
n,k+1 − e−

1

2
t2
n,k

∣

∣

∣

=

√

σ
√
n√

2π

∞
∑

k=0

(

tn,k+1 − tn,k

)

|tn,k|1/2
∣

∣

∣
e
− 1

2

(

tn,k+
1

σ
√

n

)2

− e−
1

2
t2
n,k

∣

∣

∣
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=

√

σ
√
n√

2π

∞
∑

k=0

(

∆tn,k

)

|tn,k|1/2
∣

∣

∣
e−

1

2
t2
n,k

(

e
− 1

2

(

2tn,k∆tn,k+

(

∆tn,k

)2)

− 1
)∣

∣

∣

=

√

σ
√
n

∞
∑

k=0

(

∆tn,k

)

|tn,k|1/2φ
(

tn,k

)∣

∣

∣
etn,k∆tn,ke

− 1

2

(

∆tn,k

)2

− 1
∣

∣

∣

=

√

σ
√
n

∞
∑

k=0

(

∆tn,k

)

|tn,k|1/2φ
(

tn,k

)∣

∣

∣

∞
∑

j=0

(

−tn,k∆tn,k −

(

∆tn,k

)2

2

)j

j!
− 1
∣

∣

∣

≤
√

σ
√
n

∞
∑

k=0

(

∆tn,k

)

|tn,k|1/2φ
(

tn,k

)

∞
∑

j=0

(

∆tn,k

)

(

|tn,k|+ 1
)j

j!

≤
√

σ
√
n

σ
√
n

∞
∑

k=0

(

∆tn,k

)

|tn,k|1/2φ
(

tn,k

)

e1+|tn,k|

∼ 1
√

σ
√
n

∫ ∞

−∞
|t|1/2e|t|+1φ(t)dt

= O
( 1

n1/4

)

.

This now concludes the proof of the first half of the theorem.
Since Eα with α > 0 are members of the convolution method and as proved in Lorentz [7],

Ω(n) = o(
√
n) are the only summability functions of the method Eα, one cannot enlarge the

class of summability functions over the space of convolution methods under consideration.
This concludes the sharpness of the result.

Remark 2 The summability functions for the following methods were obtained by Lorentz
[7], of which Ω(n) = o(

√
n) for the Euler Ep method agrees with the above theorem.

1. For the (C, 1) method; Ω(n) = o(n). As the methods (C, α) (α > 0) and the Abel
method A are equivalent to the (C, 1) method for bounded sequences, they also have
the same summability functions.

2. For the Euler Ep method; Ω(n) = o(
√
n).

Let Rn,j be the weight of the random-walk method. As usual, by writing µ, σ2 for the
mean and variance of the sequence of i.i.d. random variables with finite third moment, we
obtain

max
j
|Rn,j| = O

( 1

n1/2

)

as n→∞

as follows from

Rn,j = P (X1 +X2 + . . .+Xn = j) =
1

σ(2πn)1/2
exp{−1

2
(j − nµ)2/nσ2}+ o(1/

√
n)

11



uniformly in j [2]. Hence, the set of all random-walk methods with finite third moment is
contained in the class U of the matrix method. The following corollary can be easily drawn
from the above theorem.

Corollary 1 Let {Xi, i ≥ 1} be independent and identically distributed aperiodic nonnega-
tive integer-valued random variables with finite third moment and positive variance. Then
for the matrix transformation corresponding to the regular random-walk method, {Rn,j}; any
function 0 < Ω(n) ↑ ∞ of the form Ω(n) = o(

√
n) gives the possible summability functions.

Furthermore, 0 < Ω(n) = o(
√
n) with Ω(n) ↑ ∞ are the only functions which are summability

functions over the class of regular random-walk methods.

4 Absolute Summability Functions

Definition of the summability functions has been improved by introducing the concept of
absolute summability functions.

Definition 6 Let Ω(n) be a non-decreasing positive function which tends to +∞ with n.We
say that Ω(n) is an absolute summability function of a summability matrix A = {an,k}n,k≥0, if
any bounded sequence {f(k), k ≥ 0} for which f(k) = 0 except for a subsequence {nν} with
the counting function A(n, f) ≤ Ω(n) is absolutely A-summable, that is,

∑∞
n=0 |σn−σn−1| <

+∞ for any such sequence, where σn =
∑∞

k=0 an,kf(k) for n ≥ 0.

Theorem 7 of Lorentz [9] addresses question of the existence of absolute summability
functions.

Theorem 8 (Lorentz [9]) The method of summation A generated by the matrix A = {an,k}n,k≥0
for which

∑∞
k=0 |a0,k| < +∞ has absolute summability functions if and only if the variation

of the k−th column Vk = varn an,k defined by
∑∞

n=0 |an+1,k−an,k| converges to 0 for k →∞.

As we will show below, a regular convolution summability method that has been consid-
ered in the preceding sections has this structure. Hence, according to theorem 7 of Lorentz
[9], a regular convolution summability method under consideration has absolute summability
functions. Since the moment generating function (mgf) may exist for some real arguments
but not all, we simply insist that the characteristic function is to be entire (analytic) in the
results to follow [10]. For the probabilistic relevance of the mgf condition, see [3].

Theorem 9 Let Y, {Xi, i ≥ 1} be independent with E(Y ) = µY < ∞, and {Xi, i ≥ 1} be
identically distributed aperiodic nonnegative integer-valued random variables with character-
istic function is analytic. The matrix transformation corresponding to the regular convolution
summability method C = {Cn,k}n,k≥0 has absolute summability functions.

Proof.

First, we verify that

∞
∑

k=0

|C0,k| =
∞
∑

k=0

P (Y = k) =
∞
∑

k=0

qk = 1 <∞.

12



This means that the method already satisfies the condition of hypotheses.
Let Sn = X1 +X2 + . . .+Xn and S0 = 0. We now consider,

∞
∑

n=0

|Cn+1,k − Cn,k|

=
∞
∑

n=0

|P (Y + Sn+1 = k)− P (Y + Sn = k)|

=
∞
∑

n=0

|
k+1
∑

j=0

qjP (Sn = k + 1− j)−
k
∑

j=0

qjP (Sn = k − j)|

≤
∞
∑

n=0

|
k
∑

j=0

|P (Sn = k + 1− j)− P (Sn = k − j)|+
∞
∑

n=0

qk+1P (Sn = 0)

≤
k
∑

j=0

qj

∞
∑

n=0

|P (Sn = k + 1− j)− P (Sn = k − j)|+ qk+1

∞
∑

n=0

(p0)
n

=
k
∑

j=0

qj

∞
∑

n=0

|P (Sn = k + 1− j)− P (Sn = k − j)|+ qk+1

( 1

1− p0

)

.

The last term on the right is ok(1) as the method is regular (p0 < 1,) and
∑∞

k=0 qk = 1. The
convergence of first (other) sum is evident from Theorem 4 of Kesten [5]. Now, we show that
this sum is in fact ok(1), where k denote that order notation has taken as k →∞. For,

Ik =
k
∑

j=0

qj

∞
∑

n=0

|P (Sn = k + 1− j)− P (Sn = k − j)|+ ok(1),

using the Chung-Erdõs inequality cited in page 706 of Kesten [5], of the form: If for some
integer k ≥ 0, a, P (Sk = a)P (Sk+m = a + j) > 0 holds, then for every ε > 0 there exists a
δ > 0 such that sufficiently large n,

P (Sn = in) ≤ (1 + ε)P (Sn+m = in + j) + e−δn and

P (Sn+m = in + j) ≤ (1 + ε)P (Sn = in) + e−δn.

Thus, for δ1 6= δ2, we have Ik

≤
k
∑

j=0

qj

∞
∑

n=0

|(1 + ε1)P (Sn+k−j = 0) + e−δ1(n+k−j) − (1 + ε2)P (Sn+k−j = 0)− e−δ2(n+k−j)|+ ok(1)

≤
k
∑

j=0

qj

{

|ε1 − ε2|
∞
∑

n=0

(p0)
n+k−j +

∣

∣

∣

∞
∑

n=0

(e−δ1(n+k−j) −
∞
∑

n=0

(e−δ2(n+k−j)
∣

∣

∣

}

+ ok(1)

≤ |ε1 − ε2|(p0)k
k
∑

j=0

qjp
−j
0

( 1

1− p0

)

+
k
∑

j=0

qje
max(δ1,δ2)j

∣

∣

∣

∞
∑

n=0

{

e−δ1n − e−δ2n
}∣

∣

∣

(

e−min(δ1,δ2)
)k

+ ok(1)
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≤ |ε1 − ε2|(p0)k
k
∑

j=0

qjp
−j
0

( 1

1− p0

)

+
k
∑

j=0

qje
max(δ1,δ2)j

∣

∣

∣

1

1− e−δ1
− 1

1− e−δ2

∣

∣

∣

(

e−min(δ1,δ2)
)k

+ ok(1).

This gives Ik = ok(1) with characteristic function of {Xi, i ≥ 1} is analytic.

In analogy to Theorem 9 of Lorentz [9], we prove the following generalization for the
convolution summability method; which now includes Taylor and Meyer-König summability
methods and many others. We will use most of the preliminary facts from Lorentz [9] and
avoid further discussions as we proceed.

Theorem 10 A function Ω(n) is an absolute summability function of the regular convolution
summability method generated by a sequence of Y, {Xi, i ≥ 1} of independent with E(Y ) =
µY < ∞, and {Xi, i ≥ 1} of identically distributed aperiodic non negative integer-valued
random variables with characteristic function is analytic, if and only if

∞
∑

n=1

n−3/2Ω(n) < +∞.

Proof.

The sufficiency of the theorem is proved as follows: Let {Cn,k}n,k≥1 be the convolution
summability matrix corresponding to the given sequence of random variables. From Theorem
9 the variation of the k−th column is

Vk = varn Cn,k =
∞
∑

n=0

|Cn+1,k − Cn,k| = α(p0)
k +O

(

e−βk
)

+ γqk+1

for some positive constants α, β, and γ as follows from the proof of Theorem 9. If {nν} is
a sequence of integers with the counting function ω(n) ≤ Ω(n), we have

∑∞
ν=1 k

−β
ν < ∞ by

Lemma 2 (p. 247 of Lorentz [9]), and noting that e−βkν < kν
−β, we see that

∞
∑

ν=1

varnCn,kν =
∞
∑

ν=1

{

α(p0)
kν +O

(

e−βkν
)

+ γqkν+1

}

<∞.

The later is the necessary and sufficient condition for Ω(n) to be an absolute summability
function of the given matrix method (Theorem 6 of Lorentz [9]).

For the necessity, using the fact that Euler method Et, 0 < t < 1 and the Borel method B
are members of the convolution summability methods, it suffices to proceed in the following
manner. Suppose the series

∑∞
n=1 n

− 3

2Ω(n) be divergent. Then taking the Euler method
Et, 0 < t < 1 or the Borel method B, we have that the series is convergent for either of
these methods. This contradiction concludes the assertion.

Most of the discussions and remarks appeared in [7], [8], [9], and [12] now follow without
further proofs and hold for the random-walk method and all members of the convolution
summability method.
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