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Abstract

We consider a natural generalization of the well-studied Genocchi numbers first
proposed by Han. This generalization proves useful in enumerating the class of deter-
ministic finite automata (DFA) that accept a finite language, and in enumerating a
generalization of permutations counted by Dumont.

1 Introduction and Motivation

The study of Genocchi numbers and their combinatorial interpretations has received much
attention [6, 7, 8, 9, 10, 12, 15]. In this paper, we consider combinatorial interpretations of
a generalization of the Genocchi numbers due to Han [13].

The Genocchi numbers G2n (n ≥ 1) may be defined in terms of the generating function

2t

et + 1
= t+

∑

n≥1

(−1)nG2n

t2n

(2n)!
.

They may also be defined in the following way [12, 2, 15]. Let the Gandhi polynomials
A(n,X) be polynomials in X defined as follows:

A(n+ 1, X) = X2A(n,X + 1)− (X − 1)2A(n,X) ∀n ≥ 1,

A(1, X) = X2 − (X − 1)2.

Then |G2n| = A(n − 1, 1). The first few values of |G2n| are 1,1,3,17,155 for n = 1, 2, 3, 4, 5,
respectively.
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Our motivation comes from automata theory. We are interested in the number of finite
languages recognized by deterministic finite automata (DFAs) with n states. It is easy to see
that if a DFA M = (Q,Σ, δ, q0, F ) accepts a finite language (see Section 2 for definitions),
then there exists an ordering of the elements of the set of states Q, say Q = {0, 1, 2, . . . , n}
with q0 = 0 such that δ(i, a) > i for all i ∈ Q − {n} and a ∈ Σ and δ(n, a) = n for all
a ∈ Σ. Thus, we study directed graphs with labeled edges on n vertices that satisfy these
properties.

In this paper, we consider an extension of the Genocchi numbers due to Han [13], and
show its relation to enumerating DFAs accepting finite languages.

2 Definitions and Background

We first recall some definitions from automata theory and formal languages. For any terms
not covered here, the reader may consult Hopcroft and Ullman [14] or Yu [17]. Let Σ denote
a finite alphabet. Then Σ∗ is the set of all finite strings over Σ. The empty string is denoted
by ε. A language L over Σ is a subset of Σ∗. A deterministic finite automaton (DFA) is
a 5-tuple M = (Q,Σ, δ, q0, F ), where Q is a finite set of states, Σ is a finite alphabet of
symbols, q0 ∈ Q is the initial state and F ⊆ Q is a set of final states. The transition function
δ is a function δ : Q×Σ→ Q that may be extended to Q×Σ∗ → Q in the following manner:
For all states q ∈ Q, δ(q, ε) = q. Further, for any w ∈ Σ∗ and a ∈ Σ, δ(q, wa) = δ(δ(q, w), a)
for all states q ∈ Q.

A string w ∈ Σ∗ is accepted by M if δ(q0, w) ∈ F . The language accepted by a DFA M

is the set of all strings accepted by M , denoted by L(M):

L(M) = {w ∈ Σ∗ : δ(q0, w) ∈ F}.

We say that a DFA M accepts a language L ⊆ Σ∗ if L = L(M). In this paper, we are
concerned primarily with finite languages, that is, those L with |L| < ∞. We use the
notation [n] to denote the set {1, 2, 3, . . . , n}.

We now proceed with the generalization of the Genocchi numbers due to Han [13]. We
define them in terms of a natural generalization of the Gandhi polynomials:

Definition 2.1 Let A
(k)
n+1(X) be the following Gandhi polynomials in X:

A
(k)
n+1(X) = XkA(k)

n (X + 1)− (X − 1)kA(k)
n (X) ∀n ≥ 0

A
(k)
0 (X) = 1.

(2.1)

Define the k-th generalized Genocchi numbers {G
(k)
2n }n≥1 by G

(k)
2n = A

(k)
n−1(1).

Figure 2.1 gives values of G
(k)
2n for small values of k. The sequence G

(2)
2n appears as A001469

in Sloane [16]. The sequences G
(3)
2n , G

(4)
2n and G

(5)
2n appear in Sloane as A064624, A064625 and

A065756, respectively.
Han [13, Thm. 3] studied polynomials that are even more general than those given in

Definition 2.1, but the definition of A
(k)
n will suffice in what follows. We now apply the results

of Han to the specific case of the polynomials A
(k)
n .
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n 1 2 3 4 5 6 7

G
(2)
2n 1 1 3 17 155 2073 38227

G
(3)
2n 1 1 7 145 6631 566641 81184327

G
(4)
2n 1 1 15 1025 209134 100482849 97657699279

G
(5)
2n 1 1 31 6721 5850271 15060446401 94396946822431

Figure 2.1: Small values of G
(k)
2n .

2.1 Properties of G
(k)
2n

Following Dumont [6], we first show some algebraic properties of G
(k)
2n . First, we translate

the polynomials A
(k)
n as follows. Define the polynomials Bk(X,n) in X as

Bk(X,n) = XkA
(k)
n−1(X + 1) (2.2)

for any n ≥ 1. Then (2.1) becomes

Bk(X,n) = Xk(Bk(X + 1, n− 1)−Bk(X,n− 1))

Bk(X, 1) = Xk.
(2.3)

We may compare this with the work of Dumont [6, Eq. (3), p. 323]. Let

Bk(X,n) =

(k−1)n+1
∑

j=0

B
(k)
n,jX

j. (2.4)

It is easy to see that Bk(X,n) is a polynomial of degree (k − 1)n + 1 in X. Now equating
coefficients in (2.3) gives the recurrence:

B
(k)
n,j =

(n−1)(k−1)+1
∑

`=j−k+1

(

`

j − k

)

B
(k)
n−1,` (2.5)

for j ≥ k. Iterating (2.5) gives us our most useful definition:

Lemma 2.1 For all n ≥ 2, and k ≥ 2,

B
(k)
n,j =

∑

(

k

j1

)(

2k − j1

j2 − j1

)(

3k − j2

j3 − j2

)

· · ·

(

k(n− 1)− jn−2

jn−1 − jn−2

)

, (2.6)

where the sum is taken over all integers j1, j2, . . . , jn−1 satisfying 1 ≤ j1 < j2 < · · · < jn−2 <

jn−1 ≤ kn− j and ji ≤ ki for all 1 ≤ i ≤ n− 2.
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Proof. The proof is by induction on n. To prove the base case, note that for all k,

Bk(X, 2) = Xk(X + 1)k −X2k

=
k−1
∑

`=0

(

k

`

)

X`+k,

whence B
(k)
2,j =

(

k

k−j

)

. Thus, the condition holds for n = 2. Let the formula hold for n − 1
and for all j. Then we have

B
(k)
n,j =

n(k−1)
∑

`=j−k+1

(

`

j − k

)

B
(k)
n−1,`

=

n(k−1)
∑

`=j−k+1

(

`

`− j + k

)

∑

(

k

j1

)(

2k − j1

j2 − j1

)

· · ·

(

k(n− 2)− jn−3

jn−2 − jn−3

)

.

If we now choose jn−1 = k(n−1)+k−j we will see that the conditions on the ji are satisfied.

This gives B
(k)
n,j =

∑
(

k

j1

)(

2k−j1
j2−j1

)(

3k−j2
j3−j2

)

· · ·
(

k(n−1)−jn−2

jn−1−jn−2

)

.

We now note that G
(k)
2n is given by G

(k)
2n = B

(k)
n,k, which follows directly from the definition

and the translation given by (2.2). Thus, we note the formula

G
(k)
2n =

(n−1)(k−1)+1
∑

`=1

B
(k)
n−1,`. (2.7)

This follows from (2.5). Tables of B
(k)
n,j are given in Appendix A. It will be useful to rewrite

(2.6) when j = k to give an expression for G
(k)
2n as follows:

k
∑

i1=1

(

k

i1

) 2k−i1
∑

i2=1

(

2k − i1

i2

) 3k−(i1+i2)
∑

i3=1

(

3k − (i1 + i2)

i3

)

· · · (2.8)

· · ·

kj−
∑j−1

`=1
i`

∑

ij=1

(

kj −
∑j−1

`=1 i`

ij

)

· · ·

k(n−2)−
∑n−3

`=1
i`

∑

in−2=1

(

k(n− 2)−
∑n−3

`=1 i`

in−2

)

.

We obtain this through the change of of variables i1 = j1 and i` = j`− j`−1 for 2 ≤ ` ≤ n−3.
Equation (2.8) will prove particularly useful for our enumeration of automata, which we
investigate in Section 3.

2.2 Generalized Central Factorial Numbers

Definition 2.2 Define Tk(n, i) for all k ≥ 2, n ≥ 1 and all integers i as follows:

Tk(1, 1) = 1,

Tk(n, i) = 0 ∀i 6∈ [n],

Tk(n, i) = ikTk(n− 1, i) + Tk(n− 1, i− 1) ∀i ∈ [n].
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When k = 2, Definition 2.2 gives the central factorial numbers (see Carlitz and Riordan
[3]) and used in the proof of the equivalence of the Genocchi numbers and the Gandhi
polynomials by Carlitz [2] and Riordan and Stein [15].

By Han [13, p. 7], we can relate Tk(n, i) with the generalized Genocchi numbers, which
is of independent interest (compare with Riordan and Stein [15, Eq. (2), p. 382]):

G
(k)
2n+2 =

n
∑

`=1

(−1)`+1(`!)kTk(n, `). (2.9)

Figure 2.2 gives the value of T3(n, i) for 1 ≤ i ≤ n ≤ 7. Note that expressions for Tk(n, i)

n \ i 1 2 3 4 5 6 7
1 1
2 1 1
3 1 9 1
4 1 73 36 1
5 1 585 1045 100 1
6 1 4681 28800 7445 255 1
7 1 37449 782281 505280 35570 441 1

Figure 2.2: Small values of T3(n, i)

numbers are given by Comtet [4] and Bach [1] as generalizations of Stirling numbers.

3 Combinatorial Interpretations

In this section, we discuss some combinatorial interpretations of the generalized Genocchi
numbers, as well as the generalization of the central factorial numbers given in Section 2.2.
These interpretations includes a new graph theoretic combinatorial interpretation for the
standard Genocchi numbers.

3.1 Quasi-Permutations

Consider the following definition [7, p. 306]:

Definition 3.1 A set P ⊆ [n]×[n] is a quasi-permutation of [n] if there exists a permutation
p of [n] such that P is a subset of the following set

{(i, p(i)) : i ∈ [n], p(i) > i}.

Let |P | denote the cardinality of P as a set. For any subset P ⊆ [n]× [n], let Y (P ) = {i :
∃i′ such that (i′, i) ∈ P}, the projection of P on the second component.

We can generalize a theorem of Dumont [7, Thm. 1, p. 309] (which is itself inspired by
a theorem of Foata and Schützenberger [11, Prop. 2.8., p. 38]) concerning combinatorial
interpretations of the central factorial numbers as follows:
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Theorem 3.2 The quantity Tk(n, i) is equal to the number of k-tuples of quasi-permutations
of [n] (Q1, Q2, . . . , Qk) such that

• |Qj| = n− i for all j with 1 ≤ j ≤ k

• for all 1 ≤ j, j ′ ≤ k, Y (Qj) = Y (Qj′).

Proof. The proof is a simple generalization of the proof of Dumont [7, Thm. 1, p. 309].

Note that a simple calculation will show that the result of Dumont concerning tuples of
permutations [7, Thm. 2, p. 310] does not generalize to k-th generalized Genocchi numbers.

3.2 Finite language DFAs over 2 letters

We start by defining a set of directed graphs that will be of interest:

Definition 3.3 Let Gn,k define the set of digraphs satisfying the following conditions: For
all G = (V,E) ∈ Gn,k,

(a) There are n vertices, labeled with integers from the set [n].

(b) The edges of E are labeled with integers from the set [k]. Thus an edge of E is given
by an element of [n]× [k]× [n].

(c) All the edges of E are directed and satisfy the following: if e = (u, a, v) ∈ E and u 6= n

then e is directed from u to v and u < v. If u = n then necessarily v = n.

(d) G is initially connected, that is, for each vertex v, there exists a directed path from 1
to v.

(e) For each vertex v and each integer i (1 ≤ i ≤ k), there exists an edge with source v

and label i.

Given (2.8), we can prove the following:

Theorem 3.4 For all n ≥ 1, |Gn,2| = G2n.

Proof. The sum given in (2.8) represents the number of ways of connecting each of the
vertices 2, . . . , n with a lower numbered vertex. We can see this as follows. Consider vertex
2. In order for vertex 2 to be connected to vertex 1, at least one of the 2 edges leaving vertex
1 must enter vertex 2. We let i1 of them enter 2, and account for all possible combinations.

Now for vertex 3, at least 1 of the 4− i1 edges leaving vertex 1 and 2 that have yet to be
assigned must enter vertex 3; let i2 of them enter vertex 3.

We continue this process for the first n − 1 vertices. The result is the sum (2.8). The
vertex n is initially connected since by definition all edges leaving vertex n − 1 must enter
vertex n.
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We can also give a direct proof of Theorem 3.4. A surjective step function (SSF) of
size 2n is a function f : [2n] → [2n] such that f(i) ≥ i, and the image of f is exactly
{2, 4, 6, . . . , 2n}. The following is due to Dumont [7]:

Theorem 3.5 The number of surjective step functions of size 2n is G2(n+1).

We show a bijection between all SSFs of size 2(n−1) and Gn,2. Let f : [2n−2]→ [2n−2]
be a surjective step function of size 2(n−1). Then define the graph Gf = (Vf , Ef ) as follows:
Vf = [n], and

Ef = {(n, a, n) : a ∈ {1, 2}}

∪ {(i, 1,
f(2i)

2
+ 1) : 1 ≤ i < n}

∪ {(i, 2,
f(2i− 1)

2
+ 1) : 1 ≤ i < n}.

Thus, we have a direct bijection demonstrating Theorem 3.4. We now return to our
motivation: DFAs that recognize finite languages. The following lemma [5, Prop. 18] states
that the underlying structure of DFAs that accept finite languages corresponds exactly to
Gn,2:

Lemma 3.1 Let M be a minimal n-state DFA with L(M) finite. Then M is isomorphic (up
to renaming of the states) to a DFA M ′ = (Q,Σ, δ, q0, F ) satisfying Q = {q0, q1, . . . , qn−1}
and the following conditions:

(a) δ(qn−1, a) = qn−1 for all a ∈ Σ.

(b) If n ≥ 2 then δ(qn−2, a) = qn−1 for all a ∈ Σ.

(c) qn−1 6∈ F .

(d) If n ≥ 2, then qn−2 ∈ F .

(e) If δ(qi, a) = qj for i < n− 1 then i < j.

Thus, we may give an upper bound for the number of distinct DFAs on n states accepting a
finite language. Adding final states in all possible ways (subject to qn−1 6∈ F and qn−2 ∈ F ),
we have the following corollary of Theorem 3.4:

Corollary 3.6 The number of finite languages over a two letter alphabet accepted by a DFA
with n states is at most 2n−2G

(2)
2n .

Unfortunately, this bound is not tight. This is due to the fact that many of the languages
recognized by distinct labeled DFAs will be the same, and what is needed is an unlabeled
enumeration of DFAs.
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3.3 k-th Surjective step functions

We may adapt the combinatorial interpretation of the Genocchi numbers in terms of surjec-
tive step functions, due to Dumont [7], to generalized Genocchi numbers:

Definition 3.7 A k-th surjective step function (k-SSF) of size kn is an increasing surjective
function f : [kn]→ {k, 2k, 3k, . . . , kn}.

The following is a corollary of Han [13].

Theorem 3.8 There are G
(k)
2(n+1) k-SSFs of size kn.

3.4 Finite language DFAs over k letters

The argument of Theorem 3.4 can be easily extended to graphs over a k letter alphabet. In
fact, if we repeat the same argument we get the following result:

Theorem 3.9 |Gn,k| = G
(k)
2n .

This allows us to extend our upper bound to automata over arbitrary sized alphabets:

Corollary 3.10 The number of finite languages over a k letter alphabet accepted by a DFA
with n states is at most 2n−2G

(k)
2n .

We may also extend the isomorphism between Gn,2 and 2-SSFs of size 2(n − 1) to Gn,k

and k-SSFs of size k(n− 1). Let f be a k-SSF of size k(n− 1). Then define Gf = (Vf , Ef )
as follows: Vf = [n], and

Ef = {(n, a, n) : 1 ≤ a ≤ k}

∪ {(i, a,
f(ki− a+ 1)

k
+ 1) : 1 ≤ i < n, 1 ≤ a ≤ k}.

3.5 Generalizations of Dumont Permutations

Dumont has also given several interpretations of the usual Genocchi numbers G
(2)
2n in terms

of permutations, including the following theorem [7, Thm. 5, p. 315]:

Theorem 3.11 Let P2n be the set of permutations π of [2n] such that π(i) ≥ i iff π(i) is

even. Then |P2n| = G
(2)
2n+2.

By a direct application of a result due to Dumont [7, Thm. 4, p. 313] and Theorem 3.8,
we can generalize Theorem 3.11 naturally:

Theorem 3.12 Let Pkn be the set of permutations π of [kn] such that π(i) ≥ i iff π(i) ≡

0 (mod k). Then |Pkn| = G
(k)
2n+2.
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Example 3.13 Consider k = 3, n = 2. Thus, we are concerned with permutations π of [6]
such that π(i) ≥ i if and only if π(i) ≡ 0 (mod 3). Then of the 720 permutations, we find
that the following permutations satisfy our conditions:

(1 3 2)(4 6 5) (1 3 6 5 4 2) (1 3)(2 6 5 4) (1 3 2 6 5 4)
(1 6 5 4 2)(3) (1 6 5 4 2 3) (1 6 5 4)(2 3)

This agrees with G
(3)
2n+2 = 7.

Dumont also gives the following corollary to Theorem 3.11 [7, Cor. 1,p. 316]:

Theorem 3.14 Let P ′2n be the set of permutations π of [2n] such that π(i) ≥ i iff i is odd.

Then |P ′2n| = G
(2)
2n+2.

However, the ability to conclude Theorem 3.14 from Theorem 3.11 does not naturally
generalize to permutations of [kn] for k > 2.

4 Conclusions

In this paper, we have considered a new generalization of the Genocchi numbers. This
generalization has proved useful in our attempts to enumerate the number of finite languages
recognized by DFAs with n states.
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Appendix A: Tables

The triangle B
(3)
n,j is A065747 in Sloane [16]. The column B

(3)
n,4 is A065753. These are given

in Figure 4.3. The triangle B
(4)
n,j is A065748 in Sloane, while column B

(4)
n,5 is A065754. These

are given in Figure 4.4. Figure 4.5 gives the triangle B
(5)
n,j , which is A065755. Column B

(5)
n,6

is given by A065757 in Sloane.
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n \ j 3 4 5 6 7 8 9 10 11
1 1
2 1 3 3
3 7 30 51 42 15
4 145 753 1656 1995 1410 567 105
5 6631 39048 100704 149394 140475 86562 34566 8316 945

Figure 4.3: Values of B
(3)
n,j for 1 ≤ n ≤ 5 and 1 ≤ j ≤ 11.

n \ j 4 5 6 7 8 9 10 11 12 13
1 1
2 1 4 6 4
3 15 88 220 304 250 120 28
4 1025 7308 23234 43420 52880 43880 25088 9680 2340 280

Figure 4.4: Values of B
(4)
n,j for 1 ≤ n ≤ 4 and 1 ≤ j ≤ 13.

n \ j 5 6 7 8 9 10 11 12 13
1 1
2 1 5 10 10 5
3 31 230 755 1440 1760 1430 770 260 45

Figure 4.5: Values of B
(5)
n,j for 1 ≤ n ≤ 3 and 1 ≤ j ≤ 13.
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