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Abstract

A stabilized-interval-free (SIF) permutation on [n] = {1, 2, ..., n} is one that does
not stabilize any proper subinterval of [n]. By presenting a decomposition of an arbi-
trary permutation into a list of SIF permutations, we show that the generating function
A(x) for SIF permutations satisfies the defining property: [xn−1]A(x)n = n! . We also
give an efficient recurrence for counting SIF permutations.

1 Introduction

A permutation on [n] = {1, 2, . . . , n} is stabilized-interval-free (SIF) if it does not stabilize
any proper subinterval of [n] (proper means nonempty and 6= [n]). For example, ( 1 2 3 4 5 6

6 1 5 3 4 2 ),
or 6 1 5 3 4 2 in one-line notation, fails to be SIF because it stabilizes the interval [3, 5] =
{3, 4, 5}. On the other hand, the empty permutation is SIF, as is any cycle, and every
SIF permutation on [n] is fixed-point-free for n ≥ 2. The SIF permutations on [n] for
n ≤ 4 are as follows: n = 1 : 1; n = 2 : 2 1; n = 3 : 2 3 1, 3 1 2 (the two 3-cycles)
n = 4 : 3 4 1 2 and the six 4-cycles. Let an denote the number of SIF permutations on [n]
and A(x) =

∑
n≥0 anx

n = 1 + x + x2 + 2x3 + 7x4 + . . . their generating function. The first
objective of this paper is to show that [xn−1]A(x)n = n! and hence that the number of SIF
permutations on [n] is given by A075834. This generating function identity amounts to the
existence of a decomposition of an arbitrary permutation into a list of SIF permutations.
The second objective is to obtain a recurrence relation that permits efficient computation of
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an :

a0 = a1 = 1, an =
n−2∑

j=2

(j − 1)ajan−j + (n− 1)an−1, n ≥ 2.

A little more generally, a permutation on an arbitrary set of positive integers I is SIF if
it does not stabilize any proper subinterval of I (J is a subinterval of I if a, b ∈ J, c ∈ I with
a ≤ c ≤ b implies c ∈ J). Thus 5 9 2 3 is SIF on {2, 3, 5, 9} and its reduced form (replace
smallest element by 1, second smallest by 2, and so on) is 3 4 1 2. The former is a labeled
SIF permutation and the latter is unlabeled—we take [n] as the standard n-element totally
ordered set and call a permutation on [n] unlabeled.

Let SI denotes the set of all permutations on I. Given σ ∈ SI , one can partition I
into consecutive subintervals I1, . . . , Ik such that σ stabilizes each Ij. The intervals in the
finest such partition are called the connected intervals of σ; a permutation with exactly one
such interval is connected (sometimes called indecomposable) A003319. Note that the empty
permutation is not connected. The restriction of σ to its connected intervals clearly gives
a decomposition of σ into a set of connected permutations on subintervals that partition I,
called the connected components of σ. These permutations are labeled but we also have a
decomposition into a list of unlabeled connected permutations of total length n (since we
can use position in the list to determine the labels) and this decomposition is bijective. For
example, 3 2 4 1 5 7 8 6 ←→ {3 2 4 1, 5, 7 8 6}←→ 3 2 4 1 – 1 – 2 3 1 (the dashes separate list
items).

Now [xn−1]A(x)n is the number of length-n lists (or simply n-lists) of unlabeled SIF
permutations of total length n− 1 (keeping in mind that the empty permutation has length
0). So, to show [xn−1]A(x)n = n!, it suffices to exhibit a bijection from S[n] to n-lists of
unlabeled SIF permutations of total length n−1, and we will do so below. This decomposition
into unlabeled SIF permutations is analogous to the one above into unlabeled connected
permutations but is not so obvious.

Before presenting the bijection we recall some relevant manifestations of the Catalan
numbers [1]. A Murasaki diagram is a sequence of vertical lines some (all, or none) of which
are joined at their tips by horizontal lines that never intersect the interior of a vertical line.

1 2 3 4 5 6 7 8 9 10 11 12

The diagram illustrated has 3 components; the first of which has 3 segments (connected
figures), the second 1 and the last 2. A partition {B1, B2, . . . , Bk} of [n] is noncrossing if
a < b < c < d with a, c ∈ Bi and b, d ∈ Bj implies i = j. Murasaki diagrams correspond
in an obvious way to noncrossing partitions: the one above corresponds to 1 7–2 3 5 6–4–8–
9 10 12–11 and we may speak of the components of a noncrossing partition. A lattice path
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of upsteps (1, 1) and downsteps (1,−1) (starting at the origin for convenience) is balanced
if it ends on the x-axis, nonnegative if it never dips below the x-axis, Dyck if it is both. A
Dyck n-path P has n upsteps and n downsteps; each downstep d has a matching upstep u:
head horizontally west from d to the first upstep u that you encounter. Each x-axis point
on P other than the starting point is a return of P ; P is strict if it has only one return. Its
returns divide a nonempty Dyck path into a list of its components, each of which is a strict
Dyck path. For any path, a nonzero ascent is a maximal sequence of contiguous upsteps (we
assume a zero ascent between a pair of contiguous downsteps); similarly for descents.

Noncrossing partitions π on [n] correspond to Dyck n-paths P : arrange the blocks of π
in increasing order of their maximal elements; let (mi)

k
i=1 be these maximal elements and let

(ni)
k
i=1 be the corresponding block sizes. Then, with m0 := 0, the lists (mi −mi−1)

k
i=1 and

(ni)
k
i=1 determine π and are, respectively, the nonzero ascent lengths and nonzero descent

lengths defining P . This correspondence preserves components. For the example 1 7–2 3 5 6–
4–8–9 10 12–11 above, we have (mi)

k
i=1 = (4, 6, 7, 8, 11, 12) and (ni)

k
i=1 = (1, 4, 2, 1, 1, 3). So

the nonzero ascent (resp. descent) lengths are given by the top (resp. bottom) row of
( 4 2 1 1 3 1

1 4 2 1 1 3 ) and the corresponding Dyck path is
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To recover the noncrossing partition, label the upsteps in order 1 through n.

Then each descent yields a block via the labels on its matching upsteps

(the first descent gives the singleton block {4}).

An arbitrary permutation σ on [n] can be split into a set of labeled SIF permutations
whose underlying sets partition [n]. First, decompose σ into its connected components
σ1, σ2, . . . , σk. For each i ∈ [k], set aside the maximal proper subintervals (if any) stabilized
by σi; these maximal subintervals are disjoint since, if σi stabilizes intervals J1, J2 then σi

stabilizes J1 ∪ J2 also. Because σi is connected, what’s left is a nonempty subset of [n] also
stabilized by σi on which σi is SIF. Repeat this procedure on the connected components
of the restriction of σ to the intervals set aside, continuing till nothing is set aside. The
resulting set of labeled SIF permutations corresponds to a Murasaki diagram in which an
unlabeled SIF permutation is associated with each segment; the segments record the underly-
ing sets, the unlabeled SIF permutations record the action of the permutation. For example,
( 1 2 3 4 5 6 7 8 9 10 11 12

7 5 6 4 2 3 1 8 10 12 11 9 ) splits into (
1 7
7 1 ) , (

2 3 5 6
5 6 2 3 ) , (

4
4 ) , (

8
8 ) , (

9 10 12
10 12 9 ) , (

11
11 ). The Murasaki

diagram is the one above and unlabeled SIFs are associated with segments as follows.

segments by smallest element 1 2 4 8 9 11
corresponding unlabeled SIF 21 3412 1 1 231 1
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Now we are ready to present the bijection from S[n] to n-lists of unlabeled SIF permuta-
tions whose total length is n− 1, and we will use

σ =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 4 3 1 8 7 6 5 13 10 9 16 11 15 14 12

)

as a working example with n = 16. First, decompose σ into its connected components
(σi)

k
i=1. Record the position j of n in σ (here j = 12), then delete n from σk to get a

permutation σ′k (deleting n simply means erasing n from its cycle and so σ′k(j) = σ(n) ).
Here σ′k = (

9 10 11 12 13 14 15
13 10 9 12 11 15 14 ). Note that since σk is connected, j = σ−1(n) is necessarily in

the first component of σ′k. Now draw the Murasaki diagrams for σ1, . . . , σk−1, σ
′
k and record

the associated unlabeled SIF for each segment.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

segments by smallest element 1 3 5 6 9 10 12 14
corresponding unlabeled SIF 231︸︷︷︸

µ1

1︸︷︷︸
µ2

21︸︷︷︸
ρ1

21︸︷︷︸
ρ2

312︸︷︷︸
τ1

1︸︷︷︸
τ2

1︸︷︷︸
τ3

21︸︷︷︸
τ4

Translate each Murasaki diagram → noncrossing partition → Dyck path, recalling that
segment→ block→ nonzero descent, so each nonzero descent is associated with an SIF, and
mark upstep j unless j = n in which case σ′k is the empty permutation.

¡¡
¡¡
¡¡@@¡¡@@

@@
@@ ¡¡

¡¡
¡¡@@

@@¡¡@@
@@ ¡¡

¡¡@@¡¡
¡¡¡¡@@¡¡@@

@@
@@¡¡

¡¡@@
@@........................................ ........................................ ......................................................................•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

j

1
2

3 4

5
6

7

8
9

10 11

12 13

14

15

µ1

µ2
ρ1

ρ2
τ1

τ2

τ3 τ4

Dyck paths, upsteps labeled in order, nonzero descents labeled with corresponding SIF permutation (whose

length = length of descent). All but the last are strict Dyck paths. The marked upstep (here 12) is in the

first component of the last path (unless the last path is empty).

Now we use a cut-and-paste technique to massage these Dyck paths into a balanced path
in a reversible way (making critical use of the marked upstep). The process will preserve all
nonzero descents and so we can carry their SIF labels along with them. Cut the last Dyck
path just before its marked upstep into two paths R,S. For each of the first k − 1 Dyck
paths, remove its last upstep thereby forming a path Pi, a removed upstep, and a nonzero
path Di consisting entirely of downsteps, 1 ≤ i ≤ k − 1. Then rearrange in the following
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order to form a balanced path Q: D1 u D2 u . . . Dk−1 u S R P1 P2 . . . Pk−1.
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balanced path, descents labeled with corresponding SIF permutation,

(upsteps shown with their original numbering only as a visual aid)

The original Dyck paths can be recovered from the balanced path. In brief, the center
point p of the first double rise (= consecutive pair of upsteps) identifies the initial vertex of
the marked upstep. The path from p to the rightmost lowest point of Q following p is S. This
works because the marked upstep was in the first component of the last Dyck path, forcing
R to remain strictly above the rightmost lowest point of Q except initially. From there to
the rightmost point q at p’s level is R. The descents preceding p are D1, . . . , Dk−1 and their
lengths determine how far to proceed from q to recover P1, . . . , Pk−1. The preceding outline
needs a little elaboration to cover special cases. More precisely, prepend and append upsteps
to Q to guarantee the existence of a double rise and the point p. If Q starts with an upstep,
then p will be the origin, the list D1, . . . , Dk−1 will be vacuous and the original permutation
σ will be connected. If p is the last point of Q, then Q will have a sawtooth shape, \/\/\/\/,
and σ = identity. If n is a fixed point of σ, then the last Dyck path is empty (there is no
marked upstep) and Q proceeds from p with an upstep and never drops back to the level of
p. Also, of course, either one of the paths R,S may be empty.

Finally, scan all descents of the balanced path Q, recording ∅ (the empty permutation)
for each zero descent and its associated unlabeled SIF permutation for each nonzero descent.

µ2 ρ2 ∅ τ2 τ3 ∅ τ4 ∅ τ1 ∅ ∅ ∅ µ1 ∅ ∅ ρ1︸ ︷︷ ︸
n-list of SIF permutations of total length n− 1

Thus we have shown that the generating function for the number an of SIF permutations
on [n] is that of A075834 but to calculate values of an it is more efficient to develop a
recurrence relation. Let an,k denote the number of permutations on [n] that do not stabilize
any proper subinterval beginning at i for i < k. Thus an,1 = n! A000142, an,2 is the
number of connected permutations on [n] A003319 (apart from the first term—we need to
set a1,2 = 0), and an,n = an. Counting permutations by their first stabilized subinterval, it
is straightforward to obtain the following recurrence (given in Mathematica code ).
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c[0]=0; c[n_]/;n>=1 := c[n] = n!-Sum[c[i](n-i)!,{i,n-1}]

(* c[n] = # connected perms on [n] *)

a[n_,k_]/;n>=0 && k==n+1 := 0;

a[n_,1]/;n>=1 := n!;

a[n_,k_]/;2<=k<=n := a[n,k] =

n!-Sum[c[j-i+1]a[n-(j-i+1),i],{i,k-1},{j,i,n}];

However, there is also a direct recurrence for an (vacuous sums are 0):

a0 = a1 = 1, an =
n−2∑

j=2

(j − 1)ajan−j + (n− 1)an−1, n ≥ 2.

The right hand side above counts SIF permutations σ on [n] by the parameter j = n− 1− s
where s is the size of the largest proper subinterval I of [n−1] such that σ stabilizes I ∪{n}.
(I is necessarily an interior subinterval of [n− 1] and may be empty.)

To see this, first note that if σn−1 is SIF on [n−1] and n is inserted anywhere into a cycle
of σn−1 (n− 1 possible ways) to form σ ∈ S[n], then σ is also SIF. This accounts for the last
term. Now suppose σ is SIF on [n] and the result σn−1 ∈ S[n−1] of deleting n from its cycle
in σ fails to be SIF. Consider the maximal proper subintervals of [n− 1] stabilized by σn−1

(necessarily disjoint, as noted above). There is at least one such by assumption and at most
one, call it I, because otherwise σ itself would stabilize all but one of them, contradicting
the assumption σ is SIF. Let ρ denote the restriction of σn−1 to I and τ the restriction of
σn−1 to [n− 1]\I. Then σ is obtained from the pair ρ, τ by inserting n into a cycle of ρ, not
τ , otherwise σ would stabilize I. We may write the interval I as [k + 1, n − j + k − 1] for
some 1 ≤ k < j ≤ n − 2 so that the size of I is s := n − j − 1 and I is clearly the largest
proper subinterval of [n− 1] such that σ stabilizes I ∪ {n}. Now τ is SIF on [n− 1]\I since
τ coincides with σ on [n − 1]\I. We claim ρ′ := σ restricted to I ∪ {n} is SIF also: if ρ′

stabilized a proper subinterval of I, then σ would too, and if ρ′ stabilized a proper terminal
subinterval (containing n), then σ would stabilize the corresponding initial subinterval. All
told, for each j ∈ [2, n− 2], we have j − 1 choices for k and every permutation σ formed in
this way from SIF permutations ρ′ on I ∪ {n} (an−j choices) and τ on [n− 1]\I (aj choices)
is SIF. The recurrence follows. We note that it implies the differential equation

xA′(x) = A(x)− x−
x

A(x)− 1

for the generating function A(x).

Asymptotically, the proportion of permutations on [n] that are connected (indecompos-
able) is 1 − 2

n
+ O( 1

n2 ) [2, p. 295, Ex. 16] and there is a simple heuristic explanation: the
easiest way for a permutation on [n] to be decomposable is for it to fix 1 or n and there are
2(n − 1)! − (n − 2)! permutations that do so. Far fewer permutations stabilize any other
initial interval and so the dominant term in the number of decomposable permutations on
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[n] is 2(n − 1)!. Similarly, the easiest way for σ ∈ S[n] to fail to be SIF is for it to have a
fixed point. The proportion of fixed-point-free permutations on [n] is well known to be very
near 1

e
, suggesting that the proportion of SIF permutations on [n] is 1

e
+ O( 1

n
), and indeed

computer calculations suggest it is 1
e
(1− 1

n
) +O( 1

n2 ) and maybe
1
e
(1− 1

n
− 5

2n2 ) +O( 1
n3 ). It

would be interesting to prove this.
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