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Abstract

We show that formulae of Gessel for the generating functions for Young standard tableaux of height
bounded by k (see [2]) satisfy linear differential equations, with polynomial coefficients, equivalent to P -
recurrences conjectured by Favreau, Krob and the first author (see [1]) for the number of bounded height
tableaux and pairs of bounded height tableaux.

1. Results

Let us first fix some notation. A partition λ of a positive integer n is a sequence of integers

λ1 ≥ λ2 ≥ . . . ≥ λk > 0

such that
∑

i λi = n. We denote this by writing λ � n, and say that k is the height h(λ) of λ. The height of
the empty partition (of 0) is 0. The (Ferrer’s) diagram of a partition λ is the set of points (i, j) ∈ Z2 such
that 1 ≤ j ≤ λi. It is also denoted by λ. Clearly a partition is characterized by its diagram. The conjugate
λ′ of a partition λ is the partition with diagram {(j, i) | (i, j) ∈ λ}.

A standard Young tableau T is an injective labeling of a Ferrer’s diagram by the elements of {1, 2, . . . , n}
such that T (i, j) < T (i + 1, j) for 1 ≤ i < k and T (i, j) < T (i, j + 1) for 1 ≤ j < λi. We further say that
λ is the shape of the tableau T . For a given λ, the number fλ of tableaux of shape λ is given by the hook
length formula

fλ =
n!∏
c hc

,

where c = (i, j) runs over the set of points in the diagram of λ, and

hc = λi − i + λ′
j − j + 1.

Other classical results in this context are ∑
λ�n

f2
λ = n!,
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and ∑
λ�n

fλ = coeff of
xn

n!
in ex+x2/2.

We are interested in the enumeration of tableaux of height bounded by some integer k; that is to say
we wish to compute the numbers

τk(n) =
∑

h(λ)≤k

fλ

as well as
Tk(n) =

∑
h(λ)≤k

f2
λ.

For example, the first few sequences τk(n) for n ≥ 1 are

τ2(n) → 1, 2, 3, 6, 10, 20, 35, 70, 126, 252, 462, 924, 1716, 3432, 6435, 12870, 24310, 48620, 92378, . . .

τ3(n) → 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798, 15511, 41835, 113634, 310572, 853467, . . .

τ4(n) → 1, 2, 4, 10, 25, 70, 196, 588, 1764, 5544, 17424, 56628, 184041, 613470, 2044900, . . .

τ5(n) → 1, 2, 4, 10, 26, 75, 225, 715, 2347, 7990, 27908, 99991, 365587, 1362310, 5159208, . . .

τ6(n) → 1, 2, 4, 10, 26, 76, 231, 756, 2556, 9096, 33231, 126060, 488488, 1948232, 7907185, . . .

(These are sequences A001405, A001006, A005817, A049401, A007579 in [5].) For Tk(n), we have

T2(n) → 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, . . .

T3(n) → 1, 2, 6, 23, 103, 513, 2761, 15767, 94359, 586590, 3763290, 24792705, 167078577, . . .

T4(n) → 1, 2, 6, 24, 119, 694, 4582, 33324, 261808, 2190688, 19318688, 178108704, 1705985883, . . .

T5(n) → 1, 2, 6, 24, 120, 719, 5003, 39429, 344837, 3291590, 33835114, 370531683, 4285711539, . . .

T6(n) → 1, 2, 6, 24, 120, 720, 5039, 40270, 361302, 3587916, 38957991, 457647966, 5763075506, . . .

(Sequences A000108, A005802, A052397, A052398, A052399 in [5].)

In [2] Gessel deduces the following formulae from a result of Gordon:

yk(x) :=
∞∑

n=0

τk(n)xn

n!
=




det [Ji−j(x) − Ji+j−1(x)]1≤i,j≤k/2 if k is even,

ex det [Ji−j(x) − Ji+j(x)]1≤i,j≤(k−1)/2 if k is odd,

and

Yk(x) :=
∞∑

n=0

Tk(n)xn

(n!)2
= det [Ii−j(x)]1≤i,j≤k ,

where

Jk(x) =
∞∑

n=0

x2 n+k

n! (n + k)!

and

Ik(x) =
∞∑

n=0

xn+k/2

n! (n + k)!
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If k is positive integer, we set J−k := Jk and I−k := Ik. The resulting expressions rapidly become unwieldy.
For example,

y2(x) = J0(x) + J1(x)

y3(x) = ex (J0(x) − J2(x))

y4(x) = J0(x)2 + J0(x) J1(x) + J0(x)J3(x) − J1(x)2 − 2 J1(x) J2(x) + J1(x)J3(x) − J2(x)2

y5(x) = ex
(
J0(x)2 − J0(x) J2(x) − J0(x)J4(x) − J1(x)2 + 2J1(x) J3(x) + J2(x)J4(x) − J3(x)2

)

y6(x) = J0(x)3 + J0(x)2 J1(x) + J0(x)2 J3(x) + J0(x)2 J5(x) − 2 J0(x) J1(x)2 − 2 J0(x) J1(x) J2(x)

+ J0(x) J1(x) J3(x) − 2 J0(x) J1(x) J4(x) + J0(x)J1(x)J5(x) − 2 J0(x)J2(x)2

− 2 J0(x)J2(x)J3(x) − J0(x) J3(x)2 + J0(x)J3(x)J5(x) − J0(x) J4(x)2 − J1(x)3

+ 2J1(x)2 J2(x) + 2J1(x)2 J3(x) − 2 J1(x)2 J4(x) − J1(x)2 J5(x) + 2J1(x) J2(x)2

+ 2J1(x)J2(x)J3(x) + 2J1(x)J2(x)J4(x) − 2 J1(x) J2(x)J5(x) + 2J1(x) J3(x) J4(x)

+ J1(x) J3(x) J5(x) − J1(x)J4(x)2 − J2(x)2 J3(x) + 2J2(x)2 J4(x) − J2(x)2 J5(x)

− 2 J2(x)J3(x)2 + 2 J2(x) J3(x) J4(x) − J3(x)3

We can simplify these using properties of Bessel functions. Recalling the easily deduced relations

Jk(x) = Jk−2(x) − 1
x

(n − k − 1) Jk−1(x), k ≥ 2,

we get, after some computation, the much simpler expressions

y3(x) = x−1ex J1(x)

y4(x) = x−2
(
−2 x J0(x)2 + 2 J0(x) J1(x) + (2x + 1)J1(x)2

)

y5(x) = x−4ex
(
−4 x2 J0(x)2 + 2 x J0(x) J1(x) + 2

(
2 x2 + 1

)
J1(x)2

)

y6(x) =x−6
(
−4 x2 (4 x − 3) J0(x)3 − 4 x

(
4 x2 − 3 x + 6

)
J0(x)2 J1(x)

+ 4
(
4 x3 − x2 + 3

)
J0(x)J1(x)2 + 4

(
4 x3 − x2 + 5x + 1

)
J1(x)3

)
Similarly

Y2(x) = I0(x)2 − I1(x)2

Y3(x) = x−1
(
2
√

x I0(x)2 I1(x) − I0(x) I1(x)2 − 2
√

x I1(x)3
)

Y4(x) =x−3
(
− 4 x2 I0(x)4 + 8x

√
x I0(x)3 I1(x) + 4x (2 x − 1) I0(x)2 I1(x)2

− 8 x
√

x I0(x) I1(x)3 − x (4x − 1) I1(x)4
)

A theoretical argument (see [2]) shows that the generating functions yk(x) and Yk(x) are D-finite. That
is to say, they satisfy linear differential equations with polynomial coefficients. In fact, it is well known and
classical that one can translate such linear differential equations into recurrences with polynomial coefficients.
More precisely, a P -recurrence for a sequence an is one of the form

p0(n) an + p1(x) an−1 + . . . + pk(n) an−k = q(n),

where all pi(n), 1 ≤ i ≤ k, and q(n) are polynomials in n. We say that a sequence is P -recursive if it satisfies
a P -recurrence. The class of P -recursive sequences is closed under point-wise products. Since 1/n! is easily
seen to be P -recursive, it follows that, if an is P -recursive, then so are an/n! and an/n!2. The algorithmic
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translation from D-finite to P -recursive (and back) has been implemented in the package GFUN in Maple
(see [4]), which also contains many other nice tools for handling recurrences and generating functions.

Computer experiments made by Krob, Favreau and the first author led to conjectures (see [1]) for an
explicit form for P -recurrences for τh(n) and Th(n). These conjectures can be easily (and automatically)
reformulated as linear differential equations for yk(x) and Yk(x). We first observe that it is not hard to show
the existence of a linear differential equation of order bounded by

�(k) :=
⌊

k

2

⌋
+ 1

with polynomial coefficients, admitting yk(x) as a solution. In fact, this follows readily from the following
proposition.

Proposition 1. Let Vk denote the vector space over the field C(x) of rational functions in x spanned by
yk(x) and all its derivatives. Then

dim Vk ≤ �(k).

Proof. Setting n := �(k) − 1, it is clear from our previous discussion that yk lies in the span Wk of the set
of �(k) elements given by

{J0(x)m J1(x)n−m | 0 ≤ m ≤ n }
if k is even, and by

{ex J0(x)m J1(x)n−m | 0 ≤ m ≤ n }
if k is odd. Wk is clearly closed under differentiation, since we easily see that

d

dx
J0(x) = 2J1(x),

d

dx
J1(x) = 2J0(x) − 1

x
J1(x),

(1)

from which we deduce that

d

dx
J0(x)a J1(x)b =

2 a

x
J0(x)a−1 J1(x)b+1 x + 2 b J0(x)a+1 J1(x)b−1 − b

x
J0(x)a J1(x)b, (2)

as well as a similar expression for the derivative of ex J0(x)a J1(x)b. Thus Vk is contained in Wk, and hence
its dimension is bounded by �(k).

Setting for the moment n := �(k) and y := yk(x), it clearly follows from the above proposition that

y, y′, y′′, . . . , y(n)

are linearly dependent, hence yk(x) satisfies a homogeneous linear differential equation of order (at most)
�(k) with polynomial coefficients (in x). However, it appears that a stronger result holds.

Conjecture (Bergeron–Favreau–Krob, [1]). For each k, there are polynomials pm(x) of degree at most �− 1
such that yk(x) is a solution of

�∑
m=0

pm(x)y(m) = 0,

where � = �(k). Moreover, for m ≥ 1, pm(x) = qm(x)xm−1, and p�(x) = x�−1.

The first few cases for yk(x) are∗

∗ Here → means “is a solution of”.
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y2(x) → x y′′ + 2 y′ − 2 (2 x + 1) y = 0

y3(x) → x y′′ − (2 x − 3) y′ − 3 (x + 1) y = 0

y4(x) → x2 y′′′ + 10 x y′′ − 4
(
4 x2 + 2 x − 5

)
y′ − 4 (8 x + 5) y = 0

y5(x) → x2 y′′′ − (3 x − 13) x y′′ −
(
13 x2 + 26x − 35

)
y′ + 5

(
3 x2 − 7 x − 7

)
y = 0

Equating coefficients of xn/n! on both hand sides of these differential equations, one finds that they are
equivalent to the recurrences

(n + 1) τ2(n) − 2 τ2(n − 1) − 4 (n − 1) τ2(n − 2) = 0

(n + 2) τ3(n) − (2 n + 1) τ3(n − 1) − 3 (n − 1) τ3(n − 2) = 0

(n + 3) (n + 4) τ4(n)−16 (n − 1) τ4(n − 2) n − (8 n + 12) τ4(n − 1) = 0

(n+4) (n+6) τ5(n)−
(
3 n2 + 17 n + 15

)
τ5(n−1)− (n−1)(13n+9) τ5(n−2)+15 (n−1) (n−2) τ5(n−3) = 0

Up to now, only these recurrences (that is, for k ≤ 5), had been implicitly known (see [3]). However, using
the simplified expressions for yk(x) given here, and a reformulation in term of linear differential equations
(with the help of GFUN [4]) we have been able to check (in the form of a computer algebra proof) that the
conjecture above is true for k ≤ 11, from which it follows that the corresponding recurrences hold. This
computer verification simply uses the derivation rules (1) for J0(x) and J1(x) to simplify the expressions
obtained by substitution of Gessel’s formulae in the following differential equations.

y6(x) → x3 y(4) + 28x2 y′′′ − 10
(
4 x2 + 2x − 23

)
x y′′

− 4
(
108 x2 + 61x − 135

)
y′ + 36 (2x + 5)

(
2 x2 − 3 x − 3

)
y = 0

y7(x) → x3 y(4) − 2 (2 x − 17) x2 y′′′ −
(
34 x2 + 102x − 343

)
x y′′

+
(
76 x3 − 450 x2 − 686 x + 1001

)
y′ + 7

(
15 x3 + 74x2 − 143 x − 143

)
y = 0

y8(x) → x4 y(5) + 60x3 y(4) − 2
(
40 x2 + 20x − 619

)
x2 y′′′ − 4

(
608 x2 + 331x − 2567

)
x y′′

+ 8
(
128 x4 + 128x3 − 2480 x2 − 1527 x + 3536

)
y′ + 128

(
64 x3 + 72x2 − 286 x − 221

)
y = 0

y9(x) → x4 y(5) − 5 (x − 14) x3 y(4) −
(
70 x2 + 280x − 1693

)
x2 y′′′

+
(
230 x3 − 2492 x2 − 5079 x + 16535

)
x y′′

+
(
789 x4 + 5544 x3 − 24073 x2 − 33070 x + 53865

)
y′

− 27
(
35 x4 − 274 x3 − 1017 x2 + 1995x + 1995

)
y = 0

y10(x) → x5 y(6) + 110x4 y(5) − 2
(
70 x2 + 35x − 2269

)
x3 y(4)

− 4
(
2268 x2 + 1211 x − 21752

)
x2 y′′′

+ 4
(
1036 x4 + 1036 x3 − 48033 x2 − 27900 x + 191477

)
x y′′

+ 8
(
14300 x4 + 15542 x3 − 185404 x2 − 121352 x + 303875

)
y′

− 200
(
72 x5 + 108 x4 − 3262 x3 − 3987 x2 + 14960x + 12155

)
y = 0
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y11(x) → x5 y(6) − (6x − 125) x4 y(5) −
(
125 x2 + 625x − 5873

)
x3 y(4)

+ 2
(
270 x3 − 4611 x2 − 11746 x + 64252

)
x2 y′′′

+
(
3319 x4 + 30166x3 − 223422 x2 − 385512 x + 1293125

)
x y′′

−
(
7734 x5 − 104329 x4 − 493828 x3 + 1987124 x2 + 2586250 x − 4697275

)
y′

− 11
(
945 x5 + 11343 x4 − 62023 x3 − 204012 x2 + 427025x + 427025

)
y = 0

However, these verifications rapidly become (computer) time consuming. For example, with k = 11, we have
to substitute in this last differential equation the following expression

y11(x) =
138240 ex

x25

(
− 14

(
32 x6 + 177 x4 + 198x2 − 72

)
x5 J0(x)5

+ 8
(
16 x8 + 256x6 + 825 x4 + 585x2 − 495

)
x4 J1(x)J0(x)4

+ 4
(
192 x8 + 833x6 + 495x4 + 135x2 + 1440

)
x3 J1(x)2 J0(x)3

−
(
256 x10 + 3648x8 + 10799x6 + 9690x4 + 1980x2 + 3600

)
x2 J1(x)3 J0(x)2

− 5
(
64 x10 + 190x8 − 77 x6 + 114x4 + 504x2 − 144

)
x J1(x)4 J0(x)

+
(
128 x12 + 1632x10 + 4557x8 + 5482x6 + 4158x4 + 2052x2 + 72

)
J1(x)5

)

and simplify. Clearly we could go on to larger cases, but the point seems to be made that the conjectures
are reasonable.

Similar considerations for the enumeration of pairs of tableaux, with the following differential equations,
settle the corresponding conjectures for the cases k ≤ 7:

Y2(x) → x2 y′′′ + 4x y′′ − 2 (2 x − 1) y′ − 2 y = 0

Y3(x) → x3 y(4) + 10x2 y′′′ − (10 x − 23)x y′′ − (32x − 9) y′ + 9 (x − 1) y = 0

Y4(x) → x4 y(5) + 20x3 y(4) − 2 (10 x − 59)x2 y′′′ − 2 (91 x − 110) x y′′

+ 4
(
16 x2 − 87 x + 20

)
y′ + 16 (8x − 5) y = 0

Y5(x) → x5 y(6) + 35x4 y(5) − 7 (5 x − 59)x3 y(4) − 2 (336x − 979)x2 y′′′ +
(
259 x2 − 3650 x + 3383

)
x y′′

+
(
1917 x2 − 5708 x + 1225

)
y′ − 25

(
9 x2 − 93 x + 49

)
y = 0

Y6(x) → x6 y(7) + 56x5 y(6) − 28 (2 x − 41)x4 y(5) − 4 (483x − 2684)x3 y(4)

+ 4
(
196 x2 − 5480 x + 11543

)
x2 y′′′ + 8

(
1686 x2 − 11941 x + 9830

)
x y′′

− 4
(
576 x3 − 14931 x2 + 34438x − 7290

)
y′ − 72

(
144 x2 − 821 x + 405

)
y = 0

Y7(x) → x7 y(8) + 84x6 y(7) − 42 (2 x − 65)x5 y(6) − 2 (2352x − 21881) x4 y(5)

+ 3
(
658 x2 − 31606 x + 121455

)
x3 y(4) + 2

(
31986 x2 − 424260 x + 754183

)
x2 y′′′

−
(
12916 x3 − 648834 x2 + 3329230 x − 2610671

)
x y′′

−
(
175704 x3 − 2292734 x2 + 4684008 x − 1002001

)
y′

+ 49
(
225 x3 − 9630 x2 + 42313x − 20449

)
y = 0
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