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Abstract

We prove that some sums, which arise as generalizations of known binomial coeffi-

cient identities, are divisible by the central binomial coefficient. A new method is used.

In particular, we show that an alternating sum concerning the product of a power

of a binomial coefficient with two Catalan numbers is always divisible by the central

binomial coefficient.

1 Introduction

Let n be a non-negative integer and let m be a positive integer. Let Cn = 1
n+1

(

2n
n

)

denote
the nth Catalan number.

In this paper, we consider the following four binomial sums:

P (n,m) =
n

∑

k=0

(−1)k
(

n

k

)m(
2k

k

)(

2n− 2k

n− k

)

, (1)

Q(n,m) =
n

∑

k=0

(−1)k
(

n

k

)m(
2k

k

)(

2n− 2k

n− k

)

(n− k), (2)

R(n,m) =
n

∑

k=0

(−1)k
(

n

k

)m

Ck

(

2n− 2k

n− k

)

, (3)

T (n,m) =
n

∑

k=0

(−1)k
(

n

k

)m

Ck Cn−k. (4)
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For m = 1, all four sums (1), (2), (3), and (4) reduce to interesting combinatorial
identities. For example, it is well-known that [9, Example 3.6.2, p. 45]

2n
∑

k=0

(−1)k
(

2n

k

)(

2k

k

)(

4n− 2k

2n− k

)

=

(

2n

n

)2

. (5)

By Eq. (5), it follows that P (2n, 1) =
(

2n
n

)2
.

Recently, the following two binomial coefficient identities involving the Catalan numbers
were discovered [8]:

n
∑

k=0

(−1)k
(

n

k

)

Ck

(

2n− 2k

n− k

)

=

(

n

⌊n
2
⌋

)2

, (6)

2n
∑

k=0

(−1)k
(

2n

k

)

Ck C2n−k = Cn

(

2n

n

)

. (7)

In this paper we present, among other results, two generalizations of Eqns. (6) and (7).

See Remark 23. By Eqns. (6) and (7), it follows that R(n, 1) =
(

n

⌊n
2
⌋

)2
and T (2n, 1) = Cn

(

2n
n

)

.

Our main results are as follows:

Theorem 1. The sum P (2n,m) is divisible by
(

2n
n

)

for all non-negative integers n and for

all positive integers m.

Theorem 2. The sum Q(2n− 1,m) is divisible by 2(2n− 1)
(

2(n−1)
n−1

)

for all positive integers

n and m.

Theorem 3. The sum R(2n,m) is divisible by (n + 1)
(

2n
n

)

for all non-negative integers n

and for all positive integers m.

Corollary 4. The sum T (2n,m) is divisible by
(

2n
n

)

for all non-negative integers n and for

all positive integers m.

Theorem 5. The sum R(2n− 1,m) is divisible by
(

2n−1
n

)

for all positive integers n and m.

For proving our main results, we use a method we call the “method of D sums”.

Definition 6. Let n, j, and t be non-negative integers such that j ≤ ⌊n
2
⌋, and let m be

a positive integer. Let S(n,m) =
∑n

k=0

(

n

k

)m
F (n, k), where F (n, k) is an integer-valued

function that depends only on n and k. Then the D sums for S(n,m) are

DS(n, j, t) =

n−2j
∑

l=0

(

n− j

l

)(

n− j

j + l

)(

n

j + l

)t

F (n, j + l). (8)
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First, note that all four sums (1), (2), (3), and (4) are instances of S(n,m). For m ≥ 2,
by Eq. (8), it follows that

S(n,m) = DS(n, 0,m− 2). (9)

Furthermore, D sums satisfy the following two recurrence relations [6, Thm. 2, Thm. 3, p.
2]:

DS(n, j, t+ 1) =

⌊n−2j

2
⌋

∑

u=0

(

n

j + u

)(

n− j

u

)

DS(n, j + u, t), (10)

DS(n, j, 0) =

⌊n−2j

2
⌋

∑

u=0

(

n− j

j + u

)(

n− 2j − u

u

) n−2j−2u
∑

v=0

(

n− 2j − 2u

v

)

F (n, j + u+ v). (11)

The idea is to calculate the D sums for (1), (2), (3), and (4) by using Relations 10 and
11. We show that their D sums have interesting divisibility properties. For example, we
show that DP (2n, j, 0) is divisible by

(

2n
n

)

for all non-negative integers j and n such that
j ≤ n. Surprisingly, this result is sufficient to prove Theorem 1 for m ≥ 2. Namely, then
by Relation 10 and induction, it can be shown that all DP (2n, j, t) are divisible by

(

2n
n

)

. By

Relation 9, it follows that P (2n,m) is divisible by
(

2n
n

)

for all m ≥ 2. See [6, Section 5].
To calculate the sum DP (2n, j, 0), we derive the following binomial coefficient identity:

2n−t
∑

k=t

(−1)k
(

2n− 2t

k − t

)(

2k

k

)(

4n− 2k

2n− k

)

= (−1)t
(

2n
n

)(

2t
t

)(

2(n−t)
n−t

)

(

2n−t

t

) , (12)

where n and t are non-negative integers such that t ≤ n. For t = 0, Eq. (12) becomes Eq. (5).
Therefore, we can see Eq. (12) as a generalization of Eq. (5).

2 Motivation

The first application of D sums [6, Section 8] was for proving Calkin’s result [1, Thm. 1]. In
1998, Calkin proved that the alternating binomial sum

∑2n
k=0(−1)k

(

2n
k

)m
is divisible by

(

2n
n

)

for all non-negative integers n and all positive integers m.
In 2007, Guo, Jouhet, and Zeng proved, among other things, two generalizations of

Calkin’s result [4, Thm. 1.2, Thm. 1.3, p. 2]. As a special case of [4, Thm. 1.2, p. 2], they gave
a direct generalization of Calkin’s result [4, Thm. 4.1, p. 8]. Moreover, this generalization
implies that the sum DS3

[6, Section 8] is divisible by
(

2n
n

)

and
(

2n−j

n

)

for t ≥ 1. Take
m = t+ 2, n1 = n2 = · · · = nt+1 = n, and nt+2 = n− j in [4, Thm. 4.1, p. 8].

Since the sum in [4, Thm. 4.1, p. 8] is not instance of S(n,m) from our Definition 6,
it is clear that D sums cannot prove this direct generalization by Guo, Jouhet, and Zeng.
Therefore, method of D sums proves the smallest generalization of Calkin’s result.
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In this paper, we show how the method of D sums works on harder sums, such as our
four sums (1), (2), (3), and (4). Note that our main results are not consequences of [4, Thm.
1.2, Thm. 1.3, Thm. 4.1.].

Let S, F , and DS be sums according to Definition 6. The main obstacle is to calculate
the sum DS(n, j, 0). In order to make Relation 11 more readable, we introduce the following
definition.

Definition 7. Let n and t be non-negative integers such that t ≤ ⌊n
2
⌋. Then St(n) denotes

n−t
∑

k=t

(

n− 2t

k − t

)

F (n, k). (13)

Obviously, for t = 0, it follows that S0(n) = S(n, 1). Therefore, a sum St(n) can be
viewed as a generalization of a sum S(n, 1). Furthermore, by substitution k = u+ j+ v, the
inner sum of the right-side of (11) becomes

n−2j−2u
∑

v=0

(

n− 2j − 2u

v

)

F (n, j + u+ v) = Sj+u(n). (14)

It is readily verified [5, Eq. (1.4), p. 5] that
(

n−j

j+u

)(

n−2j−u

u

)

=
(

n−j

u

)(

n−j−u

j+u

)

. By using this fact

and Eq. (14), Relation 11 becomes

DS(n, j, 0) =

⌊n−2j

2
⌋

∑

u=0

(

n− j

u

)(

n− j − u

j + u

)

Sj+u(n). (15)

From now on, for calculating DS(n, j, 0) sum, we use Eq. (15) instead of Relation 11.
To find a sum DS(n, j, 0), we first need to find the appropriate St(n). For example, let us

consider our first sum P (2n,m). We want to find DP (2n, j, 0) sum, where j is a non-negative
integer such that j ≤ n. Let t be a non-negative integer such that t ≤ n. Then what is
Pt(2n)? By Definitions (6) and (7), Pt(2n) is equal to the left side of Eq. (12). If Eq. (12)
holds, then it follows that

Pt(2n) = (−1)t
(

2n
n

)(

2t
t

)(

2(n−t)
n−t

)

(

2n−t

t

) .

Note that formula above is our Lemma 10. Therefore, Lemma 10 is a restatement of Eq. (12).
Also we want to find the sums Qt(2n− 1), Rt(2n), Rt(2n− 1), and Tt(2n).

This paper consists of two main parts. In the first part, we derive formulas for Pt(2n),
Qt(2n − 1), Rt(2n), Rt(2n − 1) and Tt(2n) sums. We use recurrences and telescoping.
Interestingly, Qt(2n), Rt(n), and Tt(n) are auxiliary sums for the sum Pt(2n). See [7].
Therefore, if we find the first sum Pt(2n), then the others follow by using recurrence relations.
Note that we use telescoping only for the first sum Pt(2n).
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In the second part, we apply the method of D sums by using Relations 10, 15, and 9.
The rest of the paper is structured as follows: In Section 3, we begin with some prelim-

inary results for Eqs. (1), (2), (3), and (4). Also, we give some preliminary results for the
sums Pt(n), Qt(n), Rt(n) and Tt(n). In Section 4, we present formulas for the sums Pt(2n),
Qt(2n− 1), Rt(2n), Rt(2n− 1), and Tt(2n). Also we give recurrence relations between these
sums. In Section 5, we prove most of the results from Section 4. In Section 6, we start
with the proof of Theorem (1) by using the method of D sums and Lemma 10. Then we
prove Theorem 3 and Corollary 4. For brevity and clarity, we omit proofs of Theorems 2
and 5. Namely, the proofs of Theorems 2 and 5 are similar to proofs of Theorems 1 and 3,
respectively.

3 Some preliminary results

We start with some preliminary results for Eqs. (1), (2), (3), and (4) sums.

Lemma 8. Let n be a non-negative integer, and let m be a positive integer. Then we have

P (2n+ 1,m) = 0, (16)

Q(2n,m) = nP (2n,m), (17)

T (2n+ 1,m) = 0, (18)

T (2n,m) =
1

n+ 1
R(2n,m). (19)

Furthermore, we give similar results for the sums Pt(n), Qt(n), Rt(n) and Tt(n).

Lemma 9. Let n be a non-negative integer, and let t be a non-negative integer such that

t ≤ ⌊n
2
⌋. Then we have

Pt(2n+ 1) = 0, (20)

Qt(2n) = nPt(2n), (21)

Tt(2n+ 1) = 0, (22)

Tt(2n) =
1

n+ 1
Rt(2n). (23)

We prove only Lemma 8. The proof of Lemma 9 is similar to the proof of Lemma 8.
Therefore, the proof of Lemma 9 is omitted.

3.1 Proof of Lemma 8

Proof. Changing k to n− k in Eq. (1), it follows that P (n,m) = (−1)nP (n,m). If n is odd,
then it must be P (n,m) = −P (n,m). This is equivalent to P (n,m) = 0 for an odd n. The
Eq. (16) follows, as desired.
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Similarly, changing k to n− k in Eq. (4), it follows that T (n,m) = (−1)nT (n,m). If n is
odd, then it must be T (n,m) = −T (n,m) which is equivalent to T (n,m) = 0. This proves
Eq. (18).

By Eq. (2), we know that

Q(2n,m) =
2n
∑

k=0

(−1)k
(

2n

k

)m(
2k

k

)(

4n− 2k

2n− k

)

(2n− k).

Changing k to 2n− k, the last equation above becomes

Q(2n,m) =
2n
∑

k=0

(−1)k
(

2n

k

)m(
2k

k

)(

4n− 2k

2n− k

)

k.

By adding these two equations, Eq. (17) follows.
Let us now prove Eq. (19). By Eq. (3), we know that

R(2n,m) =
2n
∑

k=0

(−1)k
(

2n

k

)m

Ck

(

4n− 2k

2n− k

)

.

Changing k to 2n− k, the last equation above becomes

R(2n,m) =
2n
∑

k=0

(−1)k
(

2n

k

)m

C2n−k

(

2k

k

)

.

By adding the last two equations above and using the fact [8, Eq. (18), p. 8]
Ck

(

4n−2k
2n−k

)

+ C2n−k

(

2k
k

)

= 2(n+ 1)Ck C2n−k , Eq. (19) follows.

4 Main lemmas, propositions and corollaries

Let n and t be non-negative integers such that t ≤ ⌊n
2
⌋. By Eqns. (1),(2), (3), (4), and

Definition 7, we know that

Pt(n) =
n−t
∑

k=t

(−1)k
(

n− 2t

k − t

)(

2k

k

)(

2n− 2k

n− k

)

, (24)

Qt(n) =
n−t
∑

k=t

(−1)k
(

n− 2t

k − t

)

(n− k)

(

2k

k

)(

2n− 2k

n− k

)

, (25)

Rt(n) =
n−t
∑

k=t

(−1)k
(

n− 2t

k − t

)

Ck

(

2n− 2k

n− k

)

, (26)

Tt(n) =
n−t
∑

k=t

(−1)k
(

n− 2t

k − t

)

CkCn−k. (27)
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We present the following five main lemmas for calculating the sums Pt(2n), Qt(2n − 1),
Rt(2n), Rt(2n− 1), and Tt(2n).

Lemma 10. Let n and t be non-negative integers such that t ≤ n. Then

Pt(2n) = (−1)t
(

2n
n

)(

2t
t

)(

2n−2t
n−t

)

(

2n−t

t

) .

Lemma 11. Let n be a positive integer, and let t be a non-negative integer such that t ≤ n−1.
Then

Qt(2n− 1) = (−1)t
2(2n− 1)

(

2(n−1)
n−1

)(

2t
t

)(

2(n−1−t)
n−1−t

)

(

2n−1−t

t

) .

Lemma 12. Let n and t be non-negative integers such that t ≤ n. Then

Rt(2n) = (−1)t
(

2n
n

)(

2t
t

)(

2n−2t
n−t

)

(

2n+1−t

t

) .

Lemma 13. Let n and t be non-negative integers such that t ≤ n. Then

Tt(2n) = (−1)t
Cn

(

2t
t

)(

2n−2t
n−t

)

(

2n+1−t

t

) .

Lemma 14. Let n be a positive integer, and let t be a non-negative integer such that t ≤ n−1.
Then

Rt(2n− 1) = (−1)t
(

2n−1
n

)(

2t
t

)(

2n−2t−1
n−t

)

(

2n−t

t

) .

Sums Qt(n), Rt(n), and Tt(n) are auxiliary sums for the sum Pt(n). We give recurrences
between these sums. We start with two propositions.

Proposition 15. Let n be a positive integer, and let t be a non-negative integer such that

t < n
2
. Then

Qt(n) = 4(n− 2t)Pt(n− 1) + 2(n− 2t)(−1)nRt(n− 1) + tPt(n).

Proposition 16. Let n be a positive integer, and let t be a non-negative integer such that

t < n
2
. Then

(n− t+ 1)Rt(n) = Pt(n) + 4(n− 2t)Rt(n− 1)− 2(n− 2t)Tt(n− 1).

Proposition 15 has the following two consequences.

Corollary 17. Let n be a positive integer, and let t be a non-negative integer such that

t ≤ n− 1. Then

Rt(2n− 1) =
1

4
Pt(2n).
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Corollary 18. Let n be a positive integer, and let t be a non-negative integer such that

t ≤ n− 1. Then

Qt(2n− 1) = 2(2n− 1− 2t)(2Pt(2n− 2)−Rt(2n− 2)).

Proposition 16 also has two consequences.

Corollary 19. Let n and t be non-negative integers such that t ≤ n. Then

Rt(2n) =
2n− 2t+ 1

2n− t+ 1
Pt(2n).

Corollary 20. Let n be a positive integer, and let t be a non-negative integer such that

t ≤ n− 1. Then

Rt(2n− 1) =
2(2n− 2t− 1)(2n− 1)

n(2n− t)
Rt(2n− 2).

Furthermore, by Corollaries 18 and 19, it follows that

Corollary 21. Let n be a positive integer, and let t be a non-negative integer such that

t ≤ n− 1. Then

Qt(2n− 1) =
2(2n− 1)(2n− 1− 2t)

2n− 1− t
Pt(2n− 2).

Finally, by Corollaries 17, 19, and 20, we give the following recurrence for Pt(2n).

Corollary 22. Let n be a positive integer, and let t be a non-negative integer such that

t < n. Then

Pt(2n) =
8(2n− 1)(2n− 2t− 1)2

n(2n− t)(2n− t− 1)
Pt(2n− 2).

We prove Lemma 10 by telescoping the recurrence from Corollary 22. Once we obtain
Lemma 10, proofs of Lemmas 11, 12, and 14 follow from Corollaries 21, 19, and 17, respec-
tively. Note that Lemma 13 follows from Eq. (23) and Lemma 12. Therefore, proofs of
Lemmas 11, 12, 13, and 14 are omitted. Since we do not use the sum Qt(2n− 1) for calcu-
lating the sum Pt(2n), proofs of Corollaries 18 and 21 are omitted too. The other corollaries
are proved.

5 Proofs of main lemmas, propositions and corollaries

First, we prove Propositions 15 and 16. To do this, we use two known binomial identities.
The first is [5, Eq. (1.2), p. 5]

(n− k)

(

n

k

)

= n

(

n− 1

k

)

, (28)
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where k is an arbitrary integer. The second identity is

(

2k

k

)

= 4

(

2(k − 1)

k − 1

)

− 2Ck−1, (29)

where k is a positive integer. Eq. (29) follows from the recurrence relation for the central
binomial coefficients [5, p. 26] and the definition of the Catalan numbers.

5.1 Proof of Proposition 15

Proof. By Eqns. (24) and (25), we have

Qt(n) =
n−t
∑

k=t

(−1)k
(

n− 2t

k − t

)

((n− k − t) + t)

(

2k

k

)(

2n− 2k

n− k

)

=
n−t
∑

k=t

(−1)k
(

n− 2t

k − t

)

(n− k − t)

(

2k

k

)(

2n− 2k

n− k

)

+ tPn(t). (30)

Note that the last term of the sum on the right-side of Eq. (30) equals zero. By using
Eq. (28), it follows that

(

n−2t
k−t

)

(n− k − t) = (n− 2t)
(

n−1−2t
k−t

)

. Combining these two facts, it
follows that

n−t
∑

k=t

(−1)k
(

n− 2t

k − t

)

(n− k − t)

(

2k

k

)(

2n− 2k

n− k

)

= (n− 2t)
n−1−t
∑

k=t

(−1)k
(

n− 1− 2t

k − t

)(

2k

k

)(

2n− 2k

n− k

)

. (31)

Since k ≤ n− 1− t in Eq. (31), it follows that k < n. By using Eq. (29), we know that

(

2(n− k)

n− k

)

= 4

(

2(n− 1− k)

n− 1− k

)

− 2Cn−1−k. (32)

By using Eq. (32), we have

n−1−t
∑

k=t

(−1)k
(

n− 1− 2t

k − t

)(

2k

k

)(

2n− 2k

n− k

)

(33)

= 4
n−1−t
∑

k=t

(−1)k
(

n− 1− 2t

k − t

)(

2k

k

)(

2(n− 1− k)

n− 1− k

)

(34)

−2
n−1−t
∑

k=t

(−1)k
(

n− 1− 2t

k − t

)(

2k

k

)

Cn−1−k. (35)
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By Eq. (24), Eq. (34) equals 4Pt(n− 1). Changing k to n− 1− k and by using Eq. (26),
Eq. (35) becomes −2(−1)n−1Rt(n− 1). Therefore, combining these facts, Eq. (33) becomes

4Pt(n− 1) + 2(−1)nRt(n− 1). (36)

By using Eqns. (33) and (36), Eq. (31) becomes

n−t
∑

k=t

(−1)k
(

n− 2t

k − t

)

(n− k − t)

(

2k

k

)(

2n− 2k

n− k

)

= 4(n− 2t)Pt(n− 1) + 2(−1)n(n− 2t)Rt(n− 1). (37)

Finally, Eqns. (30) and (37) complete the proof of Proposition 15.

5.2 Proof of Proposition 16

Proof. By Eq. (26), we have

Rt(n) =
n−t
∑

k=t

(−1)k
(

n− 2t

k − t

)

Ck

(

2n− 2k

n− k

)

=
n−t
∑

k=t

(−1)k
(

n− 2t

k − t

)

(1 + k)− k

k + 1

(

2k

k

)(

2n− 2k

n− k

)

=
n−t
∑

k=t

(−1)k
(

n− 2t

k − t

)

(1−
k

k + 1
)

(

2k

k

)(

2n− 2k

n− k

)

. (38)

By Eq. (24), Eq. (38) becomes

Rt(n) = Pt(n) +
n−t
∑

k=t

(−1)k
(

n− 2t

k − t

)

(−k)Ck

(

2n− 2k

n− k

)

= Pt(n) +
n−t
∑

k=t

(−1)k
(

n− 2t

k − t

)

((n− t− k) + (t− n))Ck

(

2n− 2k

n− k

)

. (39)

By Eq. (26), Eq. (39) becomes

Rt(n) = Pt(n) +
n−t
∑

k=t

(−1)k
(

n− 2t

k − t

)

(n− t− k)Ck

(

2n− 2k

n− k

)

+ (t− n)Rt(n). (40)

The Eq. (40) is equivalent to the following equation

(n− t+ 1)Rt(n) = Pt(n) +
n−t
∑

k=t

(−1)k
(

n− 2t

k − t

)

(n− t− k)Ck

(

2n− 2k

n− k

)

. (41)

10



Similarly as in Eq. (31), we have

n−t
∑

k=t

(−1)k
(

n− 2t

k − t

)

(n− t− k)Ck

(

2n− 2k

n− k

)

(42)

= (n− 2t)
n−1−t
∑

k=t

(−1)k
(

n− 1− 2t

k − t

)

Ck

(

2n− 2k

n− k

)

. (43)

By using Eq. (32), it follows that

n−1−t
∑

k=t

(−1)k
(

n− 1− 2t

k − t

)

Ck

(

2n− 2k

n− k

)

(44)

= 4
n−1−t
∑

k=t

(−1)k
(

n− 1− 2t

k − t

)

Ck

(

2(n− 1− k)

n− 1− k

)

(45)

−2
n−1−t
∑

k=t

(−1)k
(

n− 1− 2t

k − t

)

Ck Cn−1−k. (46)

By Eq. (26), Eq. (45) is equal to 4Rt(n−1). By Eq. (27), Eq. (46) is equal to −2Tt(n−1).
Therefore, by Eqns. (44), (45), and (46), it follows that

n−1−t
∑

k=t

(−1)k
(

n− 1− 2t

k − t

)

Ck

(

2n− 2k

n− k

)

= 4Rt(n− 1)− 2Tt(n− 1). (47)

By Eqns. (47), (42), and (43), Eq. (41) becomes

(n− t+ 1)Rt(n) = Pt(n) + (n− 2t)(4Rt(n− 1)− 2Tt(n− 1))

= Pt(n) + 4(n− 2t)Rt(n− 1)− 2(n− 2t)Tt(n− 1).

This completes the proof of Proposition 16.

5.3 Proofs of Corollaries 17, 19, and 20

We begin with the proof of Corollary 17. Corollary 17 is a consequence of Proposition 15
and Lemma 9.

Proof. Let n be a positive integer. By setting n := 2n in Proposition 15, we obtain that

Qt(2n) = 4(2n− 2t)Pt(2n− 1) + 2(2n− 2t)(−1)2nRt(2n− 1) + tPt(2n), (48)

where 0 ≤ t < 2n
2
= n.

11



By Eqns. (20) and (21) from Lemma 9, Eq. (48) is equivalent to

nPt(2n) = 2(2n− 2t)Rt(2n− 1) + tPt(2n),

4(n− t)Rt(2n− 1) = (n− t)Pt(2n). (49)

Since t < n, we can divide both sides of Eq. (49) by 4(n− t). Therefore, Eq. (49) becomes

Rt(2n− 1) =
1

4
Pt(2n).

This completes the proof of Corollary 17.

Corollary 19 is a consequence of Proposition 16, Corollary 17, and Lemma 9. We now
prove Corollary 19.

Proof. Let n be a positive integer. By setting n := 2n in Proposition 16, we obtain

(2n− t+ 1)Rt(2n) = Pt(2n) + 4(2n− 2t)Rt(2n− 1)− 2(2n− 2t)Tt(2n− 1), (50)

where 0 ≤ t < 2n
2
= n.

By Eq. (22) from the Lemma 9, the integer Tt(2n−1) vanishes. Then Eq. (50) is equivalent
to

(2n− t+ 1)Rt(2n) = Pt(2n) + 4(2n− 2t)Rt(2n− 1). (51)

By Corollary 17, Eq. (51) becomes as follows:

(2n− t+ 1)Rt(2n) = Pt(2n) + 4(2n− 2t)
1

4
Pt(2n),

(2n− t+ 1)Rt(2n) = (2n− 2t+ 1)Pt(2n).

Since t < n, we can divide both sides of the last equation above by 2n− t+1. It follows that

Rt(2n) =
2n− 2t+ 1

2n− t+ 1
Pt(2n). (52)

Therefore, we proved Corollary 19 for all positive integers n and for all non-negative
integers t such that t < n.

By Eq. (24), we know that

Pn(2n) = (−1)n
(

2n

n

)2

, (53)

where n is a non-negative integer. By Eq. (26), it follows that

Rn(2n) = (−1)nCn

(

2n

n

)

, (54)

where n is a non-negative integer. Therefore, by using Eqns. (53) and (54), it follows that
Eq. (52) holds for t = n. Also, this proves the case n = 0. Therefore, Corollary 19 follows,
as desired.

12



Finally, let us prove Corollary 20. Corollary 19 is a consequence of Proposition 16 and
Lemma 9.

Proof. Let n be a positive integer. By setting n := 2n− 1 in Proposition 16, we obtain that

(2n− t)Rt(2n− 1) = Pt(2n− 1)+ 4(2n− 1− 2t)Rt(2n− 2)− 2(2n− 1− 2t)Tt(2n− 2); (55)

where 0 ≤ t < 2n−1
2

.
By Eq. (20) from Lemma 9, the integer Pt(2n−1) vanishes in Eq. (55). By Eq. (23) from

Lemma 9, the integer Tt(2n − 2) is equal to 1
n
Rt(2n − 2). Therefore, Eq. (54) becomes as

follows:

(2n− t)Rt(2n− 1) = 4(2n− 1− 2t)Rt(2n− 2)− 2(2n− 1− 2t)
1

n
Rt(2n− 2)

(2n− t)Rt(2n− 1) = 2(2n− 1− 2t)Rt(2n− 2)(2−
1

n
)

(2n− t)Rt(2n− 1) = 2(2n− 1− 2t)Rt(2n− 2)
2n− 1

n
. (56)

Since t ≤ n− 1, we can divide the both sides of Eq. (56) by 2n− t. The Eq. (56) becomes

Rt(2n− 1) =
2(2n− 1)(2n− 1− 2t)

n(2n− t)
Rt(2n− 2).

This completes the proof of Corollary 20.

5.4 Proof of Corollary 22

Corollary 22 is a consequence of Corollaries 17, 19, and 20.

Proof. Let n be a positive integer.
By setting n := n− 1 in Corollary 19, we obtain

Rt(2n− 2) =
2n− 2t− 1

2n− t− 1
Pt(2n− 2), (57)

where t is a non-negative integer such that t ≤ n− 1.

By using Corollary 17 and Eq. (57), Corollary 20 becomes as follows:

1

4
Pt(2n) =

2(2n− 1)(2n− 1− 2t)

n(2n− t)
·
2n− 2t− 1

2n− t− 1
Pt(2n− 2),

Pt(2n) =
8(2n− 1)

n
·

(2n− 2t− 1)2

(2n− t)(2n− 1− t)
Pt(2n− 2). (58)

This completes the proof of Corollary 22.
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5.5 Proof of Lemma 10

Proof. By Eq. (53), we know that

Pt(2t) = (−1)t
(

2t

t

)2

, (59)

where t is a non-negative integer. Let n be a positive integer, and let t be a non-negative
integer such that t < n. We telescope Eq. (58) from Corollary 22.

We have

Pt(2n) =
8(2n− 1)

n
·

(2n− 2t− 1)2

(2n− t)(2n− 1− t)
Pt(2n− 2)

= 8n−t (2n− 1)(2n− 3) · · · (2t+ 1)

n(n− 1) · · · (t+ 1)
·

(

(2n− 2t− 1)!!
)2

(2n− t) · · · (t+ 1)
Pt(2t).

By using Eq. (59), the last equation above becomes

Pt(2n) = 8n−t (2n− 1)(2n− 3) · · · (2t+ 1)

n(n− 1) · · · (t+ 1)
·

(

(2n− 2t− 1)!!
)2

(2n− t) · · · (t+ 1)
(−1)t

((2t)!)2

(t!)4
. (60)

Then Eq. (60) becomes as follows:

Pt(2n) = (−1)t8n−t (2n− 1)(2n− 3) · · · (2t+ 1)

n! (2n− t)!
·

(

(2n− 2t− 1)!!
)2

(t!)2
((2t)!)2,

= (−1)t2n−t (2n− 1)(2n− 3) · · · (2t+ 1)

n! (2n− t)!
·

(

2n−t(2n− 2t− 1)!!
)2
((2t)!)2

(t!)2

= (−1)t2n−t (2n− 1)(2n− 3) · · · (2t+ 1)

n! (2n− t)!
·

(

2n−t(n− t)! (2n− 2t− 1)!!
)2
((2t)!)2

((n− t)!)2 · (t!)2

= (−1)t2n−t (2n− 1)(2n− 3) · · · (2t+ 1)

n! (2n− t)!
·

(

(2n− 2t)!! (2n− 2t− 1)!!
)2
((2t)!)2

((n− t)!)2 · (t!)2

= (−1)t2n−t (2n− 1)(2n− 3) · · · (2t+ 1)

n! (2n− t)!
·
((2n− 2t)!)2((2t)!)2

((n− t)!)2 · (t!)2

= (−1)t2n−tn(n− 1) · · · (t+ 1)

n(n− 1) · · · (t+ 1)
·
(2n− 1)(2n− 3) · · · (2t+ 1)

(

(2n− 2t)!
)2
((2t)!)2

n! · (2n− t)! · (t!)2 · ((n− t)!)2

= (−1)t
2n(2n− 2) · · · (2t+ 2)

n(n− 1) · · · (t+ 1)
·
(2n− 1)(2n− 3) · · · (2t+ 1)

(

(2n− 2t)!
)2
((2t)!)2

n! · (2n− t)! · (t!)2 · ((n− t)!)2

= (−1)t
2n(2n− 1) · · · (2t+ 1) · (2t)!

n(n− 1) · · · (t+ 1) · t!
·

(

(2n− 2t)!
)2
(2t)!

n! · (2n− t)! · t! · ((n− t)!)2
.
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Pt(2n) = (−1)t
(2n)!

n!
·

(

(2n− 2t)!
)2
(2t)!

n! · (2n− t)! · t! · ((n− t)!)2

= (−1)t
(

2n

n

)

·
(2n− 2t)!

((n− t)!)2
·
(2n− 2t)!(2t)!

(2n− t)! · t!

= (−1)t
(

2n

n

)

·

(

2n− 2t

n− t

)

·
(2n− 2t)! · t!

(2n− t)!
·
(2t)!

(t!)2

= (−1)t
(

2n

n

)

·

(

2n− 2t

n− t

)

·
1

(

2n−t

t

) ·

(

2t

t

)

.

Therefore, it follows that

Pt(2n) = (−1)t
(

2n
n

)(

2t
t

)(

2n−2t
n−t

)

(

2n−t

t

) , (61)

where n > t. Eqns. (59) and (61) complete the proof of Lemma 10.

Now Eq. (12) directly follows from Lemma 10.

Remark 23. Note that Lemma 13 generalizes Eq. (7). By setting t = 0 in Lemma 13, we
obtain Eq. (7). Similarly, Lemma 12 generalizes Eq. (6) for even n, and Lemma 14 generalizes
Eq. (6) for odd n.

6 Proofs of main results

We begin with the proof of Theorem 1.

6.1 Proof of Theorem 1

Proof. By Eq. (5), we know that Theorem 1 is true for m = 1. Therefore, let us suppose
m ≥ 2.

Let n be a fixed non-negative integer. Let j be a non-negative integer such that j ≤ n.
We prove that DP (2n, j, 0) is divisible by

(

2n
n

)

for all j such that j ≤ n.
By Relation 15, it follows that

DP (2n, j, 0) =

⌊ 2n−2j

2
⌋

∑

u=0

(

2n− j

u

)(

2n− j − u

j + u

)

Pj+u(2n)

=

n−j
∑

u=0

(

2n− j

u

)(

2n− j − u

j + u

)

Pj+u(2n). (62)
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Obviously, 0 ≤ j + u ≤ n in Eq. (62). By setting t := j + u in Lemma 10, it follows that

Pj+u(2n) = (−1)j+u

(

2n
n

)(

2(j+u)
j+u

)(

2n−2j−2u
n−j−u

)

(

2n−j−u

j+u

) . (63)

By using Eq. (63), Eq. (62) becomes as follows

DP (2n, j, 0) =

n−j
∑

u=0

(

2n− j

u

)(

2n− j − u

j + u

)

(−1)j+u

(

2n
n

)(

2(j+u)
j+u

)(

2n−2j−2u
n−j−u

)

(

2n−j−u

j+u

)

= (−1)j
(

2n

n

) n−j
∑

u=0

(−1)u
(

2n− j

u

)(

2(j + u)

j + u

)(

2n− 2j − 2u

n− j − u

)

. (64)

By Eq. (64), it follows that DP (2n, j, 0) is divisible by
(

2n
n

)

for all j such that j ≤ n.

We assert that DP (2n, j, t) is divisible by
(

2n
n

)

for all non-negative integers j and t such
that j ≤ n.

We assume that n is a fixed non-negative integer. We use induction on t. For t = 0, we
proved that DP (2n, j, t) is divisible by

(

2n
n

)

for all non-negative j such that j ≤ n. Let s

be a non-negative integer. Let us assume that DP (2n, j, t) is divisible by
(

2n
n

)

for t = s and
for all non-negative integers j such that j ≤ n. What happens with DP (2n, j, s + 1) ? By
Relation 10, it follows that

DP (2n, j, s+ 1) =

n−j
∑

u=0

(

2n

j + u

)(

2n− j

u

)

DP (2n, j + u, s). (65)

Obviously, 0 ≤ j + u ≤ n in Eq. (65). By the induction hypothesis, DP (2n, j + u, s) is
divisible by

(

2n
n

)

. By Eq. (65), it follows that DP (2n, j, s+ 1) is divisible by
(

2n
n

)

.

This proves the induction step. Therefore, DP (2n, j, t) is divisible by
(

2n
n

)

for all non-
negative integers j and t such that j ≤ n.

By Relation 9, it follows that

P (2n,m) = DP (2n, 0,m− 2), (66)

where m is a positive integer such that m ≥ 2.
Since DP (2n, 0,m−2) is divisible by

(

2n
n

)

, by Eq. (66), it follows that P (2n,m) is divisible

by
(

2n
n

)

for all m ≥ 2. This completes the proof of Theorem 1.

Remark 24. By setting j = 0 in Eq. (64) and by using Eq. (9), it follows that

P (2n, 2) =

(

2n

n

) n
∑

u=0

(−1)u
(

2n

u

)(

2u

u

)(

2n− 2u

n− u

)

. (67)
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Remark 25. Let us suppose that n is a positive integer. Then, at least one of binomial coef-
ficients

(

2(j+u)
j+u

)

and
(

2n−2j−2u
n−j−u

)

must be even in Eq. (64). By Eq. (64), we obtain DP (2n, j, 0)

is divisible by 2
(

2n
n

)

for all positive integers n and all non-negative integers j such that j ≤ n.

By the method of D sums and Eq. (5), we can conclude that P (2n,m) is divisible by 2
(

2n
n

)

for all positive integers m and n.

Remark 26. The proof of Theorem 2 is similar to the proof of Theorem 1. We use Relation
15 and Lemma 11. If n is a positive integer greater than 1, it follows that Q(2n − 1,m) is
divisible by 4(2n− 1)

(

2(n−1)
n−1

)

for all positive integers m.

6.2 Proof of Theorem 3

By Eqns. (3) and (6), we know that R(2n, 1) =
(

2n
n

)2
. By definition of the Catalan numbers,

it follows that n + 1 divides
(

2n
n

)

. Therefore, Theorem 3 is true for m = 1. Let us suppose
that m is a positive integer greater than 2. Let n be a fixed non-negative integer. Let j be
a non-negative integer such that j ≤ n. We use the method of D sums, Lemma 12, and one
additional result. Namely, let a and b be positive integers. It is known [3, Corollary 1.5] that

a

2(a+ b)

(

2a

a

)(

2b

b

)

is always an integer. (68)

In other words, the integer a
(

2a
a

)(

2b
b

)

is divisible by 2(a + b). Gessel gave a combinatorial
interpretation of Eq. (68). See [2, Section 7].

Our proof of Theorem 3 consists of two parts.
In the first part, we show Theorem 3 is true for m = 2 by using Eqns. (9), (15), (68),

and Lemma 12.
In the second part, we show that DR(2n, j, 1) is divisible by (n + 1)

(

2n
n

)

for all non-
negative integers j such that j ≤ n. By Relation 10, Eq. (68), and induction, it follows
that DP (2n, j, t) is divisible by (n+1)

(

2n
n

)

for all positive integers t and for all non-negative
integers j such that j ≤ n. By Relation 9, we obtain Theorem 3 is true for all m ≥ 3.

The first part:

Proof. By Relation 15, it follows that

DR(2n, j, 0) =

n−j
∑

u=0

(

2n− j

u

)(

2n− j − u

j + u

)

Rj+u(2n). (69)

Obviously, 0 ≤ j + u ≤ n in Eq. (69). By setting t := j + u in Lemma 12, it follows that

Rj+u(2n) = (−1)j+u

(

2n
n

)(

2(j+u)
j+u

)(

2n−2j−2u
n−j−u

)

(

2n+1−j−u

j+u

) . (70)
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By using Eq. (70), Eq. (69) becomes as follows:

DR(2n, j, 0) =

n−j
∑

u=0

(

2n− j

u

)(

2n− j − u

j + u

)

(−1)j+u

(

2n
n

)(

2(j+u)
j+u

)(

2n−2j−2u
n−j−u

)

(

2n+1−j−u

j+u

)

= (−1)j
(

2n

n

) n−j
∑

u=0

(−1)u

(

2n−j

u

)(

2n−j−u

j+u

)

(

2n+1−j−u

j+u

)

(

2(j + u)

j + u

)(

2n− 2j − 2u

n− j − u

)

. (71)

By Eq. (28), it follows that
(

2n−j−u

j+u

)

(

2n+1−j−u

j+u

) =
2n+ 1− 2j − 2u

2n+ 1− j − u
. (72)

By Eqns. (72) and (28), we have

(

2n− j

u

)

(

2n−j−u

j+u

)

(

2n+1−j−u

j+u

) =
2n+ 1− 2j − 2u

2n+ 1− j

(

2n+ 1− j

u

)

. (73)

By using Eq. (72), Eq. (71) becomes

DR(2n, j, 0) =

(−1)j
(

2n
n

)

2n+ 1− j

n−j
∑

u=0

(−1)u(2n+ 1− 2j − 2u)

(

2n+ 1− j

u

)(

2(j + u)

j + u

)(

2n− 2j − 2u

n− j − u

)

. (74)

Let M(n, j) denote the sum

n−j
∑

u=0

(−1)u(2n+ 1− 2j − 2u)

(

2n+ 1− j

u

)(

2(j + u)

j + u

)(

2n− 2j − 2u

n− j − u

)

. (75)

Then Eq. (74) can be written as

DR(2n, j, 0) =
(−1)j

(

2n
n

)

2n+ 1− j
M(n, j). (76)

Let us prove that M(n, j) is divisible by n + 1 for all non-negative integers j such that
j ≤ n. It is readily verified that

(2n+ 1− 2j − 2u)

(

2n− 2j − 2u

n− j − u

)

=
n+ 1− j − u

2

(

2(n+ 1− j − u)

n+ 1− j − u

)

. (77)

By using Eq. (77), Eq. (75) becomes

M(n, j) =

n−j
∑

u=0

(−1)u
(

2n+ 1− j

u

)

n+ 1− j − u

2

(

2(j + u)

j + u

)(

2(n+ 1− j − u)

n+ 1− j − u

)

. (78)
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By Eq. (68), it follows that n+1−j−u

2

(

2(n+1−j−u)
n+1−j−u

)(

2(j+u)
j+u

)

is divisible by n + 1. By Eqns. (68)

and (78), the sum M(n, j) is divisible by n + 1. In particular, the sum M(n, 0) is divisible
by n+ 1.

Let us prove that the sum M(n, 0) is divisible by 2n+ 1. By Eq. (75), we obtain

M(n, 0) =
n

∑

u=0

(−1)u(2n+ 1− 2u)

(

2n+ 1

u

)(

2u

u

)(

2n− 2u

n− u

)

. (79)

We have

(2n+ 1− 2u)

(

2n+ 1

u

)

= (2n+ 1)

(

2n+ 1

u

)

− 2u

(

2n+ 1

u

)

= (2n+ 1)

(

2n+ 1

u

)

− 2(2n+ 1)

(

2n

u− 1

)

= (2n+ 1)(

(

2n+ 1

u

)

− 2

(

2n

u− 1

)

). (80)

Note that we used the identity k
(

n

k

)

= n
(

n−1
k−1

)

. See [5, Eq. (1.1), p. 5].

By Eq. (80), it follows that (2n + 1 − 2u)
(

2n+1
u

)

is divisible by 2n + 1. By Eq. (79), it
follows that M(n, 0) is divisible by 2n+1. Note that numbers n+1 and 2n+1 are relatively
prime. Therefore, we conclude that M(n, 0) is divisible by (n+ 1)(2n+ 1).

By Relation 9, we know that

R(2n, 2) = DR(2n, 0, 0). (81)

By setting j = 0 in Eq. (76), it follows that

DR(2n, 0, 0) =

(

2n
n

)

2n+ 1
M(n, 0). (82)

We know that M(n,0)
2n+1

is an integer divisible by n+ 1.

Therefore, by using Eqns. (81) and (82), we conclude R(2n, 2) is divisible by (n+1)
(

2n
n

)

.
This proves the first part of Theorem 3.

We note that the integers
(

2n
n

)

and 2n+ 1 are not relatively prime in general.

The second part:

Proof. By setting t = 0 and S = R, Relation 10 becomes

DR(2n, j, 1) =

n−j
∑

u=0

(

2n

j + u

)(

2n− j

u

)

DR(2n, j + u, 0). (83)
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By setting j := j + u in Eq. (76), Eq. (76) becomes

DR(2n, j + u, 0) =
(−1)j+u

(

2n
n

)

2n+ 1− j − u
M(n, j + u), (84)

where 0 ≤ j + u ≤ n.
By using Eq. (84), Eq. (83) becomes

DR(2n, j, 1) = (−1)j
(

2n

n

) n−j
∑

u=0

(−1)u
1

2n+ 1− j − u

(

2n

j + u

)(

2n− j

u

)

M(n, j + u). (85)

It is readily verified that

1

2n+ 1− j − u

(

2n

j + u

)

=
1

2n+ 1

(

2n+ 1

j + u

)

. (86)

By using Eq. (86), Eq. (85) becomes

DR(2n, j, 1) =
(−1)j

(

2n
n

)

2n+ 1

n−j
∑

u=0

(−1)u
(

2n+ 1

j + u

)(

2n− j

u

)

M(n, j + u). (87)

Let N(n, j) denote the sum

n−j
∑

u=0

(−1)u
(

2n+ 1

j + u

)(

2n− j

u

)

M(n, j + u). (88)

By Eq. (88), Eq. (87) becomes

DR(2n, j, 1) =
(−1)j

(

2n
n

)

2n+ 1
N(n, j). (89)

Recall that M(n, j) is divisible by n+1 for all integers j such that 0 ≤ j ≤ n. Therefore,
M(n, j + u) is divisible by n + 1 for all non-negative integers u such that u ≤ n − j. By
Eq. (88), it follows that N(n, j) is divisible by n+1 for all non-negative integers j such that
j ≤ n. Let us prove that N(n, j) is divisible by 2n+ 1.

By Eq. (88), it is sufficient to prove that
(

2n+1
j+u

)

M(n, j + u) is divisible by 2n + 1. By

setting j := j + u in Eq. (75), it follows that

M(n, j + u) =
n−j−u
∑

v=0

(−1)v(2n+ 1− 2j − 2u− 2v)

(

2n+ 1− j − u

v

)(

2(j + u+ v)

j + u+ v

)(

2n− 2j − 2u− 2v

n− j − u− v

)

.
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Let I(n, j, u, v) denote
(

2(j+u+v)
j+u+v

)(

2n−2j−2u−2v
n−j−u−v

)

. Then
(

2n+1
j+u

)

M(n, j + u) is equal to

n−j−u
∑

v=0

(−1)v(2n+ 1− 2j − 2u− 2v)

(

2n+ 1

j + u

)(

2n+ 1− j − u

v

)

I(n, j, u, v).

Let us prove that (2n + 1 − 2j − 2u − 2v)
(

2n+1
j+u

)(

2n+1−j−u

v

)

is divisible by 2n + 1. It is
readily verified that

(

2n+ 1

j + u

)(

2n+ 1− j − u

v

)

=

(

2n+ 1

j + u+ v

)(

j + u+ v

v

)

. (90)

By Eq. (90), it follows that

(2n+ 1− 2j − 2u− 2v)

(

2n+ 1

j + u

)(

2n+ 1− j − u

v

)

= (2n+ 1− 2j − 2u− 2v)

(

2n+ 1

j + u+ v

)(

j + u+ v

v

)

. (91)

Recall that, by Eq. (80), it follows that (2n+1−2u)
(

2n+1
u

)

is divisible by 2n+1. Therefore,

(2n+1−2(j+u+v))
(

2n+1
j+u+v

)

is divisible by 2n+1. This means that the right-side of Eq. (91)

is divisible by 2n+1. Then the left-side of Eq. (91) is divisible by 2n+1. This implies that
(

2n+1
j+u

)

M(n, j + u) is divisible by 2n + 1. By Eq. (88), it follows that N(n, j) is divisible by

2n + 1. Hence we have proved that N(n, j) is divisible by the integers n + 1 and 2n + 1.
Since they are relatively prime, it follows that N(n, j) is divisible by (n+ 1)(2n+ 1).

Finally, by using Eq. (89), we obtain that DR(2n, j, 1) is divisible by (n + 1)
(

2n
n

)

for all

non-negative integers j such that j ≤ n. We assert that DR(2n, j, t) is divisible by (n+1)
(

2n
n

)

for all non-negative integers j and for all positive integers t such that j ≤ n. We use Relation
10 and induction as in the proof of Theorem 1. See Eq. (65).

By Relation 9, we have
R(2n, t+ 2) = DR(2n, 0, t). (92)

Since t ≥ 1, this implies that t+ 2 ≥ 3. By Eq. (92), it follows that R(2n,m) is divisible by
(n + 1)

(

2n
n

)

for all integers m such that m ≥ 2. This proves the second part of Theorem 3.
Theorem 3 follows, as desired.

Remark 27. Corollary 4 follows from Theorem 3 and Eq. (19) from Lemma 8.

Remark 28. The proof of Theorem 5 is similar to the proof of Theorem 3. We use Lemma
14 instead of Lemma 12. We do not use Eq. (68).
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