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Abstract

The multinomial coefficient
(

n,q
k

)

is defined to be the coefficient of xk in (1 + x +

x2 + · · · + xq−1)n. It is conjectured that for given n > 2, T (n, q) :=
(

n,q
cn

)

−
(

n,q−1
cn

)

is
unimodal and the maximum occurs at q = ⌊log1+ 1

c

n⌋ or q = ⌊log1+ 1

c

n⌋ + 1. As an

attempt to prove this conjecture, we give an asymptotic estimate for
(

n,q
cn

)

as n tends
to infinity, where c is a positive integer.

1 Introduction

The multinomial coefficient
(

n,q
k

)

is defined by

∞
∑

k=0

(

n, q

k

)

xk = (1 + x+ x2 + · · ·+ xq−1)n.

Clearly
(

n,q
k

)

is a natural generalization of the well-known binomial and trinomial coefficients
and thus belongs to a large class of fundamental combinatorial numbers. It was studied ex-
tensively by many mathematicians since Euler. For details related to this number the readers
are referred to [1, 2, 4, 5, 9, 14]. Some applications in coding theory and communication
theory can be found in [8, 10].
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Multinomial coefficients count the numbers of certain compositions. For a positive integer
k, a composition (also called an ordered partition) is a finite sequence of positive integers
x1, x2, . . . , xr such that x1 + x2 + · · ·+ xr = k. The xi’s are called parts of the composition.
A composition with n parts is called a n-part composition.

Let b(k, n, q) be the number of n-part compositions of k such that each part is bounded
by q. Obviously b(k, n, q) equals

(

n,q
k−n

)

, which is the coefficient of xk in the expansion of
(x + x2 + · · · + xq)n = xn(1 + x + · · · + xq−1)n. It also equals the number of different ways
putting k identical balls into n distinct boxes with each one nonempty and containing at
most q − 1 balls, or equivalently, the number of k-multisets in {1, 2, . . . , n} such that each
number appears and is repeated at most q − 1 times. In this note we will mainly focus on
the study of

(

n,q
k

)

.
From the multinomial theorem one has

(

n, q

k

)

=
∑

i1+i2+···+iq=n,
i2+2i3+···+(q−1)iq=k

(

n

i1, i2, . . . , iq

)

.

However, it was proved in [15] that when q > 2,
(

n,q
k

)

has no closed form, that is, it cannot
be written as a sum of finite hypergeometric terms. A natural question is thus to ask if there
are any nice asymptotic estimates for

(

n,q
k

)

for suitable parameters n, q, k.
We are also interested in the unimodality of the multinomial coefficients.

Definition 1. A sequence a0, a1, . . . , an of real numbers is unimodal if for some 0 ≤ k ≤ n
one has

a0 ≤ a1 ≤ · · · ≤ ak−1 ≤ ak ≥ ak+1 ≥ · · · ≥ an.

For instance, the sequence
(

n
i

)

, 0 ≤ i ≤ n is unimodal. Unimodality plays an impor-
tant role in combinatorics, number theory and representation theory. Many interesting and
important examples are surveyed by Stanley [16, 17].

It is well known that for given n, q,
(

n,q
k

)

is unimodal (see, for example, [1]).

Proposition 2. For given positive integers n, q,
(

n,q
k

)

is unimodal on k and reaches its
maximum at k = ⌊ qn

2
⌋.

Recall that b(k, n, q) is the number of n-part compositions of k such that each part
is bounded by q. Let a(k, n, q) be the number of compositions of k with n parts such
that the largest part is q. Then a(k, n, q) = b(k, n, q) − b(k, n, q − 1) and in particular
a(2n, n, q) =

(

n,q
n

)

−
(

n,q−1
n

)

.

Let b(k, q) =
∑k

n=1 b(k, n, q) (respectively, a(k, q) =
∑k

n=1 a(k, n, q)) be the number of
compositions of a positive integer k with parts bounded by q (respectively, the largest part
is q). It is well known that [12]

∞
∑

k=0

b(k, q)xk =
1− x

1− 2x+ xq+1
.
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Based on this formula and analytical tools, Odlyzko and Richmond [14] proved the next
statement.

Lemma 3 (Odlyzko and Richmond). Let a(k, q) be defined as above. Then a(k, q) is
unimodal for any k and the maximum value occurs for q = ⌊log2 k⌋ infinitely often and
q = ⌊log2 k⌋+ 1 infinitely often and always at one of these two values and no other.

Based on numerical results, an improved conjectured is proposed.

Conjecture 4. Let a(k, q) be defined as above. Let c be a positive integer. Then for any
n, a((c + 1)n, n, q) =

(

n,q
cn

)

−
(

n,q−1
cn

)

is unimodular on q and the maximum value occurs for
q = ⌊log1+ 1

c

n⌋+ 1 or q = ⌊log1+ 1

c

n⌋+ 1.

In particular, a(2n, n, q) =
(

n,q
n

)

−
(

n,q−1
n

)

is unimodular on q and the maximum value
occurs for q = ⌊log2 n⌋ or q = ⌊log2 n⌋+ 1.

Our attempt to establish this conjecture starts with an investigation to the asymptotic
behaviors of

(

n,q
k

)

when k is linear of n. We will first review some classical results.

For the simplest case q = 2, it is well known that the binomial coefficient
(

n,2
cn

)

=
(

n
cn

)

has asymptotic estimate
(

n, 2

cn

)

∼ 1
√

2π(c− c2)n
(c−c(c− 1)−c+1)n,

where 0 < c < 1 is a constant.
For the case q = 3, it is known for k = n, the central trinomial coefficient has asymptotic

estimate
(

n, 3

n

)

∼ 3n+1/2

2
√
πn

.

For large q and general k, based on the integral representation

(

n, q

k

)

=
2

π

∫ π

2

0

(

sin qθ

sin θ

)n

cos(((q − 1)n− 2k)θ)dθ,

André [3] proved that

sup
k

(

n, q

k

)

∼
√
6qn

√

(q2 − 1)πn
, n → ∞.

This estimate has several other proofs; see, for example, a recent one by Eger [6, 7], by
representing it as the distribution of sums of independent discrete random variables. An
asymptotic distribution in this case was given by Neuschel [13].

Star [18] generalized the result of André. Write k = 1
2
(n− s)(q+1), where s = Knθ, 0 ≤

θ ≤ 1/2 and K > 0 is a constant. Star proved that

(

n, q

k − n

)

=

√
6qn

√

(q2 − 1)πn
·
(

1 +

∑1
j=0 h1,j(q)s

2j

n1
+ · · ·+

∑m−1
j=0 hm−1,j(q)s

2j

nm−1
+O(

1 + s2m

nm
)

)

,
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where hi,j(q) are some rational functions in the function field R(q).
The main result of this note is an asymptotic estimate for

(

n,q
k

)

for large q > 3 and for
general k = cn, where c is fixed positive integer. The proof uses simple analysis based on
Hayman’s method.

Lemma 5. Suppose q > 3 and k = cn, where c < q is an absolute positive integer. Then we
have

(

n, q

cn

)

∼ φ(r)√
2πn

(

1− rq

r − r2

)n

,

as n → ∞, where

φ(r) =

(

r

(1− r)2
− q2rq

(1− rq)2

)−1/2

, r =
1

d
+

q

c2dq+2
+ θ

q3

d2q
,

|θ| ≤ 1 and d = 1 + 1
c
. In particular, when c = 1 we have

r =
1

2
+

q

2q+2
+ θ

q3

22q
.

The proof of Theorem 5 is given in Section 2. For simplicity of the computations, we
only gives details of the proof for the special case k = n, i.e., c = 1. The proof of case c > 1
is essentially the same as the case c = 1.

2 Proof of Theorem 5

Definition 6. Suppose that f(z) =
∑∞

n=0 anz
n is a complex analytic function for |z| < R,

where 0 < R ≤ ∞. Define

M(r) = max
|z|=r

|f(z)|. (1)

If for large enough r, we have M(r) = f(r), then f(z) is called an admissible function. The
references [11, 19] present a discussion on admissible functions.

Hayman [11] showed that such good functions have nice asymptotic estimates for their
coefficients.

Lemma 7 (Hayman). Let f(z) =
∑∞

n=0 anz
n be an admissible function, which is analytic in

the disk |z| < R. Denote

a(r) = r
f ′(r)

f(r)
, b(r) = ra′(r),

and suppose 0 < rn < R is a positive real zero satisfying

a(rn) = n, ∀n ∈ N.

Then

an ∼ f(rn)

rnn
√

2πb(rn)
, n → ∞.
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Lemma 8. [2] The function f(z) = (1 + z + z2 + · · · + zq−1)n is an admissible function
analytical in the disk |z| < 1.

Lemma 9. For q ≥ 3 the equation

(q − 2)xq+1 − (q − 1)xq + 2x− 1 = 0, q ∈ N

has only two positive real roots including 1 being one of them. The second root r satisfies
∣

∣

∣

∣

r − 1

2
− q

2q+2

∣

∣

∣

∣

≤ q3

22q
.

Proof. Since the cases q = 3, 4 can be verified directly, we may assume q > 4. Suppose
f(x) = (q−2)xq+1− (q−1)xq +2x−1. Then f ′′(x) = qxq−2(xq2−2x−xq− q2+2q−1) = 0

gives two inflection points (q−1)2

(q+1)(q−2)
, 0. This proves that there are only two positive real roots

including 1.
Now suppose that r = 1

2
+ c

2q+2 is a positive real zero of f(x), where c is regarded as a
variable depending on q and will be specified. Then

f(r) = (q − 2)(
1

2
+

c

2q+2
)q+1 − (q − 1)(

1

2
+

c

2q+2
)q + 2(

1

2
+

c

2q+2
)− 1

= (
−q

2q+1
+

(q − 2)c

22q+2
)(1 +

c

2q+1
)q +

c

2q+1

= 0.

Assume without of generality that 0 ≤ c ≤ q3/2. By Taylor’s theorem one has

∣

∣

∣
(1 +

c

2q+1
)q − 1− cq

2q+1

∣

∣

∣
≤ c2q2

22q
≤ q5

22q
.

And hence
∣

∣

∣

∣

f(r) +
q − c

2q+1
+

c(q2 − q + 2)

22q+2

∣

∣

∣

∣

≤ q6

23q+1
.

Since f(r) = 0, we then have

q − c+
c(q2 − q + 2)

2q+1
+

θq6

22q
= 0,

where 0 ≤ |θ| ≤ 1.
Let c = q + c′. Putting it into the above equality, one has

c′(1− q2 − q + 2

2q+1
) =

q3 − q2 + 2q

2q+1
+

θq6

22q
.

This implies
∣

∣

∣

∣

c− q − q3 − q2 + 2q

2q+1 − q2 + q − 2

∣

∣

∣

∣

≤ 2q6

22q
.
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Replace in r = 1
2
+ c

2q+2 to obtain, for q > 16,

q3 − q2

22q+2
≤ r − 1

2
− q

2q+2
≤ q3

22q+2
.

The remaining cases of q can be easily verified.

Lemma 10. Assume q > 3. Then we have the asymptotic estimate

(

n, q

n

)

∼ φ(r)√
2πn

(

1− rq

r − r2

)n

, n → ∞

where φ(r) =
(

r
(1−r)2

− q2rq

(1−rq)2

)−1/2

, and
∣

∣r − 1
2
− q

2q+2

∣

∣ ≤ q3

22q
.

Proof. Let f(z) = (1 + z + z2 + · · · + zq−1)n = (1−zq

1−z
)n. By Lemma 8, f(z) is an admissible

analytical function on C− {∞}. Applying Hayman’s theorem (Lemma 7), we have

a(x) = x
f ′(x)

f(x)
=

−nx(qxq−1 − qxq − 1 + xq)

(1− xq)(1− x)
,

b(x) = xa′(x) =
nx(1− xq−1q2 − 2xq + x2q + 2q2xq − xq+1q2)

(−1 + xq)2(x− 1)2

= nx

(

1

(1− x)2
− q2xq−1

(xq − 1)2

)

.

The equation a(xn) = n yields

−nxn(qx
q−1
n − qxq

n − 1 + xq
n)

(1− xq
n)(1− xn)

= n,

and thus
(q − 2)xq+1

n − (q − 1)xq
n + 2xn − 1 = 0.

The result now follows from Lemma 9.

Corollary 11. When q > 3, for large n we have the estimate

(

n, q

n

)

∼ (1 + q2−6q
2q

+ θ1
q2

22q
)2n√

πn
(1− 1

2q−2
+ θ2

q2

22q
)n, n → ∞,

where |θi| ≤ 1 for i = 1, 2.

Proof. Since
∣

∣

∣

∣

r − 1

2
− q

2q+2

∣

∣

∣

∣

≤ q3

22q
,
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it follows that
∣

∣

∣

∣

r

(1− r)2
− 1

2
− 3q

2q−1

∣

∣

∣

∣

≤ q

22q
,

and
∣

∣

∣

∣

q2rq

(1− rq)2
− q2

2q

∣

∣

∣

∣

≤ q4

22q
.

Thus
∣

∣

∣

∣

φ(r)−
√
2(1 +

q2 − 6q

2q
)

∣

∣

∣

∣

≤ q2

22q
.

Similarly
∣

∣

∣

∣

1− rq

r − r2
− 2 +

1

2q−1

∣

∣

∣

∣

≤ q2

22q
,

and the result follows from Theorem 10.
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