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Abstract

We study a two-parameter generalization of the Catalan numbers Cd,p(n), which
counts the number of ways to subdivide the d-dimensional hypercube into n rectan-
gular regions using orthogonal partitions of fixed arity p. Bremner & Dotsenko first
introduced the numbers Cd,p(n) in their work on tensor products of operads, wherein
they used homological algebra to prove a recursive formula and a functional equation.
We express Cd,p(n) as simple finite sums, and determine their growth rate and asymp-
totic behavior. We give an elementary combinatorial proof of the functional equation,
as well as a bijection between hypercube decompositions and a family of full p-ary
trees. Our results generalize the well-known correspondence between Catalan numbers
and full binary trees.
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1 Introduction

1.1 Catalan numbers

The (binary) Catalan numbers form a well-known and ubiquitous integer sequence 1:

C(n) =
1

n

(
2n−2

n−1

)

(n ≥ 1).

These numbers have over 200 different combinatorial interpretations; see Stanley [53] and
sequence A000108 from the On-Line Encyclopedia of Integer Sequences (OEIS) [51]. We
focus on the following three:

(i) Given a set with a binary operation, C(n) counts the ways to parenthesize a sequence
with n−1 operations and n factors. For example, the C(4) = 5 ways to parenthesize a
product with 4 factors using 3 operations are as follows:

(((ab)c)d), ((a(bc))d), ((ab)(cd)), (a((bc)d)), (a(b(cd))).

(ii) C(n) counts the plane rooted binary trees with n−1 internal nodes (including the root)
and n leaves, assuming that every internal node has two children. For example, the
C(4) = 5 rooted full binary trees with 4 leaves and 3 internal nodes are as follows:

(iii) C(n) counts the dyadic partitions of the unit interval obtained by n−1 bisections into
n subintervals [23, 24]. For example, the C(4) = 5 ways to partition the unit interval
into 4 subintervals using 3 bisections are as follows:

If we write y for the generating function of C(n),

y =
∑

n≥1

C(n)xn = x+ x2 + 2x3 + 5x4 + 14x5 + 42x6 + 132x7 + 429x8 + · · · ,

then one can check that y satisfies the functional equation

x+ y2 = y. (1)

1We index these numbers starting at n = 1 rather than the more conventional n = 0 for reasons that will
become apparent in the later sections.
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1.2 Geometry of higher-dimensional Catalan numbers

We now describe a higher-dimensional generalization of the Catalan numbers that was first
studied in [17]. Therein, they analyzed these numbers mainly from the perspective of alge-
braic operads, but also provided the following combinatorial description in terms of subdivid-
ing the d-dimensional open unit hypercube using a sequence of p-ary partitions, generalizing
interpretation (iii) for the ordinary Catalan numbers.

Definition 1. Fix a dimension d ≥ 1. Consider an open d-rectangle in the open unit d-cube:

R = (a1, b1)× · · · × (ad, bd) ⊆ (0, 1)d.

Fix an arity p ≥ 2. For a fixed index 1 ≤ i ≤ d, partition the ith interval (ai, bi) in the
Cartesian product into p equal subintervals with endpoints

ci(j) = ai +
j

p
(bi−ai) (0 ≤ j ≤ p).

We define the p-splitting of R in the coordinate i to be

Hi(R) =
{
(a1, b1)× · · · ×

(
ci(j−1), ci(j)

)
× · · · × (ad, bd) | 1 ≤ j ≤ p

}
.

Fix an integer m ≥ 0 and set S0 = {(0, 1)d}. For k = 1, . . . ,m perform these steps:

1. Choose an element R ∈ Sk−1.

2. Choose a direction 1 ≤ i ≤ d.

3. Set Sk =
(
Sk−1 \ {R}

)
∪Hi(R).

The result Sm is called a (d, p, n)-decomposition; by this we mean a p-ary decomposition of
the unit d-cube into the disjoint union of n blocks (d-subrectangles) where n = 1+m(p−1).
We define Cd,p(n) to be the number of distinct (d, p, n)-decompositions.

Figure 1 illustrates all (2, 2, n)-decompositions for n ≤ 4. From the diagrams, we see that
C2,2(n) = 1, 2, 8, 39 for n = 1, 2, 3, 4 respectively.

Observe that in the case of d = 1, p = 2 and n ≥ 1, Definition 1 reduces to subdividing the
unit interval into n subintervals using bisections. Thus, C1,2(n) = C(n) gives the ordinary
Catalan numbers. More generally, C1,p(n) gives the p-ary Catalan numbers [6, 38]:

C1,p (n) =
1

n

(p(n−1)
p−1

n−1
p−1

)

(n ≥ 1).

Thus Cd,p(n) is a two-parameter generalization of the Catalan numbers.
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n = 1

n = 2

n = 3

n = 4

Figure 1: Decompositions of the unit square (d = 2) using bisections (p = 2) into n ≤ 4
subrectangles

Another generalization of C1,p(n) are the Fuss-Catalan numbers (also known as Raney
numbers): Given integers r ≥ 1, p ≥ 2, and m ≥ 0, the quantity

Rr,p(m) =
r

mp+ r

(
mp+ r

m

)

counts (among other things) the number of plane rooted trees whose root node has degree
r, with m non-root internal nodes that each has exactly p children [12]. Notice that when
r = 1, R1,p(m) gives the number of trees whose root node is attached to a single full p-ary
tree with n = 1 + m(p − 1) leaves, and so we see that R1,p(m) = C1,p(1 + m(p − 1)) for
every m ≥ 0 and p ≥ 2. For several other higher-dimensional generalizations of the Catalan
numbers, see [19, 33, 37, 40, 42].
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1.3 Interchange laws for operations of higher arity

We provide another interpretation of Cd,p(n) using d distinct p-ary operations (denoted by
d operation symbols or by d types of parentheses), generalizing interpretation (i) of the
ordinary Catalan numbers.

Definition 2. Fix integers d ≥ 1 (dimension) and p ≥ 2 (arity). Let S be a set and fix
operations f1, . . . , fd : S

p → S. Let A = (aij) be a p× p array of elements of S. If fk, fℓ are
two of the operations, then we may either apply fk to each row of A and then apply fℓ to
the results, or apply fℓ to each column of A and then apply fk to the results. If for every
array A both ways produce the same element of S,

fℓ
(
fk(a11, . . . , a1p), fk(a21, . . . , a2p), . . . , fk(ap1, . . . , app)

)
=

fk
(
fℓ(a11, . . . , ap1), fℓ(a12, . . . , ap2), . . . , fℓ(a1p, . . . , app)

)
,

(2)

then we say that fk and fℓ satisfy the interchange law. If equation (2) holds for every pair
of distinct operations then we have an interchange system of arity p and dimension d.

In universal algebra (resp., algebraic operads), interchange systems were introduced in
the early 1960s by Evans [31] (resp., in the early 1970s by Boardman and Vogt [15]). In the
case of d = p = 2, two binary operations satisfying the interchange law first appeared in the
late 1950s in Godement’s five rules of functorial calculus [36, Appendix 1, (V)].

If we denote the two binary operations by (−−) and {−−}, then the interchange law can
be restated as

{ (a11 a12) (a21 a22) } = ( {a11 a21} {a12 a22} ).

Observe that the operations trade places and the arguments a12, a21 transpose. The inter-
change laws correspond naturally to the hypercube decompositions defined in Section 1.2:
If we regard (−−) and {−−} respectively as vertical and horizontal bisections of rectangles
in R2, then the interchange law expresses the equivalence of the two ways of partitioning a
square into four equal subsquares:

{ (a11 a12) (a21 a22) } =

a11 a12

a21 a22
=

a11 a12

a21 a22
=

a11 a12

a21 a22
= ( {a11 a21} {a12 a22} ).

For further information on algebraic operads and higher categories, see [8, 9, 11, 18, 26, 41,
46, 48, 49, 54].

Using the Boardman-Vogt tensor product of operads, the third author and Dotsenko [17]
showed that this correspondence between interchange laws and hypercube partitions extends
to arbitrary arity p and dimension d, in which case fi (i = 1, . . . , d) corresponds to the Hi

operation of Definition 1 (the dissection of a d-dimensional subrectangle into p equal parts
by hyperplanes orthogonal to the ith coordinate axis). They also proved the following result.
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Theorem 3 ([17], §3.1). Define the generating function

y = yd,p(x) =
∑

n≥1

Cd,p(n)x
n.

Then y satisfies this polynomial functional equation:

d∑

k=0

(−1)k
(
d

k

)

yp
k

= x. (3)

For d = 1 and p = 2, equation (3) reduces to equation (1), the functional equation for
the ordinary Catalan numbers.

One may also regard Cd,p(n) as the number of association types [30] (or placements of
parentheses and operation symbols) of degree n in higher-dimensional algebra [20, 21, 22]
with d operations of arity p. Similar (but inequivalent) constructions in the literature include
guillotine partitions, VLSI floorplans, and planar rectangulations [1, 2, 3, 4, 5, 27, 39, 45, 50].

1.4 Outline of this paper

In Section 2, we use Lagrange inversion to prove a simple closed formula (a finite sum)
for Cd,p(n) and then consider two special cases. In Section 3, we use analytic methods to
determine the asymptotic behavior of Cd,p(n). In Section 4, we provide an alternative proof
to Theorem 3 that is purely combinatorial and does not involve homological algebra. We
shall also show that Cd,p(n) counts a restricted set of p-ary trees by establishing a bijection
between these trees and hypercube decompositions, hence generalizing interpretation (ii) of
the ordinary Catalan numbers. In Section 5, we indicate some directions for further research,
and explain how our results may be understood from the point of view of algebraic operads.

2 Enumeration formulas

We first derive a summation formula for Cd,p(n) and then discuss special cases for small
values of d and p. We use the functional equation (3) to obtain our closed formula.

Proposition 4. For all integers d ≥ 1, p ≥ 2, and n ≥ 1 we have

Cd,p(n) =
1

n

∑

t1,...,td

((
n−1+t1+ · · ·+td
n−1, t1, t2, . . . , td

) d∏

k=1

(

(−1)tk(k+1)

(
d

k

)tk
))

,

where the sum is over all integers t1, . . . , td ≥ 0 such that

d∑

k=1

tk(p
k−1) = n−1.
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Proof. We may rearrange the functional equation (3) to obtain y = xφ(y) where

φ(y) =

(
d∑

k=0

(−1)k
(
d

k

)

yp
k−1

)−1

.

Since φ(y) can be expanded as a formal power series in y with nonzero constant term, we
apply Lagrange inversion [34] to obtain

[xn]y =
1

n
[yn−1]

(
φ(y)n

)
=

1

n
[yn−1]

(
d∑

k=0

(−1)k
(
d

k

)

yp
k−1

)−n

,

where [xn]y denotes the coefficient of xn in the power series y. If we expand the factor with
the negative exponent and simplify the result, then we obtain

φ(y)n =
∑

j≥0

(
n−1+j

j

)( d∑

k=1

(−1)k+1

(
d

k

)

yp
k−1

)j

=
∑

j≥0

(
n−1+j

j

)
∑

t1,...,td≥0
t1+···+td=j

((
j

t1, t2, . . . , td

) d∏

k=1

(

(−1)tk(k+1)

(
d

k

)tk

ytk(p
k−1)

))

=
∑

t1,...,td≥0

((
n−1 +

∑d
i=1 ti

n−1, t1, t2, . . . , td

) d∏

k=1

(

(−1)tk(k+1)

(
d

k

)tk

ytk(p
k−1)

))

.

In the last step we used the equation
∑d

k=1 tk = j to eliminate j, and then used the
obvious combinatorial identity

(
n−1+j

j

)(
j

t1, . . . , td

)

=

(
n−1+j

n−1, t1, . . . , td

)

.

The term of interest yn−1 occurs if and only if

d∑

k=1

tk(p
k−1) = n−1,

which completes the proof.

Proposition 4 implies simple closed formulas for Cd,p(n) for small d and p. For instance,
in the case of d = p = 2, we obtain the following.

Corollary 5. The number of dyadic partitions of the unit square into n rectangles is

C2,2(n) =
1

n

⌊n−1

3
⌋

∑

i=0

(
2(n−1−i)

n−1, n−1−3i, i

)

(−1)i 2n−1−3i.
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Proof. For d = p = 2, Proposition 4 gives

C2,2(n) =
1

n

∑

t1, t2≥0
t1+3t2=n−1

(
n−1+t1+t2
n−1, t1, t2

)

(−1)t2 2t1 . (4)

If we set t2 = i then t1 = n−1−3i, and the sum (4) is empty when n−1−3i < 0, or
equivalently i > n−1

3
. Hence (4) specializes to the stated result.

This gives what we believe to be the first explicit non-recursive formula for sequence
A236339:

1, 2, 8, 39, 212, 1232, 7492, 47082, 303336, 1992826, 13299624, 89912992, . . . .

Likewise, for the case of d = 3, p = 2, Proposition 4 implies the following.

Corollary 6. The number of dyadic partitions of the unit cube into n subrectangles is

C3,2(n) =
1

n

⌊n−1

7
⌋

∑

j=0

⌊n−1−7j

3
⌋

∑

i=0

(
2(n−1−i−3j)

n−1, n−1−3i−7j, i, j

)

(−1)i 3n−1−2i−7j .

Proof. Similar to the proof of Corollary 5. For d = 3, p = 2 Proposition 4 gives

C3,2(n) =
1

n

∑

t1,t2,t3≥0
t1+3t2+7t3=n−1

(
n−1+t1+t2+t3
n−1, t1, t2, t3

)

(−1)t2 3t1+t2 . (5)

If we set t2 = i, t3 = j then t1 = n−1−3i−7j, and the sum (5) is empty for n−1−3i−7j < 0.
Hence we may restrict the summation indices to 0 ≤ j ≤ n−1

7
and 0 ≤ i ≤ n−1−7j

3
, and so

(5) simplifies to the stated result.

This gives an explicit non-recursive formula for the sequence A236342:

1, 3, 18, 132, 1080, 9450, 86544, 819154, 7949532, 78671736, 790930728, . . . .

We remark that, while Proposition 4 gives a simple and compact summation formula for
Cd,p(n), the summation contains O(nd−1) terms for fixed d and p. For a more computationally
efficient method to obtain Cd,p(n), one can use the fact that the generating function y is
differentiably-finite (since it satisfies (3) and is thus an algebraic function), and generate a
linear recurrence for the coefficients of y based on that. For the details of this procedure,
see [52, Chapter 6], [10], and the references therein.
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3 Asymptotic behavior and growth rate

We now consider the asymptotic behavior and growth rate of Cd,p(n). Recall again the
functional equation (3). If we define the polynomial

qd,p(z) =
d∑

k=0

(−1)k
(
d

k

)

zp
k

,

then (3) can be restated simply as qd,p(y) = x. We call this polynomial q(z) when d, p are
clear from the context. Figure 2 shows the graph of q(z) for small values of d and p.

−1 1

−0.5

0.5

0
z

q(z)

−1 1

−0.5

0.5

0
z

q(z)

q2,2(z) = z−2z2+z4 q3,2(z) = z−3z2+3z4−z8

−1 1

−0.5

0.5

0
z

q(z)

−1 1

−0.5

0.5

0
z

q(z)

q2,3(z) = z−2z3+z9 q3,3(z) = z−3z3+3z9−z27

Figure 2: Graphs of the polynomials qd,p(z) for (d, p) = (2, 2), (3, 2), (2, 3), (3, 3)

3.1 Asymptotic behavior

For p = d = 2, Kotěšovec gave the following asymptotic formula (OEIS, sequence A236339):

C2,2(n) ∼
1

√

−2πq′′(s)
n−3/2q(s)1/2−n.

Here q(y) = y4 − 2y2 + y, hence q′(y) = 4y3 − 4y + 1 and q′′(y) = 12y2 − 4, and s is the
smallest positive real number where q′(s) = 0. Kotěšovec’s proof [43] relies on a theorem of
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Bender [13] that was later corrected and refined; see [32, Theorem VII.3, p. 468]. We provide
an asymptotic formula for Cd,p(n) for all d ≥ 1 and p ≥ 2. An important property of the
power series for Cd,p(n) is its periodicity:

Definition 7. A power series φ in the variable z is k-periodic for some positive integer k
if k is maximal subject to the condition that there exists a unique ℓ ∈ {0, 1, . . . , k−1} such
that [zn]φ(z) = 0 for all n 6≡ ℓ (mod k).

Then we have the following:

Lemma 8. The power series y =
∑

n≥1

Cd,p(n)x
n is (p−1)-periodic.

Proof. We have Cd,p(1) = 1 for all d and p, and each subsequent p-ary partition of a subrect-
angle increases the number of regions by p−1. Hence Cd,p(n) = 0 if n 6≡ 1 (mod p−1).

The following result is a combination of [32, Theorem VI.6, p. 404] and [32, Note VI.17,
p. 407]:

Theorem 9. Let y be a power series in x. Let φ : C → C be a function with the following
properties:

(i) φ is analytic at z = 0 and φ(0) > 0;

(ii) y = xφ(y);

(iii) [zn]φ(z) ≥ 0 for all n ≥ 0, and [zn]φ(z) 6= 0 for some n ≥ 2.

(iv) There exists a (then necessarily unique) real number s ∈ (0, r) such that φ(s) = sφ′(s),
where r is the radius of convergence of φ.

(v) The power series of φ is k-periodic.

Then for n ≡ 1 (mod k),

[xn]y ∼ k

√

φ(s)

2πφ′′(s)
n−3/2 (φ′(s))

n
.

Using Theorem 9, we obtain the following:

Theorem 10. For all integers d ≥ 1 and p ≥ 2, define

q(z) =
d∑

k=0

(−1)k
(
d

k

)

zp
k

.

Let s > 0 be the smallest real number such that q′(s) = 0. Then for n ≡ 1 (mod p−1),

Cd,p(n) ∼
p−1

√

−2πq′′(s)
n−3/2 q(s)

1
2
−n.
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Proof. Since q(y) = x, we have y = xφ(y) where

φ(z) =
z

q(z)
=

1
∑d

k=0(−1)k
(
d
k

)
zpk−1

. (6)

We now verify the analytic conditions listed in Theorem 9. First, we show that φ(z) satisfies
condition (v) for k = p− 1. The power series of φ has the form

φ(z) =
∑

n≥0

anz
n =

1
∑d

k=0(−1)k
(
d
k

)
zpk−1

=
∑

j≥0

(
d∑

k=1

(−1)k−1

(
d

k

)

zp
k−1

)j

. (7)

Since p−1 | pk−1 for all k ≥ 1, we see that an = 0 when p−1 ∤ n. Also, notice that a0 = 1
and ap−1 = d, so the periodicity of p− 1 is indeed maximal.

Second, we show that φ(z) satisfies (iii). It is shown above that an 6= 0 only when p−1|n,
so we will focus on n’s that are multiples of p− 1. We prove by induction on n that for all
d ≥ 1, p ≥ 2, and n ≥ p− 1 we have

an ≥ (d− 1)an−(p−1).

For the basis, from (7) we see that an = dn/(p−1) for all n < p2 − 1. For the inductive step,
from (6) we see that an satisfies the recurrence relation

an =
d∑

k=1

(−1)k−1

(
d

k

)

an−(pk−1)

= (d−1)an−(p−1) +

(

an−(p−1) −

(
d

2

)

an−(p2−1)

)

︸ ︷︷ ︸

(I)

+
d∑

k=3

(−1)k−1

(
d

k

)

an−(pk−1)

︸ ︷︷ ︸

(II)

.

To show that an ≥ (d−1)an−(p−1), we verify that the terms (I) and (II) are both nonnegative.
By the inductive hypothesis, for all values of d and p we have

an−(p−1) ≥ (d−1)pan−(p−1)−p(p−1) = (d−1)pan−(p2−1) ≥

(
d

2

)

an−(p2−1),

and so (I) is nonnegative. Furthermore, for k ≥ 3 we have

(
d

k

)

an−(pk−1) ≥

(
d

k

)

(d−1)p
k

an−(pk+1−1) ≥

(
d

k

)

(d−1)an−(pk+1−1) ≥

(
d

k+1

)

an−(pk+1−1).

The first inequality follows from the inductive hypothesis, and the third from the fact that
(
d

k

)

(d−1) ≥

(
d

k+1

)
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for all d, k. Thus, the term (II) is also nonnegative. Since an ≥ (d − 1)an−(p−1), we hence
conclude that an ≥ 0 for all n ≥ 1.

We now consider condition (iv). Clearly,

φ′(z) =
q(z)− zq′(z)

q(z)2
, φ′′(z) =

−zq(z)q′′(z)− 2q(z)q′(z) + 2z(q′(z))2

q(z)3
. (8)

Let r be the radius of convergence of φ at z = 0. Since φ(z) = z/q(z), we see that r is the
smallest positive solution to q(r) = 0. We show there exists s ∈ (0, r) with φ(s) = sφ′(s).
Notice that

φ(s) = sφ′(s) =⇒
s

q(s)
= s

(
q(s)− sq′(s)

q(s)2

)

=⇒ sq′(s) = 0.

Since q(0) = q(r) = 0 and q is differentiable, it follows that q′(s) = 0 for some s ∈ (0, r).
Now that the analytic assumptions on φ(z) have been verified, we may establish the

asymptotic formula. Since q′(s) = 0, the expressions in (8) simplifies to

φ′(s) =
1

q(s)
, φ′′(s) =

−sq′′(s)

q(s)2
.

Therefore, when n ≡ 1 (mod p−1) we have

Cd,p(n) = [xn]y ∼ (p−1)

√

φ(s)

2πφ′′(s)
n−3/2 φ′(s)n

= (p−1)

√

s/q(s)

2π
(
− sq′′(s)/q(s)2

) n−3/2

(
1

q(s)

)n

=
p−1

√

−2πq′′(s)
n−3/2 q(s)1/2−n,

and this completes the proof.

3.2 Growth rate

We define the growth rate of Cd,p(n) as

Gd,p = lim
m→∞

Cd,p

(
(m+1)(p−1) + 1)

Cd,p

(
m(p−1) + 1

) .

Then we have the following:

Corollary 11. Given fixed integers d ≥ 1 and p ≥ 2,

Gd,p =
1

(q(s))p−1
,

where s is the smallest positive real number where q′(s) = 0.
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Proof. This follows immediately from Theorem 10.

We computed Gd,p for various d and p; see Figure 3. For d = 1 (the familiar p-ary Catalan
numbers) we have

G1,p =
pp

(p−1)p−1
,

which by Stirling’s formula grows almost linearly in p since G1,p+1 − G1,p ≈ e for p ≥ 1.
Figure 3 suggests that Gd,p also grows almost linearly in d for d ≥ 1. In fact Gd,p ≈ dG1,p for
all values of d, p we checked.

1 2 3 4 5 6 7 8 9 10 11 12

10

20

30

40

50

60

0
d

Gd,p

p = 2
p = 3p = 4

p = 5p = 6

Figure 3: The growth rate Gd,p for various d and p

4 Interpretation of Cd,p(n) in terms of p-ary trees

Recall the three interpretations of the binary Catalan numbers from Section 1.1: (i) place-
ments of parentheses, (ii) binary trees, and (iii) bisections of the unit interval. For the
numbers Cd,p(n), we saw in the previous sections that (i) generalizes to the number of ways
to apply d distinct p-ary operations to n arguments while satisfying the interchange laws,
and (iii) generalizes to the number of ways to divide the d-dimensional hypercube into n rect-
angular regions using p-ary partitions. In this section, we generalize interpretation (ii), and
provide a combinatorial description of Cd,p(n) in terms of certain p-ary trees by establishing
a bijection between these trees and the set of (d, p, n)-decompositions.

4.1 A combinatorial proof of Theorem 3

In [17], the proof of Theorem 3 mainly involves ideas from homological algebra. Herein, we
give an alternative proof to their result that is purely combinatorial (and, in our opinion,
more elementary). The ideas used in our proof will also be helpful later in this section when
we discuss the correspondence between hypercube decompositions and trees.
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Given an integer k > 0, we will let [k] denote the set {1, 2, . . . , k} for convenience. Now,
given integers d ≥ 1, p ≥ 2 and n ≥ 1, let Dd,p,n denote the set of all (d, p, n)-decompositions,
and let Dd,p =

⋃

n≥1 Dd,p,n. Next, given a set of indices S ⊆ [d], let DS ∈ Dd,p denote the
decomposition obtained recursively as follows:

• D∅ is the trivial decomposition
{
(0, 1)d

}
;

• Given S 6= ∅, let i be any index in S, and define

DS :=
⋃

R∈DS\{i}

Hi(R).

D{1} D{2} D{1,2}

Figure 4: Illustrating the definition of DS in the case of d = p = 2

Notice that DS has p|S| regions of identical volume. Next, given decompositions D,D′ ∈
Dd,p, we say that D′ refines D — denoted D′ � D — if D′ can be obtained from D by a
(possibly empty) sequence of p-splitting operations. Then, given S ⊆ [d] and integer n ≥ 1,
define

HS,n := {D ∈ Dd,p,n, D � DS} .

For instance, notice that in the case of d = p = 2, if D ∈ D2,2,n where n ≥ 2, then either
D � D{1} or D � D{2} (or both), as D is a non-trivial decomposition that involves at least
one 2-splitting operation. Thus, in this case, we see that D2,2,n = H{1},n ∪ H{2},n for every
n ≥ 2. Moreover, it is easy to see that H{1},n ∩H{2},n = H{1,2},n. Hence, we obtain that, for
every n ≥ 2,

C2,2(n) = |D2,2,n| =
∣
∣H{1},n

∣
∣+
∣
∣H{2},n

∣
∣−
∣
∣H{1,2},n

∣
∣ .

We shall see below that the above readily extends to an inclusion-exclusion argument that
applies for all d and p.

Next, given a decomposition D that refines DS, we would like to establish a correspon-
dence between D and a p|S|-tuple of decompositions. To do that, it will be useful to define
the notion of scaling. Given (rectangular) regions R,R′ ⊆ (0, 1)d where

R = (a1, b1)× (a2, b2)× · · · × (ad, bd),

R′ = (a′1, b
′
1)× (a′2, b

′
2)× · · · × (a′d, b

′
d),
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define LR→R′ : Rd → Rd such that

[LR→R′(x)]i := a′i +
b′i − a′i
bi − ai

(xi − ai)

for every i ∈ [d]. Notice that L is an affine function that satisfies {LR→R′(x) : x ∈ R} = R′.
Now, given regions R,R′, R′′ ⊆ (0, 1)d, we define

scaleR→R′(R′′) = {LR→R′(x) : x ∈ R′′} .

We will always apply this scaling function in situations where R′′ ⊆ R. Thus, intuitively,
scaleR→R′(R′′) returns a region that is contained in R′, such that the relative position of
scaleR→R′(R′′) inside R′ is the same of that of R′′ inside R. In particular, given a decompo-
sition D ∈ Dd,p, {

scale(0,1)d→R′(R) : R ∈ D
}

is a collection of sets that can be obtained from R′ by a sequence of p-splitting operations.
Conversely, if {R1, . . . , Rn} is a collection of sets obtained from applying a sequence of p-
splitting operations to region R, then

{
scaleR→(0,1)d(Ri) : i ∈ [n]

}

is an element of Dd,p,n.
We then have the following:

Lemma 12. Let d ≥ 1, p ≥ 2 be fixed integers, and let y =
∑

n≥1 Cd,p(n)x
n. Then for every

subset S ⊆ [d],
∑

k≥1

|HS,k| x
k = yp

|S|

.

Proof. For convenience, let n := p|S| throughout this proof. First, observe that

⋃

k≥p|S|

HS,k = {D ∈ Dd,p : D � DS} .

Next, we show that there is a natural bijection between the set above and (Dd,p)
n: Let

B1, . . . , Bn be the regions in DS. Then, given n decompositions D1, . . . , Dn ∈ Dd,p, observe
that

D :=
n⋃

j=1

{
scale(0,1)d→Bj

(R) : R ∈ Dj

}

gives a decomposition of (0, 1)d that refines DS. On the other hand, given D ∈ Dd,p that
refines DS, define Sj ⊆ D such that

Sj := {R ∈ D : R ⊆ Bj}

15



for every j ∈ [n]. By assumption that D � DS, we know that S1, . . . , Sn partition D, as well
as that Sj can be obtained from applying a sequence of splitting operations to Bj for every
j ∈ [n]. Hence, each of

Dj :=
{
scaleBj→(0,1)d(R) : R ∈ Sj

}

is an element of Dd,p. This shows that |HS,k| is equal to the number of n-tuples of decom-
positions (D1, . . . , Dn) ∈ (Dd,p)

n where
∑n

i=1 |Di| = k. Thus, it follows that |HS,k| = [xk]yn

for every k ≥ 1, which establishes our claim.

We are now ready to give our proof for Theorem 3.

Proof of Theorem 3. Notice that when n ≥ 2, every D ∈ Dd,p,n refines D{i} for some coordi-
nate i. Thus, we see that Dd,p,n =

⋃

i∈[d] H{i},n. Applying the principle of inclusion-exclusion,
we obtain that, for every n ≥ 2:

Cd,p(n) =

∣
∣
∣
∣
∣
∣

⋃

i∈[d]

H{i},n

∣
∣
∣
∣
∣
∣

=
∑

S⊆[d],|S|≥1

(−1)|S|+1

∣
∣
∣
∣
∣

⋂

i∈S

H{i},n

∣
∣
∣
∣
∣
=

∑

S⊆[d],|S|≥1

(−1)|S|+1 |HS,n| .

Since the above holds for all n ≥ 2, we can multiply each side by xn for each n and sum
them up over all n ≥ 2, and obtain

∑

n≥2

Cd,p(n)x
n =

∑

n≥2

∑

S⊆[d],|S|≥1

(−1)|S|+1 |HS,n| x
n. (9)

The left hand side of (9) is simply equal to y − x. For the right hand side, we see that

∑

n≥2

∑

S⊆[d],|S|≥1

(−1)|S|+1 |HS,n| x
n

=
∑

S⊆[d],|S|≥1

(−1)|S|+1

(
∑

n≥2

|HS,n| x
n

)

=
∑

S⊆[d],|S|≥1

(−1)|S|+1yp
|S|

=
∑

k≥1

(−1)k+1

(
d

k

)

yp
k

.

Notice that we applied Lemma 12 in the second equality above. Thus, (9) reduces to

y − x =
∑

k≥1

(−1)k+1

(
d

k

)

yp
k

,

which can be easily rearranged to give (3) in the statement of Theorem 3.
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4.2 Interchange maximal trees

Next, we describe a family of trees that is counted by Cd,p(n), extending the binary-tree
interpretation of the ordinary Catalan numbers. Let Td,p,n denote the set of full p-ary trees
(i.e., every internal node has exactly p children) with n (unlabelled) leaves, such that each
of the m = n−1

p−1
internal nodes is assigned a label from [d]. Also, for convenience, we define

Bi,j :=

{

x ∈ (0, 1)d :
j − 1

p
< xi <

j

p

}

for every i, j ∈ [p]. Note that {Bi,1, . . . , Bi,p} are exactly the sets obtained from p-splitting
(0, 1)d in coordinate i.

The following describes a mapping from a tree in Td,p,n to a hypercube decomposition in
Dd,p,n.

Definition 13. Define the function f : Td,p,n → Dd,p,n recursively as follows:

• (n = 1) f maps the exceptional tree with a single node to
{
(0, 1)d

}
, the trivial decom-

position with a single region.

• (n ≥ 2) Given T ∈ Td,p,n where its root node is labelled i hand has subtrees (from left
to right) T1, . . . , Tp, define

f(T ) =

p
⋃

j=1

{
scale(0,1)d→Bi,j

(R) : R ∈ f(Tj)
}
.

That is, we take the decompositions f(T1), . . . , f(Tp), and scale each of them to fit
into the sets Bi,1, . . . , Bi,p respectively. Then f(T ) — the union of these p scaled
decompositions — would be a decomposition of (0, 1)d in its own right.

Also, we define two trees T, T ′ to be interchange equivalent if f(T ) = f(T ′).

Figure 5 illustrates Definition 13: It displays three trees in T3,2,6 that are mapped by f
to the same decomposition in D3,2,6, and hence shows that f is not one-to-one.

Figure 6 describes how to produce interchange equivalent trees. Suppose T is a tree
whose root has label i, and all p children of the root node are internal nodes with the same
label j 6= i. Let T11, T12, . . . , Tpp denote the p2 subtrees from left to right of the p nodes
labelled j (top of Figure 6). Then, by the definition of f , we have

f(T ) =
⋃

k∈[p]

⋃

ℓ∈[p]

scale(0,1)d→Bi,k

(
scale(0,1)d→Bj,ℓ

(f(Tkℓ))
)

=
⋃

k,ℓ∈[p]

scale(0,1)d→Bi,k∩Bj,ℓ
(f(Tkℓ)).
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T1 T2 T3

1

2 2

3 3

1

2 3

2 2

2

1 1

3 3

f(T1) = f(T2) = f(T3) =

1

2

3

Figure 5: Example of the map f from trees to decompositions (Definition 13)

Next, if we let T ′ be the tree at the bottom of Figure 6, then by the same rationale one
could show that f(T ′) yields the same collection of sets as above for f(T ). Thus, T, T ′ are

interchange equivalent. More generally, if T was a subtree of a larger tree T and we let T
′

be the tree obtained from T by replacing the subtree T by T ′, then it is easy to see that
f(T ) = f(T

′
). Notice that the three trees in Figure 5 can be transformed into each other

using this “subtree swapping” process that preserves interchange equivalence.
Next, we consider a map that acts as an inverse of f by choosing a unique representative in

each inverse image f−1(D) for D ∈ Dd,p,n. Intuitively, given a decomposition, we construct
the corresponding tree by starting from the root and iteratively choosing the maximum
possible node label. More precisely:

Definition 14. Define the function g : Dd,p,n → Td,p,n recursively as follows:

• (n = 1) g maps the trivial decomposition
{
(0, 1)d

}
to the tree with a single node.

• (n ≥ 2) Given a decomposition D ∈ Dd,p,n, we choose the largest index i such that
every region in D is contained in Bi,j for some j. Next, define Rj = {R ∈ D,R ⊆ Bi,j}
for every j ∈ [p]. By the choice of i, R1, . . . , Rp must partition D, and

Dj :=
{
scaleBi,j→(0,1)d(R) : R ∈ Rj

}

is a decomposition of the unit hypercube in its own right, for every j ∈ [p].

We then define g(D) to be the p-ary tree with root node labelled i, with subtrees
g(D1), . . . , g(Dp) from left to right.
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i

j j j

T11 T1p T21 T2p Tp1 Tpp

· · · · · ·

· · · · · ·· · ·· · · · · ·

j

i i i

T11 Tp1 T12 Tp2 T1p Tpp

· · · · · ·

· · · · · ·· · ·· · · · · ·

Figure 6: Two interchange equivalent trees

Example 15. Let D be the decomposition in Figure 5, which has 6 regions:

D = { (0, 1/2)× (0, 1/2)× (0, 1), (0, 1/2)× (1/2, 1)× (0, 1),

(1/2, 1)× (0, 1/2)× (0, 1/2), (1/2, 1)× (1/2, 1)× (0, 1/2),

(1/2, 1)× (0, 1/2)× (1/2, 1), (1/2, 1)× (1/2, 1)× (1/2, 1) }.

Every region in D is contained in one of the sets

B1,1 = (0, 1/2)× (0, 1)× (0, 1), B1,2 = (1/2, 1)× (0, 1)× (0, 1).

However, the same can be said for

B2,1 = (0, 1)× (0, 1/2)× (0, 1), B2,2 = (0, 1)× (1/2, 1)× (0, 1).

but not for the sets B3,1, B3,2. Thus, we choose the index i = 2, and so the root node of
g(D) has label 2. Continuing in this way, one finds that g(D) is the tree T3 in Figure 5.

By the construction of the functions f and g, it is clear that g is a one-to-one function,
and that f(g(D)) = D for every D ∈ Dd,p,n. Hence f is onto, which implies that Cd,p(n)
counts the number of interchange equivalence classes in Td,p,n. In other words, Cd,p(n) counts
the number of trees in the image of g. We characterize these trees through the following
definition:

Definition 16. A tree T ∈ Td,p,n is interchange maximal if it has no subtree T̃ such that

(T1) T̃ has root labelled i;
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(T2) there exists T̃ ′ with root labelled j where j > i such that f(T̃ ′) = f(T̃ ).

Example 17. In Figure 5, T1 and T2 are not interchange maximal since they both have root
labelled i = 1, while there exists an interchange equivalent tree T3 with root node labelled
j = 2. One can check that T3 is indeed interchange maximal.

Since the function g always picks the largest possible node label when generating the tree
from the top down, it follows immediately from Definitions 14 and 16 that if T ∈ Td,p,n is
in the image of g, then T must be interchange maximal. We show that the converse is also
true.

Lemma 18. If T ∈ Td,p,n is interchange maximal, then there exists D ∈ Dd,p,n where g(D) =
T .

Proof. Suppose for a contradiction that there exists an interchange maximal tree T ∈ Td,p,n

that is not in the image of g. Moreover, choose such a tree T where n is minimized. Then,
there exists a distinct tree T ′ := g(f(T )) where f(T ) = f(T ′). Since T ′ is in the image of g,
it must be interchange maximal as well.

Next, suppose the root node of T has label i (the root node of T must be an internal
node as the single-node tree is indeed in the image of g). Then it follows that the root node
of T ′ must also have label i, otherwise the tree with the smaller root node label would not
be interchange maximal.

Next, let T1, . . . , Tp be the subtrees of the root of T from left to right, and likewise let
T ′
1, . . . , T

′
p be subtrees of the root of T

′ from left to right. Since f(T ) = f(T ′) and their root
nodes both have label i, it follows that f(Tj) = f(T ′

j) for all j ∈ [p]. Also, since T 6= T ′,
there must exist some index ℓ where Tℓ 6= T ′

ℓ.
However, It is clear from Definition 16 that any subtree of an interchange maximal tree

is also interchange maximal. Thus, we have just found two interchange maximal trees Tℓ, T
′
ℓ

that are interchange equivalent, which implies that at least one of Tℓ, T
′
ℓ is not in the image

of g. This contradicts the minimality of n.

Thus, through Lemma 18 and the immediately preceding discussion, we have shown the
following:

Theorem 19. For every integer d ≥ 1, p ≥ 2, and n ≥ 1, Cd,p(n) counts the number of
interchange maximal trees in Td,p,n.

Finally, notice that condition (T2) in Definition 16 involves the tree-to-decomposition
function f . We conclude this section by showing an alternative characterization of inter-
change maximal trees that is graph theoretical and does not make references to decomposi-
tions.

Proposition 20. Condition (T2) in Definition 16 is equivalent to

(T2’) There exists index j > i such that every path joining the root of T̃ and a leaf node of
T̃ contains an internal node labelled j.
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Proof. We first prove that (T2’) implies (T2). Suppose we are given a tree T with a subtree
T̃ that satisfies (T2’). Let u denote the root node of T̃ . Given a leaf node v in T̃ , consider
the unique path in T̃ joining u and v, and let d(v) denote the distance between u and the
closest j-node on this path. Given (T2’), d(v) is well-defined and finite for every leaf node
v.

Let dmax := max
{

d(v) : v is a leaf of T̃
}

. We prove that (T2) holds by induction on

dmax. If dmax = 1, then every child of u is an internal node labelled j, and one can perform
the subtree swapping operation described in Figure 6 to find a tree T̃ ′ with root node label
j where f(T̃ ) = f(T̃ ′), establishing (T2). For the inductive step, suppose dmax = ℓ > 1. Let
v be a leaf node where d(v) = ℓ, and let u0, . . . , uk be unique path in T̃ going from u to v.
Thus, we know that u = u0, v = uk, uℓ is an internal node labelled j, and none of u1, . . . , uℓ−1

has label j. Now consider the node uℓ−1 and its p children. If w is a child of uℓ−1 and w was
not an internal node labelled j, then let v′ be a leaf in T̃ that is a descendent of w (possibly
w itself). Now observe that the uv′ path in T̃ contains all of the vertices u1, . . . , uℓ−1, and w,
none of which is an internal node labelled j. This means that d(v′) > d(v) = ℓ, contradicting
our choice of v. Thus, all p children of uℓ−1 are internal nodes labelled j, and again we
can apply the tree swapping operation to obtain an interchange equivalent tree T̃ ′ where
the node uℓ−1 now has label j. If we iteratively perform this operation on all leaves v with
d(v) = ℓ, we will eventually obtain an interchange equivalent tree with dmax lower than ℓ,
completing the induction.

Next, we prove that (T2) implies (T2’). For this part of the proof, it is convenient to
extend the tree-to-decomposition mapping f as follows. Notice that for each leaf node v of
a given tree T naturally corresponds to a region in the decomposition f(T ). Thus, given a
leaf node v in a tree T , let f(T, v) denote the region in f(T ) that corresponds to node v.
Now, suppose we have a subtree T̃ where (T2) holds, and so there is a tree T̃ ′ with root
node label j and f(T̃ ′) = f(T̃ ). Thus,

{

f(T̃ , v) : v a leaf of T̃
}

=
{

f(T̃ ′, v′) : v′ a leaf of T̃ ′
}

.

In particular, since T̃ ′ has root node label j, we are assured that for every leaf v of T̃ ,
f(T̃ , v) is a subset of one of Bj,1, . . . , Bj,p. Thus, the sequence of splitting operations that
decomposes (0, 1)d into region f(T̃ , v) must involve splitting in coordinate j at some point.
This means that, for every leaf v of T̃ , the path joining the root of T̃ and v must contain an
internal node with label j, proving (T2’).

For an example, condition (T2’) provides an easy way to see that the tree T2 in Figure 5
is not interchange maximal, since it has root node label i = 1, while every path joining this
node and a leaf node of the tree contains a node labelled j = 2.

21



5 Future research directions

5.1 Wedderburn-Etherington numbers

This paper has developed a more complete understanding of the numbers Cd,p(n) and es-
tablished a connection between hypercube decompositions and interchange maximal trees.
It is an important open problem to determine if a similar theory can be developed for other
well-known variations on the Catalan numbers. In particular, we consider the Wedderburn-
Etherington numbers [29, 55]; see also OEIS A001190. In this case we have a binary operation
that is commutative but not associative; we let W (n) denote the number of ways to interpret
xn under this operation. For instance, for x4 we have

((xx)x)x = (x(xx))x = x(x(xx)) = x((xx)x),

but all of these are distinct from (xx)(xx). Thus there are only two distinct interpretations
of x4, and so W (4) = 2. The following table lists the distinct nth powers for n ≤ 5.

n nth commutative nonassociative powers W (n)
1 x 1
2 xx 1
3 (xx)x 1
4 ((xx)x)x, (xx)(xx) 2
5 ((xx)x)x)x, ((xx)xx))x, ((xx)x)(xx) 3

The growth rate ofW (n) has been determined [44], and more recently a non-recursive formula
for these numbers has been found [14, Theorem 2]. It would be interesting to investigate
higher-dimensional analogues of the Wedderburn-Etherington numbers involving d distinct
p-ary operations satisfying various generalizations of commutativity.

5.2 Algebraic operads

The last decade or two has seen the development of a new theory of operadic combinatorics
[7, 25, 35, 47], which constructs algebraic operads in terms of combinatorial objects, applies
the theory of operads to illuminate combinatorial structures, and uncovers new integer se-
quences which deserve further combinatorial study. The original motivation for the present
paper came from combinatorial aspects of work by the third author and Dotsenko [17] on
Boardman-Vogt tensor products of absolutely free operads.

In this section revisit the trees in Figure 5, and give a brief explanation for their equiva-
lence in the operadic perspective. This discussion assumes familiarity with some of the basic
terminology from the theory of Gröbner bases for operads [28]; see also [16].

In the case of d = 3 and p = 2, we have three binary operations •1, •2, •3 satisfying the
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three interchange laws:

(a •2 b) •1 (c •2 d) = (a •1 c) •2 (b •1 d),

(a •3 b) •1 (c •3 d) = (a •1 c) •3 (b •1 d),

(a •3 b) •2 (c •3 d) = (a •2 c) •3 (b •2 d).

The operation order •1 ≺ •2 ≺ •3 extends to a monomial order on operad ideal generated
by these three relations. Then the three interchange laws above can be represented by the
following tree polynomials:

α =

1

2 2

a b c d

−

2

1 1

a c b d

β =

1

3 3

a b c d

−

3

1 1

a c b d

γ =

2

3 3

a b c d

−

3

2 2

a c b d

The least common multiple of the leading tree monomials of α and γ is

[α, γ] =

1

2 2

a b 3 3

c d e f

It follows that the operad ideal generated by α and γ contains the following tree polynomial:

ǫ =

1

2 3

a b 2 2

c e d f

−

2

1 1

a 3 b 3

c d e f

The tree polynomial ǫ is the simplest new element in the operadic Gröbner basis beyond the
ideal generators α, β, and γ. The two terms in ǫ correspond to the two trees T2 and T3 in
Figure 5. This provides an operadic explanation of the fact that the distinct trees T2 and
T3 produce the same decomposition of the cube. It remains an open (and probably very
difficult) problem to compute a complete Gröbner basis for this operad ideal.
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[23] J. W. Cannon and W. J. Floyd, What is... Thompson’s group? Notices Amer. Math.
Soc. 58 (2011), 1112–1113.

[24] J. W. Cannon, W. J. Floyd, and W. R. Parry, Introductory notes on Richard Thomp-
son’s groups, Enseign. Math. 42 (1996), 215–256.

[25] F. Chapoton, Operads and algebraic combinatorics of trees, Sém. Lothar. Combin. 58
(2007/08), Article B58c.

[26] E. Cheng, Comparing operadic theories of n-category, Homology Homotopy Appl. 13
(2011), 217–248.

25



[27] J. Conant and T. Michaels, On the number of tilings of a square by rectangles, Ann.
Comb. 18 (2014), 21–34.
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