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Abstract

In a previous paper, we derived a theorem which describes, in the language of lin-
ear recurrences, the sum of diagonal elements lying along a finite ray of a certain type
crossing the 3-dimensional Pascal pyramid. The corresponding generating function was
also determined. In this paper, we apply these results to prove several (more precisely
24) recurrence relations previously conjectured, or not given in the On-Line Encyclo-

pedia of Integer Sequences. Moreover, we provide many (exactly 75) new summatory
identities linked to sequences listed in the Encyclopedia.

1 Introduction

Let (Fn)
∞
n=0 denote the Fibonacci sequence given by the initial values F0 = 0 and F1 = 1,

and by Fn = Fn−1 + Fn−2 for n ≥ 2. Probably Binet [4] was the first to publish the identity

Fn+1 =

(
n

0

)

+

(
n− 1

1

)

+

(
n− 2

2

)

+ · · · , (n ≥ 0)

about the sum of elements of ascending diagonals, which motivated the paper [2] to inves-
tigate diagonals of arbitrary direction similarly generating finite sums. It turned out that
such sums can also be described by suitable linear recurrences. In this paper, we recall the
two main theorems and some corollaries of [3] which study the analogous question in the 3D
Pascal pyramid (in short: PP3D), and we apply the results to many sequences appearing in
the On-Line Encyclopedia of Integer Sequences (OEIS) [4].

It is known that trinomial coefficients
(

n
i, j, k

)
= n!

i!·j!·k!
(where i, j, k are non-negative

integers and i+ j + k = n) appear in the expansion of (x+ y + z)n as

(x+ y + z)n =
∑

i+j+k=n

(
n

i, j, k

)

xi yj zk (1)

(see, for example, Feinberg [5] or Anatriello and Vincenzi [1]).
We adapted the trinomial coefficients to the 3D coordinate-system — more precisely,

to the vertices of the lattice Z
3. The location of

(
n

i, j, k

)
is the point (i, j,−n) (recall that

n = i+ j + k).
Take two arbitrary vertices P0(x0, y0, z0) ∈ Z

3 and P1(x1, y1, z1) ∈ Z
3 of the pyramid

(that is, such that the conditions xi ≥ 0, yi ≥ 0, zi ≤ 0, xi + yi + zi ≤ 0 are fulfilled) such
that if r = z1 − z0 holds, then

α1 = x1 − x0 > 0, α2 = y1 − y0 > 0, α1 + α2 + r > 0.

We also require that x0 + y0 + z0 < 0, excluding the case when the vector −→v =
−−→
P0P1 is on

the plane x+ y + z = 0.
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Along the straight line determined by the points P0 and P1 we translate −−→v from P0 as
many times as possible: let x0 = s1α1 + ℓ1 with 0 ≤ ℓ1 < α1, and let x1 = s2α2 + ℓ2 with
0 ≤ ℓ2 < α2. Put s = min{s1, s2}, and then set

θ1 = x0 − sα1, θ2 = y0 − sα2.

The point we obtain, say P , has coordinates (θ1, θ2, z0−sr). Now we raise the point P parallel
to the z-axis until it reaches the plane x + y + z = 0. Then we consider the uppermost ray
defined by the quintuple (α1, α2, r, θ1, θ2). Note that, seemingly, the conditions α1 > 0 and
α2 > 0 together would not cover all the possible directions in PP3D. Nevertheless, here they
do because of the symmetry of rotation around the vertical axis (before fitting PP3D to the
coordinate system).

Thus the direction (α1, α2, r, θ1, θ2) defines diagonal rays in the Pascal pyramid. Such a
ray contains the elements

Ak =

(
n− rk

θ1 + α1k, θ2 + α2k, ηk

)

xθ1+α1kyθ2+α2kzηk , (2)

where k = 0, . . . , ⌊ n−θ1−θ2
α1+α2+r

⌋ and ηk = n−θ1−θ2− (α1+α2+r)k. Here x, y and z are nonzero
real parameters. What most interests us is the sum

T (α1,α2,r,θ1,θ2)
n =

⌊
n−θ1−θ2
α1+α2+r

⌋
∑

k=0

Ak,

but computing it is a hard problem in general.
Belbachir, Mehdaoui, and Szalay [3] considered only

T (r)
n =

⌊ n

r+2
⌋

∑

k=0

(
n− rk

k, k, n− (r + 2)k

)

xkykzn−(2+r)k

corresponding to the particular case (α1, α2, r, θ1, θ2) = (1, 1, r, 0, 0). They also assumed
r ≥ −1 to ensure the finiteness of the rays. Here we mention that Shannon [7] found
a connection between such sums and ternary recurrences. In fact, our approach is more
general.

In the next section, we summarize the main result of [3] and its consequences.

2 Previous results

Assume t = xy. For notational convenience, set Tn = T
(r)
n .
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Theorem 1. The terms of the sequence (Tn) given by

Tn =

⌊n/(r+2)⌋
∑

k=0

(
n− rk

k, k, n− (r + 2)k

)

tkzn−(r+2)k (3)

satisfy the linear recurrence relation

nTn = (2n− 1)zTn−1 − (n− 1)z2Tn−2 + 2(2n− (r + 2))tTn−r−2. (4)

Observe that the last subscript which appears in the right-hand side of (4) is n− r − 2.
If r = −1 or r = 0, then Tn−r−2 can be joined to Tn−1 or Tn−2, respectively. This is the
Morgan-Voyce phenomenon, and under such conditions we obtain the following corollaries.

Corollary 2. If r = 0, then the recurrence relation (4) simplifies to

nTn = (2n− 1)zTn−1 + (n− 1)(4t− z2)Tn−2. (5)

Corollary 3. Assume r = −1. Then (4) provides

nTn = (2n− 1)(2t+ z)Tn−1 − (n− 1)z2Tn−2. (6)

The comparison of the two formulae (5) and (6) makes it possible to establish equalities
between two sums belonging to the same recurrence. This idea leads to the following result.

Corollary 4. We have the identity

⌊n/2⌋
∑

k

(
n

k, k, n− 2k

)

(t1τ)
k (τ + t1)

n−2k =
n∑

k

(
n+ k

k, k, n− k

)

tk1 (τ − t1)
n−k, (7)

where τ 6= 0 and τ 6= ±t1.

Finally, we were able to determine the generating function of sequence (3) [3].

Theorem 5. The generating function of variable u of the sequence given by (3) is

g(u) =
1

√

(zu− 1)2 − 4tur+2
. (8)

Now we list several examples of the type of Corollary 4 we found in the OEIS [7]. In the
sequel, keeping the notation of [7] we use (an) for the sequences (instead of (Tn)).
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3 List of new identities, and a combinatorial interpre-

tation of Theorem 1

3.1 Supplement of OEIS

We use the generating function for the identification of sequences since a sequence in the
OEIS is usually defined by its generating function or the generating function is often given as
a feature of the sequence. In other words, the generating function is the connection between
the sequence, its recurrence relation, and the corresponding sum(s).

We split our results into four blocks. The first one contains the sequences for which the
appropriate recurrence relations were given in the OEIS with the note “conjecture”. The
application of Theorem 5 (identification) and Theorem 1 provide the proofs automatically.
So we showed

Theorem 6. Each sequence of the first column of Table 1 satisfies the linear recurrence rule
located in the same row of the second column.

Table 2 gives the sequences for which the recurrence relations were not given in the OEIS.

Theorem 7. The sequences given in Table 2 satisfy the corresponding recurrence relations.

The next theorem, thanks to Theorem 1 and Corollary 4, collects at least two new
trinomial sums for some sequences. Note that the parameter r of the direction (α1, α2, r) =
(1, 1, r) appears, for example, in the upper index of the trinomial coefficient in (3). Hence
one can easily conclude the value of r from the corresponding sum.

Theorem 8. Columns 2–4 of Table 3 provide new sum identities for the sequences of the
first column.

Finally, we found a few new identities for certain sequences when only one sum exists or
we could add only one new sum to the detected one(s).

Theorem 9. The sums in Table 4 give new descriptions for the corresponding sequences.

3.2 Powers of integers

Corollary 10. Formula (3) simplifies to

Tn =
n∑

k=0

(
n+ k

k, k, n− k

)

(−1)n−k = 1 (9)

if r = −1, t = 1, and z = −1.
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OEIS code Recurrence relation conjectured in the OEIS

A084768 nan = 7(2n− 1)an−1 − (n− 1)an−2

A084769 nan = 9(2n− 1)an−1 − (n− 1)an−2

A084771 nan = 5(2n− 1)an−1 − 9(n− 1)an−2

A098270 nan = 10(2n− 1)an−1 − 4(n− 1)an−2

A098333 nan = (2n− 1)an−1 − 13(n− 1)an−2

A098334 nan = (2n− 1)an−1 − 17(n− 1)an−2

A098336 nan = 2(2n− 1)an−1 − 12(n− 1)an−2

A098337 nan = 2(2n− 1)an−1 − 20(n− 1)an−2

A098338 nan = 3(2n− 1)an−1 − 13(n− 1)an−2

A098340 nan = 3(2n− 1)an−1 − 21(n− 1)an−2

A098341 nan = 3(2n− 1)an−1 − 25(n− 1)an−2

A098411 nan = 8(2n− 1)an−1 − 48(n− 1)an−2

A098439 nan = (2n− 1)an−1 + 47(n− 1)an−2

A098456 nan = 2(2n− 1)an−1 + 64(n− 1)an−2

A098479 nan = (2n− 1)an−1 − (n− 1)an−2 + 2(2n− 3)an−3

A098480 nan = (2n− 1)an−1 − (n− 1)an−2 + 4(2n− 3)an−3

A106186 nan = 2(2n− 1)an−1 − 4(n− 1)an−2 + 8(2n− 3)an−3

A115864 nan = 8(2n− 1)an−1 − 16(n− 1)an−2

A116092 nan = −4(2n− 1)an−1 − 64(n− 1)an−2

A116093 nan = −2(2n− 1)an−1 − 12(n− 1)an−2

A122868 nan = 3(2n− 1)an−1 + 3(n− 1)an−2

Table 1: Conjectured recurrence relations we proved.
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OEIS code Recurrence relation we discovered

A113179 nan = 2(2n− 1)an−1 − 4(n− 1)an−2 + 4(2n− 3)an−3

A248168 nan = 7(2n− 1)an−1 − 33(n− 1)an−2

A258723 nan = 6(2n− 1)an−1 − 48(n− 1)an−2

Table 2: Recurrence relation discovered.

OEIS code Sum 1 Sum 2 Sum 3

A012000
∑⌊n/2⌋

k

(
n

k, k, n−2k

)
(−3)k 2n−2k

∑n
k

(
n+k

k, k, n−k

)
(−1)k 4n−k

∑n
k

(
n+k

k, k, n−k

)
3k (−4)n−k

A084771
∑⌊n/2⌋

k

(
n

k, k, n−2k

)
4k 5n−2k

∑n
k

(
n+k

k, k, n−k

)
3n−k

∑n
k

(
n+k

k, k, n−k

)
4k (−3)n−k

A084772
∑⌊n/2⌋

k

(
n

k, k, n−2k

)
5k 6n−2k

∑n
k

(
n+k

k, k, n−k

)
4n−k

∑n
k

(
n+k

k, k, n−k

)
5k (−4)n−k

A084773
∑⌊n/2⌋

k

(
n

k, k, n−2k

)
8k 6n−2k

∑n
k

(
n+k

k, k, n−k

)
2k2n−k

∑n
k

(
n+k

k, k, n−k

)
4k (−2)n−k

A084774
∑⌊n/2⌋

k

(
n

k, k, n−2k

)
10k 7n−2k

∑n
k

(
n+k

k, k, n−k

)
2k3n−k

∑n
k

(
n+k

k, k, n−k

)
5k (−3)n−k

A098269
∑⌊n/2⌋

k

(
n

k, k, n−2k

)
15k 8n−2k

∑n
k

(
n+k

k, k, n−k

)
3k2n−k

∑n
k

(
n+k

k, k, n−k

)
5k (−2)n−k

A098270
∑⌊n/2⌋

k

(
n

k, k, n−2k

)
24k 10n−2k

∑n
k

(
n+k

k, k, n−k

)
4k2n−k

∑n
k

(
n+k

k, k, n−k

)
6k (−2)n−k

A098341
∑⌊n/2⌋

k

(
n

k, k, n−2k

)
(−4)k 3n−2k

∑n
k

(
n+k

k, k, n−k

)
(−1)k5n−k

∑n
k

(
n+k

k, k, n−k

)
4k (−5)n−k

A098659
∑⌊n/2⌋

k

(
n

k, k, n−2k

)
6k 7n−2k

∑n
k

(
n+k

k, k, n−k

)
5n−k

∑n
k

(
n+k

k, k, n−k

)
6k (−5)n−k

A115864
∑⌊n/2⌋

k

(
n

k, k, n−2k

)
12k 8n−2k

∑n
k

(
n+k

k, k, n−k

)
2k4n−k

∑n
k

(
n+k

k, k, n−k

)
6k (−4)n−k

A115865
∑⌊n/2⌋

k

(
n

k, k, n−2k

)
27k 12n−2k

∑n
k

(
n+k

k, k, n−k

)
3k6n−k

∑n
k

(
n+k

k, k, n−k

)
9k (−6)n−k

A116091
∑⌊n/2⌋

k

(
n

k, k, n−2k

)
(−3)k (−2)n−2k

∑n
k

(
n+k

k, k, n−k

)
(−3)k4n−k

∑n
k

(
n+k

k, k, n−k

)
(−4)n−k

A116092
∑⌊n/2⌋

k

(
n

k, k, n−2k

)
(−12)k (−4)n−2k

∑n
k

(
n+k

k, k, n−k

)
(−6)k8n−k

∑n
k

(
n+k

k, k, n−k

)
2k (−8)n−k

A069835
∑⌊n/2⌋

k

(
n

k, k, n−2k

)
3k 4n−2k already known

∑n
k

(
n+k

k, k, n−k

)
3k (−2)n−k

A084768
∑⌊n/2⌋

k

(
n

k, k, n−2k

)
12k 7n−2k already known

∑n
k

(
n+k

k, k, n−k

)
4k (−1)n−k

A084769
∑⌊n/2⌋

k

(
n

k, k, n−2k

)
20k 9n−2k already known

∑n
k

(
n+k

k, k, n−k

)
5k (−1)n−k

A098332 already known
∑n

k

(
n+k

k, k, n−k

)
(−1)k3n−k

∑n
k

(
n+k

k, k, n−k

)
2k(−3)n−k

Table 3: Sums discovered.
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OEIS code Sum OEIS code Sum

A001850
∑n

k

(
n+k

k, k, n−k

)
2k (−1)n−k A006134

∑⌊n/3⌋
k

(
n−k

k, k, n−3k

)
3n−3k

A006442
∑⌊n/2⌋

k

(
n

k, k, n−2k

)
6k 5n−2k A026375

∑⌊n/2⌋
k

(
n

k, k, n−2k

)
3n−2k

A059304
∑⌊n/2⌋

k

(
n

k, k, n−2k

)
4k 4n−2k A080609

∑⌊n/2⌋
k

(
n

k, k, n−2k

)
2k 4n−2k

A081671
∑⌊n/2⌋

k

(
n

k, k, n−2k

)
4n−2k A084605

∑⌊n/2⌋
k

(
n

k, k, n−2k

)
4k

A084770
∑⌊n/2⌋

k

(
n

k, k, n−2k

)
5k 2n−2k A098339

∑⌊n/2⌋
k

(
n

k, k, n−2k

)
(−2)k3n−2k

A098409
∑⌊n/2⌋

k

(
n

k, k, n−2k

)
5n−2k A098410

∑⌊n/2⌋
k

(
n

k, k, n−2k

)
6n−2k

A098411
∑⌊n/2⌋

k

(
n

k, k, n−2k

)
4k8n−2k A098430

∑⌊n/2⌋
k

(
n

k, k, n−2k

)
16k8n−2k

A098443
∑⌊n/2⌋

k

(
n

k, k, n−2k

)
5k4n−2k A098444

∑⌊n/2⌋
k

(
n

k, k, n−2k

)
5k3n−2k

A098453
∑⌊n/2⌋

k

(
n

k, k, n−2k

)
4k2n−2k A098455

∑⌊n/2⌋
k

(
n

k, k, n−2k

)
10k2n−2k

A098456
∑⌊n/2⌋

k

(
n

k, k, n−2k

)
17k2n−2k A098658

∑⌊n/2⌋
k

(
n

k, k, n−2k

)
9k6n−2k

A106186
∑⌊n/3⌋

k

(
n−k

k, k, n−3k

)
4k2n−3k A106258

∑⌊n/2⌋
k

(
n

k, k, n−2k

)
6k4n−2k

A106259
∑⌊n/2⌋

k

(
n

k, k, n−2k

)
12k6n−2k A106260

∑⌊n/2⌋
k

(
n

k, k, n−2k

)
20k8n−2k

A106261
∑⌊n/2⌋

k

(
n

k, k, n−2k

)
30k10n−2k A122868

∑⌊n/2⌋
k

(
n

k, k, n−2k

)
3k3n−2k

A248168
∑⌊n/2⌋

k

(
n

k, k, n−2k

)
4k7n−2k A258723

∑⌊n/2⌋
k

(
n

k, k, n−2k

)
(−3)k6n−2k

Table 4: Sums discovered.

Proof. Obviously, (9) satisfies the recurrence rule (6). Hence for n ≥ 2 we have

nTn = (2n− 1)Tn−1 + (n− 1)Tn−2,

which is equivalent to
n (Tn − Tn−1)
︸ ︷︷ ︸

Un

= (n− 1) (Tn−1 − Tn−2)
︸ ︷︷ ︸

Un−1

,

and then to
nUn
︸︷︷︸

Vn

= (n− 1)Un−1
︸ ︷︷ ︸

Vn−1

.
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Consequently, Vn = V1 holds for n ≥ 2. The initial values T0 = T1 = 1 imply V1 = 0. Thus
nUn = 0 gives Un = 0, and then Tn = Tn−1 follows, which together with the initial values
proves Tn = 1 for all n ≥ 0.

Corollary 11. Assume that r = −1 and z = −t hold in (3). Then we have Tn = tn.

Proof. Combine (3), Corollary 10, and the conditions here to get

Tn =
n∑

k=0

(
n+ k

k, k, n− k

)

tk(−t)n−k = tn.

Replacing r = −1 and t = −z in (9), together with Corollary 10 immediately leads to

Corollary 12.

Tn =
n∑

k=0

(
n+ k

k, k, n− k

)

(−z)kzn−k = (−z)n.

3.3 A combinatorial interpretation

A combinatorial interpretation of sequence (3) corresponding to the direction (r, 1, 1) follows
easily from the sum of (3).

Theorem 13. The sequence Tn in (3) gives the sum of products of weighs associated with
the walk in the square lattice from the point (0, 0) to (n, n) when the steps allowed are in
{(2+ r, 0), (0, 2+ r), (1, 1)}. The first and second steps of the walk have weight

√
t, while the

last one has z.

Example 14. The triple (r, t, z) = (−1, 3, 2) yields a Morgan-Voyce direction, and provides
the sequence A098269. It can be given by

Tn =
n∑

k=0

(
n+ k

k, k, n− k

)

3k 2n−k,

the first few elements are: 1, 8, 94, 1232, 16966, 240368, 3468844, . . ..
The sums of products of weights are related to the lattice paths from (0, 0) to (n, n) using

only the steps (1, 0), (0, 1) and (1, 1), with the weights
√
3,

√
3, 2, respectively. In case of

n = 2 we illustrate all paths from (0, 0) to (2, 2) in Figure 1, which imply

T2 = (
√
3×

√
3×

√
3×

√
3) + (2×

√
3×

√
3) + (

√
3×

√
3×

√
3×

√
3)

+(
√
3× 2×

√
3) + (2× 2) + (

√
3×

√
3×

√
3×

√
3) + (

√
3×

√
3×

√
3×

√
3)

+(2×
√
3×

√
3) + (

√
3×

√
3× 2) + (

√
3×

√
3×

√
3×

√
3)

+(
√
3×

√
3×

√
3×

√
3) + (

√
3×

√
3× 2) + (

√
3× 2×

√
3)

= 94.
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Figure 1: All lattice paths linked to A098269.
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