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Abstract

A numerical semigroup is a cofinite subset of the non-negative integers that is closed

under addition. For a randomly generated numerical semigroup, the expected number

of minimum generators can be expressed in terms of a doubly-indexed sequence of

integers, denoted hn,i, that count generating sets with certain properties. We prove

a recurrence that implies the sequence hn,i is eventually quasipolynomial when the

second parameter is fixed.

1 Introduction

A numerical semigroup is an additive subsemigroup of Z≥0 with finite complement. The
semigroup generated by a set A = {a1, a2, . . . , ak} is the smallest additive subsemigroup of
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Z≥0 containing A, namely

S = 〈A〉 = 〈a1, . . . , ak〉 = {a1x1 + · · ·+ akxk : xi ∈ Z≥0}.

A generating set A is minimal if for all x ∈ A, we have 〈A〉 6= 〈A\{x}〉. Every additive sub-
semigroup S ⊂ Z≥0 has a unique minimal generating set, and the embedding dimension of S,
denoted e(S), is the size of its minimal generating set (see [3] for a thorough introduction).

The authors of [2] introduce a model for randomly selecting a subsemigroup of Z≥0

that is similar to the Erdős-Renyi model for random graphs. Their model takes two inputs
M ∈ Z≥1 and p ∈ [0, 1], and randomly selects a generating set A that includes each integer
n = 1, 2, . . . ,M with independent probability p. Note that it is possible for a semigroup
produced by this model to lack the “finite complement” property, but [2, Theorem 5] implies
that asymptotically this happens with probability 0. This justifies the use of the term random
numerical semigroup model.

As an example, if M = 40 and p = 0.1, then one possible set is A = {6, 9, 18, 20, 32}
(this is not unreasonable, as on average one would expect 4 generators to be selected).
However, only 3 elements of A are minimal generators, since 18 = 9+9 and 32 = 20+6+6.
As such, the resulting semigroup S = 〈A〉 = 〈6, 9, 20〉 has embedding dimension 3.

One of the main results in [2] is that the expected number of minimal generators of a
numerical semigroup S sampled with the above model can be expressed as

E[e(S)] =
M
∑

n=1

p(1− p)⌊n/2⌋
(

hn,0 + hn,1p+ hn,2p
2 + · · ·

)

,

where hn,i equals the number of sets A ⊂ [1, n/2) ∩ Z with |A| = i that minimally generate
an additive subsemigroup of Z≥0 not containing n. Of interest is the asymptotic behavior
of E[e(S)] for fixed p as M → ∞. Although this is currently out of reach, E[e(S)] can be
approximated for fixed M using the above formula, so long as hn,i is known for n ≤ M .

n = 68: 1, 29, 249, 888, 1705, 2014, 1599, 888, 347, 91, 14, 1
n = 69: 1, 31, 301, 1181, 2414, 2939, 2365, 1335, 535, 147, 25, 2
n = 70: 1, 28, 248, 1012, 2218, 2873, 2431, 1414, 569, 155, 26, 2
n = 71: 1, 34, 359, 1577, 3615, 4945, 4481, 2878, 1348, 453, 105, 15, 1
n = 72: 1, 25, 222, 893, 1923, 2498, 2138, 1267, 526, 147, 25, 2
n = 73: 1, 35, 383, 1764, 4252, 6139, 5883, 4008, 2004, 725, 181, 28, 2
n = 74: 1, 34, 337, 1456, 3361, 4694, 4365, 2853, 1345, 453, 105, 15, 1
n = 75: 1, 32, 346, 1582, 3810, 5567, 5428, 3758, 1888, 684, 172, 27, 2
n = 76: 1, 33, 334, 1448, 3413, 5005, 4992, 3559, 1863, 705, 181, 28, 2

Figure 1: Values of hn,i for n = 68 through n = 76.

The doubly-indexed sequence hn,i is awaiting approval on OEIS as A319608, computed
for n ≤ 90. The sequence can also be viewed at the following URL:
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https://gist.github.com/coneill-math/c2f12c94c7ee12ac7652096329417b7d

Figure 1 contains the values of hn,i for n = 68, . . . , 76, where each row is comprised of
hn,0, hn,1, . . . , hn,dn from left to right. The following facts about the sequence hn,i are known:

• hn,i is nonzero if and only if n ≥ 1 and 0 ≤ i ≤ dn = ⌊n/2⌋ − ⌊n/3⌋;

• hn,0 = 1;

• hn,1 = ⌊(n+ 1)/2⌋ − τ(n), where τ(n) denotes the number of divisors of n; and

• The sum of the nth row equals the number of irreducible numerical semigroups with
Frobenius number n [1, 4], which appears in OEIS as A158206 [5].

Currently, computing the values of hn,i for large n is time-intensive; the fastest known al-
gorithm computes the nth row by first computing the set of irreducible numerical semigroups
with Frobenius number n and utilizing the last bullet point above [4]. This computation
takes 3 days for n = 89 on the authors’ machines. The more values of hn,i that are known,
the more accurately E[e(S)] can be approximated. Due to the limited known values of hn,i,
approximations computed with the currently known values still differ drastically from those
obtained from experimental data; see [2, Table 2] for several sample estimates.

In this paper, we examine the combinatorics of the sequence hn,i. Our main result is
Corollary 2, which follows from the following recurrence and states that for fixed k the
sequence hn,dn−k coincides with a polynomial in n ≫ 0 whose coefficients are 6-periodic
functions of n.

Theorem 1. Fix k ∈ Z≥0, b ∈ {0, 1, 2}, and m > 24k + 12 − 8b with m ≡ b (mod 3). The
recurrence

hn,dn−k =
k

∑

l=0

hm,dm−l

(

dn − dm
k − l

)

holds for all n ≥ m satisfying n ≡ b (mod 3).

A quasipolynomial is a function q : Z → Z such that

q(x) = c0(x) + c1(x)x+ c2(x)x
2 + · · ·+ cd(x)x

d

where each ci(x) is a periodic function. The degree of q, denoted deg q, is the largest integer
d for which cd is not identically 0, and the period of q is the smallest integer p such that
ci(x+ p) = ci(x) for every x and i.

Corollary 2. For fixed k, the function n 7→ hn,dn−k coincides with a quasipolynomial

ck(n)n
k + · · ·+ c1(n)n+ c0(n)
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with degree k, period 6, and leading coefficient

ck(n) =

{

2
k!6k

, if n ≡ 0, 1 (mod 3);
1

k!6k
, if n ≡ 2 (mod 3),

for all n > 24k + 12− 8b, where b ∈ {0, 1, 2} with n ≡ b (mod 3).

In the development of the proof of Theorem 1, we obtain an algorithm for computing
the values hn,i appearing in Corollary 2 (Algorithm 19). Our algorithm has obtained hn,i

values that were previously unknown. With the improved algorithm and Theorem 1, ex-
plicit quasipolynomials have been provided for hn,dn−k for each k ≤ 7 (see Figure 2 for the
quasipolynomials up to k = 4). Computing the quasipolynomial coefficients of hn,dn−7 re-
quires computing the value of e.g., h183,d183−7 = h183,23 = 6423209, a task that would have
been impossible with existing methods.

2 Setup

Unless otherwise stated, throughout the rest of the paper assume n ∈ Z≥1 and bn ∈ {0, 1, 2}
with n ≡ bn (mod 3). Let

Xn =
(

n
3
, n
2

)

∩ Z.

Definition 3. Fix a set A ⊂ Z≥1. We say A works for n ∈ Z≥1 if

(i) n /∈ 〈A〉,

(ii) x < n/2 for all x ∈ A, and

(iii) A minimally generates an additive subsemigroup of Z≥0.

In particular, hn,i equals the number of sets A with |A| = i that work for n.

To motivate the next several definitions, recall from Figure 2 that for n ≥ 13,

hn,dn =

{

2, if n ≡ 0, 1 (mod 3);

1, if n ≡ 2 (mod 3).
(1)

The set Xn works for n and |Xn| = dn. Let E0,n and E1,n denote the remaining working sets
for n of size dn when bn = 0 and bn = 1, respectively. The key observation is that for all n,

Xn −
⌊

n
3

⌋

= {1, 2, . . . , dn},

E0,n −
⌊

n
3

⌋

= {−1, 1, 3, 4, . . . , dn}, and

E1,n −
⌊

n
3

⌋

= {0, 2, 3, . . . , dn}.

Since Xn contains every integer in the interval (n/3, n/2), any other elements in a set counted
by hn,− must lie in {1, 2, . . . , ⌊n/3⌋}. Thus we thought of ⌊n/3⌋ as a sort of cutoff point.
From this, it felt natural to express sets in terms of how offset the elements are from ⌊n/3⌋.
This motivates the following.
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hn,dn =







































2, if n ≡ 0 (mod 6) and n ≥ 18;

2, if n ≡ 1 (mod 6) and n ≥ 7;

1, if n ≡ 2 (mod 6) and n ≥ 2;

2, if n ≡ 3 (mod 6) and n ≥ 15;

2, if n ≡ 4 (mod 6) and n ≥ 10;

1, if n ≡ 5 (mod 6) and n ≥ 5.

hn,dn−1 =







































1
3
(n+ 3), if n ≡ 0 (mod 6) and n ≥ 42;

1
3
(n+ 11), if n ≡ 1 (mod 6) and n ≥ 31;

1
6
(n+ 16), if n ≡ 2 (mod 6) and n ≥ 26;

1
3
(n+ 6), if n ≡ 3 (mod 6) and n ≥ 39;

1
3
(n+ 8), if n ≡ 4 (mod 6) and n ≥ 34;

1
6
(n+ 19), if n ≡ 5 (mod 6) and n ≥ 23.

hn,dn−2 =







































1
36
(n2 + 108), if n ≡ 0 (mod 6) and n ≥ 66;

1
36
(n2 + 16n+ 19), if n ≡ 1 (mod 6) and n ≥ 55;

1
72
(n2 + 26n+ 160), if n ≡ 2 (mod 6) and n ≥ 50;

1
36
(n2 + 6n+ 117), if n ≡ 3 (mod 6) and n ≥ 63;

1
36
(n2 + 10n− 20), if n ≡ 4 (mod 6) and n ≥ 58;

1
72
(n2 + 32n+ 247), if n ≡ 5 (mod 6) and n ≥ 47.

hn,dn−3 =







































1
648

(n3 − 9n2 + 342n− 3240), if n ≡ 0 (mod 6) and n ≥ 90;
1

648
(n3 + 15n2 − 69n+ 5885), if n ≡ 1 (mod 6) and n ≥ 79;

1
1296

(n3 + 30n2 + 264n− 1952), if n ≡ 2 (mod 6) and n ≥ 74;
1

648
(n3 + 315n− 2268), if n ≡ 3 (mod 6) and n ≥ 87;

1
648

(n3 + 6n2 − 132n+ 6200), if n ≡ 4 (mod 6) and n ≥ 82;
1

1296
(n3 + 39n2 + 471n− 863), if n ≡ 5 (mod 6) and n ≥ 71.

hn,dn−4 =







































1
15552

(n4 − 24n3 + 828n2 − 17280n+ 419904), if n ≡ 0 (mod 6) and n ≥ 114;
1

15552
(n4 + 8n3 − 282n2 + 24728n+ 413225), if n ≡ 1 (mod 6) and n ≥ 103;

1
31104

(n4 + 28n3 + 204n2 − 10256n+ 454912), if n ≡ 2 (mod 6) and n ≥ 98;
1

15552
(n4 − 12n3 + 666n2 − 12852n+ 374949), if n ≡ 3 (mod 6) and n ≥ 111;

1
15552

(n4 − 4n3 − 300n2 + 26528n− 490112), if n ≡ 4 (mod 6) and n ≥ 106;
1

31104
(n4 + 40n3 + 510n2 − 8168n+ 426817), if n ≡ 5 (mod 6) and n ≥ 95.

Figure 2: Quasipolynomial expressions for hn,dn−k with k = 0, 1, . . . , 4.
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Definition 4. The offset form of a set A = {x1, x2, . . . , xk} ⊂ Z≥1 is the set

A(n) = A− ⌊n/3⌋ = {x1 − ⌊n/3⌋ , x2 − ⌊n/3⌋ , . . . , xk − ⌊n/3⌋}.

After expressing the sets we computed in offset form, we noticed that we could go one
step further. We noticed that if we instead expressed sets in terms of how different they are
from Xn and then take the offset form of the result, the expressions would be equal. This
motivates the following.

Definition 5. A set I ⊆ Z is an inserting set for n ∈ Z≥1 if

I(n) ⊆ {−⌊n/3⌋ , . . . ,−1, 0},

and a set R ⊆ Z is a removing set for n if

R(n) ⊆ {1, 2, . . . , dn}.

An RI-pair for n is a pair (R, I) of a removing set R and an inserting set I.
There is a natural bijection between RI-pairs for n and the power set of {1, 2, . . . , dn}

given by the map

ϕn(R, I) = (Xn \R) ∪ I.

The inverse map is given by

A 7→ (Xn \ A,A \Xn).

Since ϕn gives a bijection between the two objects, we say the set corresponding to an RI-pair
(R, I) is the set ϕn(R, I), and vice-versa.

Theorem 1 follows from the fact that for fixed k and large n, every RI-pair (R, I) corre-
sponding to a working set for n of size dn − k satisfies I(n) ⊆ {pn(k), . . . ,−1, 0}, where

pn(k) = bn − 2k − 1

only depends on n modulo 3 (Theorem 15). As a consequence, the restrictions on removal
sets corresponding to a given insertion set are independent of the size of n in this case.

Example 6. If n = 11 and k = 1, then hn,dn−k = h11,1 = 4 and Xn = {4, 5}. The sets A
with |A| = 1 that work for 11 are

A = {2} = (Xn \ {4, 5}) ∪ {2}, A = {4} = (Xn \ {5}) ∪ {},
A = {3} = (Xn \ {4, 5}) ∪ {3}, and A = {5} = (Xn \ {4}) ∪ {}.

Theorem 11 classifies the possible RI-pairs that correspond to working sets for large n.
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3 Strongly bounded sets

We begin by classifying the working sets for n that are strongly n-bounded (Definition 7).
As it turns out, for k fixed and large n, every working set for n with size dn − k is strongly
n-bounded (Theorem 16). Note that any strongly n-bounded set automatically satisfies
parts (ii) and (iii) of Definition 3.

In what follows, we utilize the notation mB = {mb : b ∈ B} for B ⊂ Q and m ∈ Q.

Definition 7. We say a set A ⊂ Z≥1 is strongly n-bounded if A ⊂ (n/4, n/2).

Proposition 8. A strongly n-bounded set A works for n if and only if bn /∈ 3A(n).

Proof. Any strongly n-bounded set automatically satisfies part (ii) and (iii) of Definition 3
since x + y > n

2
> z for any x, y, z ∈ A. As such, A works for n if and only if n /∈ 〈A〉.

Moreover, since A is strongly n-bounded, we have x < n < y for any x ∈ 2A and y ∈ 4A, so
n ∈ 〈A〉 if and only if n ∈ 3A. The claim now follows from the fact that n = 3 ⌊n/3⌋+bn.

Definition 9. An RI-pair (R, I) is compatible for n (or, equivalently, R is compatible with I)
if the corresponding set A satisfies bn /∈ 3A(n). The removal degree of an inserting set I,
denoted r(I), is given by

r(I) = min{|R| : (R, I) is compatible}

and the removal degree of an integer α ≤ 0 is given by r(α) = r({α}).

Remark 10. Note that Proposition 8 does not imply that an RI-pair (R, I) compatible for n
corresponds to a set A that works for n, as A need not be strongly n-bounded in general.

Theorem 11 classifies the RI-pairs compatible for n in terms of I(n) and R(n) by examining
the different ways for three integers to sum to bn ∈ {0, 1, 2}.

Theorem 11. If A is a set and (R, I) is the corresponding RI-pair, then bn /∈ 3A(n) if and
only if for all α ∈ I(n), the following hold:

(i) bn − 2α ∈ R(n);

(ii) (bn − α)/2 ∈ R(n) if α ≡ bn (mod 2);

(iii) bn − α− β ∈ R(n) for all β ∈ I(n) with β 6= α; and

(iv) y ∈ R(n) or bn − α− y ∈ R(n) for all y satisfying 1 ≤ y < bn − α− y.

Proof. If any of (i)-(iv) is violated for some α ∈ I(n), then it is easy to check that bn ∈ 3A(n).
Conversely, suppose bn ∈ 3A(n), meaning α + y + z = bn for some α, y, z ∈ 3A(n) with
α ≤ y ≤ z. Since bn ∈ {0, 1, 2}, we must have α ≤ 0 and thus α ∈ I(n). Let S = {α, y, z}. If
every element of S is nonpositive, then α = y = z = bn = 0 so (i) fails to hold and we are
done. As such, at most 2 elements of S are nonpositive, so z > 0. Similarly, if |S| = 1, then
α = y = z = bn = 0 so (i) fails to hold and we are done. This leaves four distinct cases:
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• |S| = 2 and y ≤ 0, in which case y = α and (i) fails to hold;

• |S| = 2 and y > 0, in which case y = z and (ii) fails to hold;

• |S| = 3 and y ≤ 0, in which case α 6= y and (iii) fails to hold; or

• |S| = 3 and y > 0, in which case y 6= z and (iv) fails to hold.

This completes the proof.

Remark 12. Given an inserting set I, Theorem 11 provides a systematic way to construct
a removing set R such that the set A corresponding to (R, I) satisfies bn /∈ 3A(n). Most
applications of Theorem 11 will involve starting with a set R = ∅ and systematically putting
elements into R; see Example 20. Moreover, Theorem 11 yields a better-than-brute-force
method of computing hn,dn−k for large n; see Algorithm 19.

Lemma 13. We have

r(α) = 1 +

⌈

bn − α− 1

2

⌉

for any integer α ≤ 0.

Proof. Fix α ≤ 0, let I = {α}, and suppose R is a removing set that is minimal among
all removing sets compatible with I. We will apply Theorem 11, noting that for fixed α,
parts (i)-(iv) each require distinct elements to lie in R(n). Theorem 11(i) requires 1 element
to lie in R, and Theorem 11(iv) forces ⌊(bn − α − 1)/2⌋ additional elements to lie in R.
Since |I| = 1, Theorem 11(iii) is vacuously satisfied. This leaves Theorem 11(ii), which only
requires an additional element to lie in R if α ≡ bn (mod 2). This completes the proof.

Lemma 14. If A ⊂ Z≥1 corresponds to an RI-pair (R, I) that is compatible for n, then

|A| ≤ dn + 1− r(m),

where m = min I(n).

Proof. Let m = min I(n), and apply Theorem 11 to α = m. Following the proof of Lemma 13,
Theorem 11(i), (ii), and (iv) require r(m) elements to lie in R, and Theorem 11(iii) requires
R to contain an additional |I| − 1 elements. We conclude

|A| = dn + |I| − |R| ≤ dn + |I| − r(m)− |I|+ 1 = dn + 1− r(m),

as desired.

Theorem 15. Fix k ∈ Z≥0, and suppose A ⊂ Z≥1 corresponds to an RI-pair (R, I) that is
compatible for n. If |A| ≥ dn − k, then

I(n) ⊂ {pn(k), pn(k) + 1, . . . ,−1, 0}.
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Proof. Let m = min I(n). By Lemma 14, we have

dn − k ≤ |A| ≤ dn + 1− r(m),

meaning k ≥ r(m)− 1. Applying Lemma 13, we obtain

k ≥ 1 +

⌈

bn −m− 1

2

⌉

− 1 ≥
bn −m− 1

2

which can then be rearranged to yield m ≥ bn − 2k − 1 = pn(k).

Theorem 16. If n > 24k + 12 − 8bn, then every set A with |A| = dn − k that works for n
is strongly n-bounded.

Proof. Fix a set A with |A| = dn − k that works for n. Theorem 15 implies

minA− pn(k) ≥
⌊n

3

⌋

=
n− bn

3
=

1
4
n− bn

3
+

n

4
>

6k + 3− 3bn
3

+
n

4
= 2k + 1− bn +

n

4

meaning A is strongly n-bounded.

4 Proof of Theorem 1

We now have enough machinery to prove Theorem 1 and Corollary 2.

Proof of Theorem 1. Fix n,m ∈ Z satisfying n ≡ m (mod 3) and n ≥ m > 24k + 12− 8bn.
Let Sk denote the set of k-subsets of {dm + 1, dm + 2, . . . , dn}. We will prove the claim
combinatorially by constructing a bijection between

A := {A : A works for n and |A| = dn − k}

and

B :=
k
⋃

l=0

(

{A : A works for m and |A| = dm − l} × Sk−l

)

.

Fix A ∈ A, and let (R, I) denote the corresponding RI-pair. Write R = R1 ∪R2 with

(R1)(n) = {α ∈ R(n) : 1 ≤ α ≤ dm} and

(R2)(n) = {α ∈ R(n) : dm + 1 ≤ α ≤ dn},

and define f : A → B by

f(A) = (ϕm(R1, I), (R2)(n)).
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We first show f is well-defined. Let l = |R1| − |I|. It is clear that (R2)(n) ∈ Sk−l,
and (R1, I) is an RI-pair for m, so it remains to show that (R1, I) is compatible for m.
By Theorem 16, A is strongly n-bounded, so Theorem 15 implies min I(n) ≥ pn(k) = pm(k).
The key observation is that the criteria in Theorem 11(i)-(iv) only involve I(n) and R(n),
so tracing through each part, the fact that (R, I) is compatible for n implies (R1, I) is
compatible for m. Hence, f is well-defined.

To prove f is a bijection, we observe that basic set-theoretic arguments verify the map

((R1, I), R2) 7→ (R1 ∪R2, I),

is the inverse function of f , thereby completing the proof.

Proof of Corollary 2. Fix k ≥ 0 and b ∈ {0, 1, 2}, and let

m = min{x > 24k + 12− 8b : x ≡ b (mod 3)}.

For any n ≥ m satisfying n ≡ b (mod 3), we obtain the expression

hn,dn−k = hm,dm−k

(

dn − dm
0

)

+ hm,dm−k+1

(

dn − dm
1

)

+ · · ·+ hm,dm

(

dn − dm
k

)

(2)

from Theorem 1, wherein each binomial coefficient is a polynomial in dn of degree at most k.
Since dn is a quasilinear function of n with period 6, we conclude hn,dn−k is a quasipolynomial
in n of degree k and period 6.

It remains to verify the leading coefficient of hn,dn−k has the desired form. The highest
degree term in (2) is

hm,dm

(

dn − dm
k

)

= hm,dm

(dn − dm) · (dn − dm − 1) · · · (dn − dm − k)

k!
.

Combined with the fact that dn has constant leading coefficient 1/6, we obtain the leading
coefficient hm,dm/k!6

k, and the claim now follows from examination of Figure 2.

Example 17. For fixed k ≥ 1, the proof of Corollary 2 provides a slightly optimized method
of computing the eventual quasipolynomial form of hn,dn−k. For example, let k = 3 and b = 0.
In this case, m = 87, and consulting A319608 we see

h87,d87−0 = 2, h87,d87−1 = 31, h87,d87−2 = 228, and h87,d87−3 = 1055.

From here, we obtain

hn,dn−3 = 2 ·

(

dn − d87
3

)

+ 31 ·

(

dn − d87
2

)

+ 228 ·

(

dn − d87
1

)

+ 1055 ·

(

dn − d87
0

)
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for all n ≡ 0 (mod 3) such that n ≥ 87. Expanding binomial coefficients yields

hn,dn−3 =
1

6
(2d3n + 3d2n + 19dn − 12),

and substituting

dn =

⌊

n− 1

2

⌋

−
⌊n

3

⌋

=

{

1
6
n− 1, if n ≡ 0 (mod 6);

1
6
n− 1

2
, if n ≡ 3 (mod 6).

into the expression for hn,dn−3, we arrive at

hn,dn−3 =

{

1
648

(n3 − 9n2 + 342n− 3240), if n ≡ 0 (mod 6), n ≥ 87;
1

648
(n3 + 315n− 2268), if n ≡ 3 (mod 6), n ≥ 90.

Repeating this process for b = 1, 2 yields the function given in Figure 2.

Remark 18. It is interesting to note that the eventual quasipolynomial form of hn,dn−3 would
not be impossible to compute using the “standard” method of finding polynomial coefficients.
Indeed, the values of hn,i have only been successfully computed for n ≤ 90, and since the
quasipolynomial behavior of hn,dn−3 only holds for n ≥ 87, the standard methods of finding
the coefficients of a cubic require knowing h87,d87−3, h90,d90−3, . . ., most of which have yet to
be computed. The above method, on the other hand, only relies on h87,d87−i for 0 ≤ i ≤ 3.

Algorithm 19. The theory developed in Section 3 yields an algorithm to compute hm,dm−k

for m > 24k+12− 8bm. In particular, for each possible inserting set I ⊂ {pm(k), . . . ,−1, 0}
for m, Theorem 11 determines precisely which removal sets R are compatible with I. Ex-
ample 20 demonstrates the main idea of the algorithm.

The authors used a C++ implementation, now posted on Github at the following URL,

https://github.com/calvinleng97/rnsg-qp-coeffs ,

to compute the quasipolynomial functions in Corollary 2 up to k = 7, the last of which took
6 hours to complete.

Example 20. Suppose n = 60, and consider the insertion set I = {17, 18}. Theorem 11
provides a systematic method of constructing all removal sets R that are compatible with I.
Since min I > n/4, the resulting set will be strongly n-bounded. This ensures the resulting
sets A corresponding to (R, I) will work for n.

We check every item of Theorem 11 with every element α ∈ I(n) to construct R(n). We
first compute the offset form

I(n) = {−3,−2}

and initialize R(n) = ∅. Note that bn = 0 since 60 ≡ 0 (mod 3). We begin by applying
Theorem 11(i)-(iii) to each α ∈ I(n), since Theorem 11(iv) requires additional decisions.
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For α = −2, we see that 1, 4, 5 ∈ R(n), and for α = −3, we must have R(n) = {1, 4, 5, 6}.
Lastly, we deal with Theorem 11(iv), which is vacuously satisfied for α = −2, and for α = −3
implies either 1 ∈ R(n) or 2 ∈ R(n), the first of which is already required from above. As such,
R(n) = {1, 4, 5, 6} yields a removal R = {21, 24, 25, 26} that is compatible with I. Moreover,
any removal set R′ ⊃ R is also compatible with I.

5 Future work

Although the quasipolynomials in Corollary 2 only hold for n sufficiently large, the machinery
developed in Section 3 describes the sets counted by hn,dn−k and the relations between them
as n varies. For n just below the start of quasipolynomial behavior, computations indicate
the sets counted by hn,dn−k are simply those predicted by Theorem 11 that still minimally
generate an additive subsemigroup of Z≥0. A better understanding of this phenomenon could
allow Algorithm 19 to be extended to all n ≥ 1, rather than just sufficiently large n.

Problem 21. Characterize the sets counted by hn,dn−k for all n in terms of those counted
by hn,dn−k for n sufficiently large.

Algorithm 19 has the potential to be parallelized (with different threads handling different
insertion sets), but the current implementation does not take advantage of this fact. Doing
so would likely extend the current limits of computation, which would be especially useful if
Problem 21 has a positive answer.

Problem 22. Write a parallelized implementation of Algorithm 19.

References

[1] J. Backelin, On the number of semigroups of natural numbers, Math. Scand. 66 (1990),
197–215.

[2] J. De Loera, C. O’Neill, and D. Wilbourne, Random numerical semigroups and a simpli-
cial complex of irreducible semigroups, preprint, 2017, https://arxiv.org/abs/1710.
00979.

[3] J. Rosales and P. Garćıa-Sánchez, Numerical Semigroups, Developments in Mathematics,
Vol. 20, Springer-Verlag, 2009.
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