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Abstract

We study the uniform distribution of the polynomial sequence λ(P ) = (⌊P (k)⌋)k≥1

modulo integers, where P (x) is a polynomial with real coefficients. In the nonlinear
case, we show that λ(P ) is uniformly distributed in Z if and only if P (x) has at least
one irrational coefficient other than the constant term. In the case of even degree, we
prove a stronger result: λ(P ) intersects every congruence class modulo every integer if
and only if P (x) has at least one irrational coefficient other than the constant term.

1 Introduction

A sequence (rk)k≥1 of real numbers is said to be u.d. mod 1 if for all 0 ≤ a < b < 1 we have

lim
N→∞

1

N
#{k ∈ {1, . . . , N} : a ≤ {rk} ≤ b} = b− a,

where {rk} denotes the fractional part of rk. An integer sequence (ak)k≥1 is said to be u.d.
mod an integer m ≥ 2 if, for every integer i, one has

lim
N→∞

1

N
# {k ∈ {1, . . . , N} : ak ≡ i (mod m)} =

1

m
. (1)
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A sequence is called u.d. in Z if it is u.d. mod m for all m ≥ 2 (or equivalently for all m
large enough). Given a sequence (rk)k≥1 of real numbers, if (rk/m)k≥1 is u.d. mod 1 for
every m ≥ 2, then (⌊rk⌋)k≥1 is u.d. in Z [5, Chap. 5]. Therefore, one can derive the following
results on u.d. sequences in Z using existing results on u.d. sequences mod 1.

Example 1. If P (x) =
∑n

i=0
aix

i is a real polynomial with at least one irrational coefficient
other than a0, then (⌊P (k)⌋)k≥1 is u.d. in Z; see [5, Chap. 5]. This result follows from
the generalization of Weyl’s distribution theorem which was proved by Weyl himself via his
differencing method. Weyl’s result was a generalization of Hardy and Littlewood’s result
on monomials [4]. We prove the converse of this statement for nonlinear polynomials in
Theorems 10 and 11.

Example 2. If f(x) = βxα, where α ∈ (1,∞)\N and β ∈ (0, 1], then (⌊f(k)⌋)k≥1 is u.d. in
Z. This follows from Weyl’s criterion together with van der Corput inequalities [5, Chap. 1].

Example 3. If P (x) = ±x + c, c ∈ R, then (⌊P (k)⌋)k≥1 is clearly u.d. in Z. Moreover, if
P (x)− P (0) ∈ Z[x] and (⌊P (k)⌋)k≥1 is u.d. in Z, then P (x) = ±x+ c for some c ∈ R [10].

Example 4. If f(x) = βαx and β > 0, then the sequence (⌊f(k)⌋)k≥1 is u.d. in Z for almost
all α > 1. This follows from Koksma’s theorem [8].

Niven [10] showed that, given a nonlinear polynomial P (x) ∈ Z[x], there exist infinitely
many integers m such that (P (k))k≥1 is not u.d. mod m. In this paper, our first goal is to
extend this result to polynomials with rational coefficients in the following theorem:

Theorem 5. Let P (x) be a polynomial with real coefficients. The sequence (⌊P (k)⌋)k≥1 is
u.d. in Z if and only if P (x) has an irrational coefficient other than the constant term or
P (x) = x/l + P (0) for a nonzero integer l.

In the linear case, Theorem 5 follows from Theorem 9, and in the nonlinear case, it follows
from Theorem 10 or Theorem 11.

By adding the least integer operation to the arithmetic operations involved in defining
polynomials, we obtain generalized polynomials. For example, f(x) = ⌊⌊a1x

2 + a2⌋x⌋ +
⌊a3x + a4⌋x

2 is a generalized polynomial. Hal̊and [3] studied uniform distribution of gener-
alized polynomials and showed that, under some conditions relating to the independence of
coefficients of f(x) over the rationals, the sequence (f(k))k≥1 is u.d. mod 1. The second goal
of this article is to study the range of the simplest generalized polynomials modulo integers,
namely the range of ⌊P (x)⌋ modulo integers, where P (x) is a real polynomial.

Definition 6. We say a polynomial P (x) ∈ R[x] is complete modulo m if, for every integer
n, the equation ⌊P (x)⌋ ≡ n (mod m) has a solution x ∈ Z. We say P (x) is complete in Z if
it is complete modulo every integer m (or equivalently modulo all m large enough).

It follows from Example 1 that, if P (x) has at least one irrational coefficient other than
the constant term, then P (x) is complete in Z. The converse is not true in degree 1 (compare
Theorems 9 and 12). However, we will show in the following theorem that, at least in the
even degree case, the converse is true.
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Theorem 7. Let P (x) be an even-degree polynomial with real coefficients. Then the following
statements are equivalent:

i. P (x) is complete modulo all primes large enough.

ii. P (x) has an irrational coefficients other than the constant term.

iii. The sequence (⌊P (k)⌋)k≥1 is u.d. in Z.

iv. P (x) is complete modulo all integers.

We prove Theorem 7 in Section 3. Finally, in Section 4, we consider polynomials of the
form P (x) = axn + c, where n > 1 and a, c ∈ R. In Theorem 16, we show that P (x) is
complete modulo all primes large enough if and only if a /∈ Q.

2 u.d. polynomial sequences

In this section, we determine all polynomials P (x) ∈ R[x] for which the sequence (⌊P (k)⌋)k≥1

is u.d. in Z. Niven [10, Thm. 3.1] showed that the sequence (⌊αk⌋)k≥1 is u.d. in Z if and
only if α is irrational or α = 1/l for some nonzero integer l. By Example 1, the sequence
(⌊αk + β⌋)k≥1 is u.d. in Z for every irrational number α. We will prove in Theorem 9 that
if the sequence (⌊αk + β⌋)k≥1 is u.d. in Z, then either α is irrational or α = 1/l for some
nonzero integer l. First, we need a lemma.

Lemma 8. Let a, b ∈ Z such that gcd(a, b) = 1 and b > 0. Let β ∈ R. Then the sequence
(⌊ak/b+ β⌋)k≥1 is u.d. mod m if and only if gcd(a,m) = 1.

Proof. First, suppose that the sequence (⌊ak/b + β⌋)k≥1 is u.d. mod m. Suppose that d =
gcd(a,m) > 1, and we derive a contradiction. Since we have assumed that (⌊ak/b + β⌋)k≥1

is u.d. mod m, it follows that the sequence (⌊ak/b + β⌋)k≥1 is u.d. mod d [10, Thm. 5.1].
One notes that the sequence (⌊ak/b+ β⌋)k≥1 modulo d is periodic with period b. Therefore,
if the number of solutions of ⌊ak/b+ β⌋ ≡ 0 (mod d) with 1 ≤ k ≤ b is given by t, then the
number of solutions of ⌊ak/b+ β⌋ ≡ 0 (mod d) with 1 ≤ k ≤ sb is given by st, and so

lim
s→∞

1

sb
# {k ∈ {1, . . . , sb} : ⌊ak/b+ β⌋ ≡ 0 (mod d)} = lim

s→∞

st

sb
=

t

b
.

On the other hand, this limit must equal 1/d by the definition of u.d. mod d (see equation
(1)). It follows that t/b = 1/d, and so d | b. Since d | a and gcd(a, b) = 1, we have a
contradiction.

For the converse, suppose that gcd(a,m) = 1. One notes that the sequence (⌊ak/b+β⌋)k≥1

is periodic modulo m with period bm. For each 0 ≤ i ≤ m − 1, let Ti denote the subset of
elements k ∈ {1, . . . , bm} such that ⌊ak/b + β⌋ ≡ i (mod m). We show that |Ti| = b for all
0 ≤ i ≤ m− 1. Fix 0 ≤ i ≤ m− 1, and let Ti = {t1, . . . , tr}. For each 1 ≤ j ≤ r, we have

⌊a(tj + b)/b+ β⌋ ≡ a+ ⌊atj/b+ β⌋ ≡ a+ i (mod m).

3



In other words, the map tj 7→ tj + b is a one-to-one map from Ti to Ta+i, where tj + b is
computed modulo bm and a+ i is computed modulo m. It follows that |Ta+i| ≥ |Ti|, and so
|Tqa+i| ≥ |Ti| for all q ≥ 0, where qa + i is computed modulo bm. Since gcd(a,m) = 1, we
conclude that |Ti′ | ≥ |Ti| for all i, i

′ = 0, . . . ,m− 1, and so |Ti| = b for all i = 0, . . . ,m− 1.
Thus, for N = Qbm + R, 0 ≤ R < bm, the number of solutions of ⌊ak/b + β⌋ ≡ i (mod
m) is between Qb and (Q+ 1)b, which is sufficient to verify the definition of u.d. mod m in
(1).

Theorem 9. Let α, β ∈ R. Then the sequence (⌊αk+ β⌋)k≥1 is u.d. in Z if and only if α is
irrational or α = 1/l for some nonzero integer l.

Proof. If α is irrational, then the claim follows from Example 1 [10, Thm. 3.2]. If α = 1/l
for some nonzero integer l, then the sequence (⌊k/l + β⌋)k≥1 is u.d. mod m for every m by
Lemma 8. Thus, suppose that α = a/b for integers a, b with gcd(a, b) = 1, |a| > 1, and
b > 0. It follows from Lemma 8 that the sequence (⌊ak/b+β⌋)k≥1 is not u.d. mod |a|, hence
it is not u.d. in Z.

Next, we discuss nonlinear polynomials. Niven [10, Thm. 4.1] proved that if P (x) is a
nonlinear polynomial with integer coefficients, then there exist infinitely many integers m
such that (P (k))k≥1 is not u.d. mod m. We prove generalizations of this statement in the
next two theorems.

Theorem 10. Let P (x) be a nonlinear polynomial with real coefficients. If P (x) has no
irrational coefficients other than the constant term, then there exists infinitely many mutually
coprime integers m such that (⌊P (k)⌋)k≥1 is not u.d. mod m.

Proof. Let P (x) =
∑n

i=0
aix

i such that ai = ri/si ∈ Q with gcd(ri, si) = 1 for all 1 ≤ i ≤ n.
Let N be the least common multiple of si, 1 ≤ i ≤ n, and let Q(x) = N(P (x)−P (0)) ∈ Z[x].
Choose an integer a such that Q′(a) has an arbitrarily large prime factor p > 6N (this can
be done, since Q′(x) is a nonconstant polynomial). We define f(x) = Q(x) − Q(a). Then
f(a) ≡ 0 (mod p2) and f ′(a) ≡ 0 (mod p). It follows from Hensel’s Lemma [2, Thm. 3.4.1]
that f(a + kp) ≡ f(a) ≡ 0 (mod p2) for all integer values of k. In particular, the equation
Q(x) ≡ Q(a) (mod p2) has at least p solutions for x ∈ {1, . . . , p2}. It follows that, given an
integer s ≥ 1, we have |T | ≥ sp, where T denotes the set of solutions x ∈ {1, . . . , sp2} of
Q(x) ≡ Q(a) (mod p2).

We show that the sequence (⌊P (k)⌋)k≥1 is not u.d. modm = p2. On the contrary, suppose
that (⌊P (k)⌋)k≥1 is u.d. mod p2. It follows from the definition that for each 0 ≤ t < p2,

lim
s→∞

1

sp2
|St| =

1

p2
,

where St is the set of x ∈ {1, . . . , sp2} such that ⌊P (x)⌋ ≡ t (mod p2). In particular, for s
large enough, one has

1

sp2
|St| ≤

2

p2
(2)
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for all 0 ≤ t < p2. If x ∈ T , then Q(x) = Q(a) + α(x) · p2 for some α(x) ∈ Z. It follows that

⌊P (x)− P (0)⌋ =

⌊

Q(x)

N

⌋

=

⌊

Q(a) + α(x) · p2

N

⌋

.

We note that ⌊(Q(a) + (β + N)p2)/N⌋ ≡ ⌊(Q(a) + βp2)/N⌋ (mod p2) for every β ∈ Z,
hence there are at most N congruence classes modulo p2 among the values ⌊P (x) − P (0)⌋.
Since |T | ≥ sp > 6sN , it follows that there exists an integer r such that the equation
⌊P (x) − P (0)⌋ ≡ r (mod p2) has more than 6s solutions in the set {1, . . . , sp2}. Let S be
the set of x ∈ T such that ⌊P (x)− P (0)⌋ ≡ r (mod p2). In particular |S| > 6s.

For every x ∈ Z, we have ⌊P (x)⌋ = ⌊P (x)− P (0)⌋+ ⌊P (0)⌋+ u for some u ∈ {−1, 0, 1},
and so S ⊆ St−1

∪ St0 ∪ St1 , where tu = r + ⌊P (0)⌋+ u (computed modulo p2). Therefore,

1

sp2
|St−1

|+
1

sp2
|St0|+

1

sp2
|St1| ≥

1

sp2
∣

∣St−1
∪ St0 ∪ St1

∣

∣ ≥
1

sp2
|S| >

6

p2
,

which contradicts the inequality (2) as s → ∞.

We now prove a statement that is stronger than the statement of Theorem 10.

Theorem 11. Let P (x) be a nonlinear polynomial with real coefficients. If the sequence
(⌊P (k)⌋)k≥1 is u.d. mod all primes large enough, then P (x) has at least one irrational coef-
ficient other than the constant term.

Proof. Suppose on the contrary that P (x) =
∑n

i=0
aix

i such that ai = ri/si ∈ Q with
gcd(ri, si) = 1 for all 1 ≤ i ≤ n. Let N be the least common multiple of si, 1 ≤ i ≤ n. Since
the sequence (⌊P (k)⌋)k≥1 is assumed to be u.d. mod all primes large enough, the sequence
(N⌊P (k)⌋)k≥1 is u.d. mod all primes p large enough. The value N⌊P (k)⌋ is periodic modulo p
with period Np. Therefore, it follows from the uniform distribution of (N⌊P (k)⌋)k≥1 modulo
p that, with U = {0, . . . , p− 1} × {0, . . . , N − 1}, we have

#{(t, j) ∈ U : N⌊P (Nt+ j)⌋ ≡ i (mod p)} = N, (3)

for every integer i. Let Pj(x) = N⌊P (Nx + j)⌋ ∈ Z[x] for 0 ≤ j < N . Choose M large
enough so that the polynomials fj(x) = Pj(x) + M , 0 ≤ j < N , are all irreducible over
Q[x] (the existence of M follows from Hilbert’s irreducibility theorem [6, Chap. 9]). Let
f(x) = f0(x) · · · fN−1(x) and

R =
∏

0≤i<j<N

Res(fi, fj) ∈ Z,

where Res(fi, fj) is the resultant of polynomials fi and fj. Since fi and fj as irreducible
polynomials in Q[x] have no common zeros for all 0 ≤ i < j < N , we must have Res(fi, fj) 6=
0, and so R 6= 0. Therefore, for any prime p > p0, Res(fi, fj) 6≡ 0 (mod p), where p0 is the
greatest prime factor of R. In other words, for any prime p > p0, the polynomials fj,
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0 ≤ j < N , have no common zeros modulo p. By the Chebotarev density theorem [1, 7],
there exist infinitely many primes p such that f(x) splits completely into nN linear factors
modulo p. It follows that there exists arbitrarily large p > p0 such that f(x) has nN distinct
zeros modulo p. Therefore, the number of solutions of N⌊P (Nt + j)⌋ ≡ −M (mod p) is at
least nN > N . This is in contradiction with equation (3), and the claim follows.

3 Complete even-degree polynomials

Let P (x) be a polynomial such that P (x) − P (0) ∈ Q[x]. Since the sequence (⌊P (k)⌋)k≥1

modulo any integer m is periodic, it follows from Definition 6 that the polynomial P (x) is
complete modulo m if and only if

lim
N→∞

1

N
# {k ∈ {1, . . . , N} : ⌊P (k)⌋ ≡ i (mod m)} > 0, (4)

for every integer i. Condition (4) is weaker than condition (1). Therefore, if (⌊P (k)⌋)k≥1 is
u.d. modm, then P (x) is complete modulom. The converse is not true for linear polynomials
as shown by the following theorem in comparison with Theorem 9.

Theorem 12. The linear polynomial P (x) = αx + β is complete in Z if and only if either
|α| ∈ (0, 1] or α is irrational.

Proof. If α is irrational, then the claim follows from Theorem 9. Thus, suppose α = a/b
where a, b are coprime integers, a 6= 0, and b > 0. Suppose that P (x) is complete in Z, and
so the set {⌊αk + β⌋ : k ≥ 1} contains the numbers 0, . . . , |a| − 1 modulo |a|. Let k = bq + l
where 0 ≤ l < b. Then

⌊a

b
(bq + l) + β

⌋

= aq +

⌊

al

b
+ β

⌋

.

Therefore, the b numbers ⌊al/b + β⌋, 0 ≤ l < b, must contain the numbers 0, . . . , |a| − 1
modulo |a|. In particular b ≥ |a| and so α ∈ [−1, 0) ∪ (0, 1].

For the converse, suppose b ≥ |a|. Then the numbers al/b + β, 0 ≤ l ≤ b are apart by
|a/b| ≤ 1, and they stretch from β to a + β. Therefore, the numbers ⌊al/b + β⌋, 0 ≤ l < b,
include |a| consecutive integers, say s, . . . , s + |a| − 1. Given any i, j ∈ Z, we show that
there exists an integer x such that ⌊ax/b + β⌋ ≡ i (mod j). We choose t ∈ Z such that
|tj + i − s| > |a| and tj + i − s has the same sign as a. Then, write tj + i − s = aq + u,
where q ≥ 1 and u ∈ {0, . . . , |a| − 1}. Since there exists an integer 0 ≤ l < b such that
⌊al/b+ β⌋ = s+ u, with x = bq + l, we have ⌊ax/b+ β⌋ = aq + ⌊al/b+ β⌋ ≡ aq + s+ u ≡ i
(mod j). It follows that P (x) is complete in Z, and the proof is completed.

To prove Theorem 7, we need the following two lemmas.

Lemma 13. Let R(x) be a polynomial with integer coefficients and no real zeros. Then there
exist infinitely many primes p such that R(x) has no zeros modulo p.
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Proof. Suppose on the contrary that R(x) has a zero modulo all primes large enough. It
follows from the Chebotarev density theorem [1, 7] that every element of the Galois group of
the splitting field of R(x) has a fixed point in the action on the zeros. In particular, complex
conjugation must have a fixed point on the set of the zeros of R(x), which contradicts our
assumption that R(x) has no real zeros.

Lemma 14. Let Q(x) be a polynomial of even degree with integer coefficients, and let
A0, . . . , AN−1 ∈ Z. Then, there exist an arbitrarily large prime p and an integer m such
that Q(x) + Ai 6≡ m (mod p) for all x ∈ Z and i ∈ {0, . . . , N − 1}.

Proof. Choose M ∈ Z so that Q(x) +M + Ai has no real zeros for all 0 ≤ i < N . We let

R(x) = (Q(x) +M + A0) · · · (Q(x) +M + AN−1).

Then R(x) has no real zeros. By Lemma 13, there exists an arbitrarily large prime p such
that R(x) 6≡ 0 (mod p) for all x ∈ Z. It follows that Q(x) + Ai 6= −M for all x ∈ Z and
i ∈ {0, . . . , N − 1}.

We are now ready to prove Theorem 7.

Proof. Let P (x) =
∑n

i=0
aix

i such that ai = ri/si ∈ Q with gcd(ri, si) = 1 for all 1 ≤ i ≤ n.
Let N be the least common multiple of si, 1 ≤ i ≤ n. One has

⌊P (Nk + j)⌋ = ⌊P (j)⌋+
n

∑

i=1

ri
si
((Nk + j)i − ji).

And so

N⌊P (Nk + j)⌋ = N⌊P (j)⌋+N
n

∑

i=1

ri
si
((Nk + j)i − ji).

= N⌊P (j)⌋ −
n

∑

i=1

ri
N

si
ji +Q(Nk + j)

= Aj +Q(Nk + j), (5)

where Q(x) = N(P (x) − P (0)) ∈ Z[x] and Aj ∈ Z depending on j and P (x), 0 ≤ j < N .
By Lemma 14, there exist an arbitrarily large prime p > N and an integer m such that
Q(x) + Aj 6≡ m (mod p) for all x ∈ Z and j ∈ {0, . . . , N − 1}. We claim that P (x) is not
complete modulo p. On the contrary, suppose there exists an integer x such that ⌊P (x)⌋ ≡ K
(mod p), where K is such that NK ≡ m (mod p). But then, writing x = Nk + j with
0 ≤ j < N , we have Q(Nk + j) + Aj ≡ N⌊P (Nk + j)⌋ ≡ NK ≡ m (mod p). This is a
contradiction, and so (i) implies (ii). The implication (ii) ⇒ (iii) was discussed in Example
1. The implications (iii) ⇒ (iv) and (iv) ⇒ (i) are straightforward, and the proof of Theorem
7 is completed.
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4 Complete monomials

Let p be a prime and n be a positive integer that divides p − 1. An nth power character
modulo p is any homomorphism χ : Z∗

p → C that is onto the group of nth roots of unity.
By a theorem of A. Brauer [11], given n, l ≥ 1, there exists a constant z(n, l) such that for
every prime p > z(n, l) and any nth power character χ modulo p, there exists an integer t
such that

χ(t) = χ(t+ 1) = · · · = χ(t+ l − 1). (6)

A number x is an nth power residue modulo p, if there exists y such that x ≡ yn (mod
p). If χ is an nth power character modulo p and x is an nth power residue modulo p, then
χ(x) = χ(yn) = (χ(y))n = 1. Therefore, to show that a number z is not an nth power residue
modulo p, it is sufficient to find an nth power character modulo p such that χ(z) 6= 1. We
use this fact in the proof of the following lemma.

Lemma 15. For any positive integer l, there exist infinitely many primes p such that all
of the numbers t, t + 1, . . . , t + l − 1 are nth power non-residues modulo p for some positive
integer t.

Proof. We can assume, without loss of generality, that n is prime and l ≥ 4. By a result of
Mills [9, Thm. 3], for every m ≥ 1, there exist infinitely many primes p with an nth power
character χ modulo p such that

χ(2) 6= 1, ∀2 ≤ i ≤ m : χ(pi) = 1,

where pi is the ith prime. Let t be defined by (6). We can choose t > 1 by adding multiples
of p if necessary. Choose an integer m large enough so that pm > t + l − 1. Choose
i ∈ {0, . . . , l − 1} such that t+ i− 1 = 2(2d+ 1) for some integer d. Then

χ(2(2d+ 1)) = χ(2)χ(2d+ 1) 6= 1.

It then follows from equation (6) that χ(t) = χ(t + 1) = · · · = χ(t + l − 1) 6= 1 i.e., none of
the values t, t+ 1, . . . , t+ l − 1, are nth power residues modulo p.

Theorem 16. Let P (x) = axn + c, where a ∈ Q and c ∈ R. If n > 1, then P (x) is not
complete modulo all primes large enough, hence (⌊P (k)⌋)k≥1 is not u.d. in Z.

Proof. Let a = M/N , where M and N are integers and M > 0. Let Q(x) = Mxn and
A0, . . . , AN−1 be given by equation (5). On the contrary, suppose P (x) is complete modulo
all primes p large enough. By Lemma 15, for l = 1 + maxi M

n−1Ai − mini M
n−1Ai, there

exists an arbitrarily large prime p > |MN | and an integer t such that t + j is not an nth
power residue modulo p for any 0 ≤ j < l.

Let K = t + maxi M
n−1Ai, and choose L such that Mn−1L ≡ K (mod p). Since P (x)

is complete modulo p, there exists an integer x such that N⌊P (x)⌋ ≡ L (mod p). Writing
x = Nk + j with 0 ≤ j < N , we have

Mn−1(Q(x) + Aj) ≡ Mn−1N⌊P (x)⌋ ≡ Mn−1L ≡ K (mod p).
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Since t ≤ K −Mn−1Aj < t+ l and K −Mn−1Aj ≡ Mn−1Q(x) ≡ (Mx)n (mod p) is an nth
power residue modulo p, we have a contradiction, and the claim follows.

Remark 17. In light of the proofs of Theorems 7 and 16, one can generalize Theorem 7 to
all nonlinear polynomials if the following statement is true: Given a nonlinear polynomial
P (x) with integer coefficients and a positive integer l, there exist an arbitrarily large prime
p and a positive integer k such that P (x) 6≡ k + i (mod p) for all i = 0, . . . , l − 1.
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