Journal of Integer Sequences, Vol. 22 (2019), Article 19.7.2

On Second-Order Linear Sequences of Composite Numbers

Dan Ismailescu
Department of Mathematics
Hofstra University
Hempstead, NY 11549 USA
dan.p.ismailescu@hofstra.edu
Adrienne Ko
Ethical Culture Fieldston School
Bronx, NY 10471 USA
19ako@ecfs.org
Celine Lee
Chinese International School
Hong Kong SAR
China
celinl@student.cis.edu.hk
Jae Yong Park
The Lawrenceville School
Lawrenceville, NJ 08648
USA
jpark19@lawrenceville.org

Abstract

We present a new proof of the following result of Somer: Let $(a, b) \in \mathbb{Z}^{2}$ and let $\left(x_{n}\right)_{n \geq 0}$ be the sequence defined by some initial values x_{0} and x_{1} and the second-order linear recurrence $$
x_{n+1}=a x_{n}+b x_{n-1}
$$ for $n \geq 1$. Suppose that $b \neq 0$ and $(a, b) \neq(2,-1),(-2,-1)$. Then there exist two relatively prime positive integers x_{0}, x_{1} such that $\left|x_{n}\right|$ is a composite integer for all $n \in \mathbb{N}$.

The above theorem extends a result of Graham, who solved the problem when $(a, b)=(1,1)$.

1 Introduction

We give a new proof of the following result of Somer:
Theorem 1. [12, 3] Let $(a, b) \in \mathbb{Z}^{2}$ and let $\left(x_{n}\right)_{n \geq 0}$ be the sequence defined by some initial values x_{0} and x_{1} and the second-order linear recurrence

$$
\begin{equation*}
x_{n+1}=a x_{n}+b x_{n-1} \tag{1}
\end{equation*}
$$

for $n \geq 1$. Suppose that $b \neq 0$ and $(a, b) \neq(2,-1),(-2,-1)$. Then there exist two relatively prime positive integers x_{0}, x_{1} such that $\left|x_{n}\right|$ is a composite integer for all $n \in \mathbb{N}$.

Throughout the paper we will use the following convention: a nonnegative integer n is said to be composite if $n \neq 0,1$, and n is not a prime number.

Graham [5] considered the problem above in the particular case $(a, b)=(1,1)$. He found two relatively prime positive integers x_{0} and x_{1} such that the sequence $x_{n+1}=x_{n}+x_{n-1}$, consists of composite numbers only. Graham's starting pair is

$$
\left(x_{0}, x_{1}\right)=(331635635998274737472200656430763,1510028911088401971189590305498785) .
$$

Graham's technique was successively refined by Knuth [6], Wilf [16], and Nicol [10], who all found smaller pairs $\left(x_{0}, x_{1}\right)$. The current record is due to Vsemirnov [15]:

$$
\begin{equation*}
\left(x_{0}, x_{1}\right)=(106276436867,35256392432) \tag{2}
\end{equation*}
$$

The above results are based on the fact that the Fibonacci sequence is a divisibility sequence, that is, $F_{n} \mid F_{m}$ whenever $n \mid m$, and on finding a finite covering system of congruences $r_{i}\left(\bmod m_{i}\right), 1 \leq i \leq t$, such that there exist distinct primes $p_{1}, p_{2}, \ldots p_{t}$, so that $p_{i} \mid F_{m_{i}}$ for all $i=1,2, \ldots, t$.

Somer's proof of Theorem 1 is relatively short since it relies on several results of Bilu, Hanrot and Voutier [1], Choi [2], and Parnami and Shorey [11].

A few years later, unaware of Somer's article, Dubickas, Novikas and Šiurys [3] published a new solution that, although somewhat lengthier, is essentially self-contained.

In this paper, we present another free-standing proof of this theorem that, while comparable to the one in [3], differs from it in several important ways.

We summarize our plan for proving Theorem 1 as follows.
In Section 2 we prove three easy lemmata, which will be useful later on. We believe that Lemma 2 is of independent interest. In Section 3 we study two simple cases: $(i) a=0$ and $(i i) a^{2}+4 b=0$. In this section we also show that the condition $(a, b) \neq(\pm 2,-1)$ is necessary. Section 4 deals with the case $|b| \geq 2$. Following [3], we choose $x_{1} \equiv 0(\bmod |b|)$, since then (1) implies that $x_{n} \equiv 0(\bmod |b|)$ for all $n \geq 2$. The main difficulty is to show that x_{0} and x_{1} can be chosen such that $x_{n} \neq-b, 0, b$ for every $n \geq 0$. In this case, Dubickas et al. present a mainly existential proof which relies on a series of six lemmata. In contrast, our proof is constructive, as we provide explicit expressions for x_{0} and x_{1} as polynomials in a and b.

In Section 5 we consider the case $|b|=1$. Dubickas, Novikas and Siurys prove that except for finitely many values of $|a|$, one can take x_{0} and x_{1} so that each x_{n} is divisible by one of five distinct appropriately chosen prime numbers. We prove that, with the exception of finitely many values of $|a|$, four primes suffice. The proof in the case $|b|=1$ relies on the divisibility properties of the Lucas sequence of the first kind $\left(u_{n}\right)_{n \geq 0}$, defined as

$$
\begin{equation*}
u_{0}=0, u_{1}=1 \quad \text { and } \quad u_{n+1}=a u_{n}+b u_{n-1}, \text { for } n \geq 1 . \tag{3}
\end{equation*}
$$

Finally, in Section 6 we prove that if $|a| \geq 3$ and $b=-1$, then u_{n} is composite for all $n \geq 3$. The interesting fact is that in this case it seems likely that there is no finite set of prime numbers $p_{1}, p_{2}, \ldots p_{t}$ such that each u_{n} is divisible by some $p_{i}, i=1,2, \ldots t$.

2 Three useful lemmata

Lemma 2. Consider the sequence $\left(x_{n}\right)_{n \geq 0}$ given by (1). Then

$$
\begin{equation*}
x_{n+1}^{2}-a x_{n} x_{n+1}-b x_{n}^{2}=(-b)^{n}\left(x_{1}^{2}-a x_{0} x_{1}-b x_{0}^{2}\right) . \tag{4}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
& {\left[\begin{array}{cc}
x_{n+2} & x_{n+1} \\
x_{n+1} & x_{n}
\end{array}\right]=\left[\begin{array}{cc}
a x_{n+1}+b x_{n} & a x_{n}+b x_{n-1} \\
x_{n+1} & x_{n}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
1 & 0
\end{array}\right] \cdot\left[\begin{array}{cc}
x_{n+1} & x_{n} \\
x_{n} & x_{n-1}
\end{array}\right]=} \\
&=\left[\begin{array}{ll}
a & b \\
1 & 0
\end{array}\right] \cdot\left[\begin{array}{ll}
a & b \\
1 & 0
\end{array}\right] \cdot\left[\begin{array}{cc}
x_{n} & x_{n-1} \\
x_{n-1} & x_{n-2}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
1 & 0
\end{array}\right]^{2} \cdot\left[\begin{array}{cc}
x_{n} & x_{n-1} \\
x_{n-1} & x_{n-2}
\end{array}\right]=\cdots=\left[\begin{array}{ll}
a & b \\
1 & 0
\end{array}\right]^{n} \cdot\left[\begin{array}{ll}
x_{2} & x_{1} \\
x_{1} & x_{0}
\end{array}\right] .
\end{aligned}
$$

Taking determinants on both sides we obtain
$\operatorname{det}\left[\begin{array}{cc}x_{n+2} & x_{n+1} \\ x_{n+1} & x_{n}\end{array}\right]=\operatorname{det}\left[\begin{array}{ll}a & b \\ 1 & 0\end{array}\right]^{n} \cdot \operatorname{det}\left[\begin{array}{ll}x_{2} & x_{1} \\ x_{1} & x_{0}\end{array}\right] \Longrightarrow x_{n+2} \cdot x_{n}-x_{n+1}^{2}=(-b)^{n} \cdot\left(x_{2} x_{0}-x_{1}^{2}\right)$
$\Longrightarrow\left(a x_{n+1}+b x_{n}\right) x_{n}-x_{n+1}^{2}=(-b)^{n} \cdot\left(\left(a x_{1}+b x_{0}\right) x_{0}-x_{1}^{2}\right)$, which after expanding
becomes $x_{n+1}^{2}-a x_{n} x_{n+1}-b x_{n}^{2}=(-b)^{n}\left(x_{1}^{2}-a x_{0} x_{1}-b x_{0}^{2}\right)$, as claimed.

Lemma 3. Consider the sequence $\left(x_{n}\right)_{n \geq 0}$ given by (1). Suppose that $1 \leq\left|x_{0}\right|<\left|x_{1}\right|$ and $|a|>|b| \geq 1$. Then the sequence $\left(\left|x_{n}\right|\right)_{n \geq 0}$ is strictly increasing.

Proof. We use induction on n. By hypothesis, the statement is true for $n=0$.
Suppose that $\left|x_{n-1}\right|<\left|x_{n}\right|$ for some $n \geq 1$. We intend to prove that $\left|x_{n}\right|<\left|x_{n+1}\right|$. Indeed

$$
\begin{aligned}
\left|x_{n+1}\right| & =\left|a x_{n}+b x_{n-1}\right| \geq\left|a x_{n}\right|-\left|b x_{n-1}\right|=|a|\left|x_{n}\right|-|b|\left|x_{n-1}\right|> \\
& >|a|\left|x_{n}\right|-|b|\left|x_{n}\right|=(|a|-|b|)\left|x_{n}\right|, \text { by the induction hypothesis. }
\end{aligned}
$$

Using $|a|-|b| \geq 1$, we obtain $\left|x_{n+1}\right|>\left|x_{n}\right|$, which completes the induction.
Lemma 4. Let n_{1}, n_{2} and n_{3} be three positive integers such that no prime number p divides all of them. Then there exists an integer $k \geq 2$ such that n_{1} and $n_{2}+k n_{3}$ are relatively prime.

Proof. Let $d:=\operatorname{gcd}\left(n_{2}, n_{3}\right)$. Note that $\operatorname{gcd}\left(n_{1}, d\right)=1$, otherwise d divides n_{1}, n_{2} and n_{3}.
By Dirichlet's theorem on arithmetic progressions there exists a k such that $n_{2} / d+k n_{3} / d$ is a prime number greater than n_{1}. Then $d\left(n_{2} / d+k \cdot n_{3} / d\right)=n_{2}+k n_{3}$ is both greater and relatively prime to n_{1}.

3 Two simple special cases: (i) $a=0$ and (ii) $a^{2}+4 b=0$

Case (i): Since $a=0$, it can be easily proved that $x_{2 n}=b^{n} x_{0}$ and $x_{2 n+1}=b^{n} x_{1}$. It suffices to take $x_{0}=4$ and $x_{1}=9$ to obtain that x_{n} is composite for all $n \geq 0$.

Case (ii): If $a^{2}+4 b=0$, then a must be even; $a=2 c$ and therefore $b=-a^{2} / 4=-c^{2}$. We divide the proof into two cases: $|b| \geq 2$ and $b=-1$.

If $|b| \geq 2$, we have $|c| \geq 2$. Let us now take $x_{0}=4 c^{2}-1$ and $x_{1}=2 c^{3}$. Then x_{0} and x_{1} are relative prime positive composite integers. One immediately obtains $x_{2}=c^{2}$; thus x_{2} is also composite. Also, it can be easily proved that $x_{n}=c^{n}\left((n-1)-(2 n-4) c^{2}\right)$ for all $n \geq 3$.

Note that for any $n \geq 3$ one cannot have $x_{n}=0$; otherwise, $4 \leq c^{2}=(n-1) /(2 n-4) \leq 1$, which is impossible. It follows that $\left|x_{n}\right|$ is composite for all $n \geq 3$.

If $b=-1$, then $|a|=2$. If $a=2$, then a simple induction shows that

$$
x_{n+1}=(n+1) x_{1}-n x_{0}=x_{1}+n\left(x_{1}-x_{0}\right) \quad \text { for all } n \geq 0
$$

that is, $\left(x_{n}\right)_{n \geq 0}$ is an arithmetic sequence whose first term and common difference are relatively prime. By Dirichlet's theorem on primes in arithmetic progressions, it follows that $\left|x_{n}\right|$ is a prime number for infinitely many values of n. If $a=-2$, then one can show that $x_{n+1}=(-1)^{n}\left(x_{1}+n\left(x_{0}+x_{1}\right)\right)$. In this case, $\left(x_{n}\right)_{n \geq 0}$ is the union of two arithmetic sequences, both of which have the first term and the common difference relatively prime. Again, for any choice of x_{0} and x_{1} relatively prime, $\left|x_{n}\right|$ is a prime for infinitely many n. This proves the necessity of the condition $(a, b) \neq(\pm 2,-1)$.

4 The case $|b| \geq 2$

Based on the results from the previous section, from now on we can assume that

$$
\begin{equation*}
|a| \geq 1 \quad \text { and } \quad a^{2}+4 b \neq 0 \tag{5}
\end{equation*}
$$

We divide the proof into three separate cases:
Case I: $|a|>|b|$,
Case II: $1 \leq|a| \leq|b|$ and $|b|$ is composite, and
Case III: $1 \leq|a| \leq|b|$ and $|b|$ is a prime.
Case $I:|a|>|b|$. To complete the proof of Theorem 1, in this case we take $x_{0}=b^{4}-1, x_{1}=b^{4}$. Clearly, x_{0} and x_{1} are both positive, relatively prime and composite. Moreover, $x_{0}<x_{1}$. Then $x_{n} \equiv 0(\bmod b)$ for all $n \geq 1$, and by using Lemma 3 it follows that $\left(\left|x_{n}\right|\right)_{n \geq 0}$ is strictly increasing. Hence, we have $\left|x_{n}\right| \geq x_{0}>|b|$ for all $n \geq 0$, and therefore $\left|x_{n}\right|$ is composite for all $n \geq 0$.

Case II: $1 \leq|a| \leq|b|$ and $|b|$ is composite. Choose $x_{0}=4 b^{4}-1, x_{1}=2 b^{2}$. Clearly, $\operatorname{gcd}\left(x_{0}, x_{1}\right)=1$, and x_{0}, x_{1} are positive composite integers. It also follows that $x_{n} \equiv 0(\bmod b)$ for all $n \geq 1$, and since $|b|$ is composite, it follows that $\left|x_{n}\right|$ is composite, unless $x_{n}=0$ for some n. We will prove that this cannot happen.

To get a contradiction, suppose that $x_{n+1}=0$ for some $n \geq 2$. Then, by Lemma 2, we have $x_{n}^{2}=(-b)^{n-1}\left(x_{1}^{2}-a x_{0} x_{1}-b x_{0}^{2}\right)$.

Since $x_{0}=4 b^{4}-1$ and $x_{1}=2 b^{2}$, we have

$$
\begin{gather*}
x_{1}^{2}-a x_{0} x_{1}-b x_{0}^{2}=(-b)\left(16 b^{8}+8 a b^{5}-8 b^{4}-4 b^{3}-2 a b+1\right), \quad \text { which implies that } \\
x_{n}^{2}=(-b)^{n}\left(16 b^{8}+8 a b^{5}-8 b^{4}-4 b^{3}-2 a b+1\right) . \tag{6}
\end{gather*}
$$

If n is even, this implies that $16 b^{8}+8 a b^{5}-8 b^{4}-4 b^{3}-2 a b+1$ is a perfect square. If n is odd, this implies that $(-b)\left(16 b^{8}+8 a b^{5}-8 b^{4}-4 b^{3}-2 a b+1\right)$ is a perfect square. We will prove that none of these are possible if $a^{2}+4 b \neq 0$.

Note first that since $|a| \leq|b|$, we have

$$
\begin{equation*}
\left(4 b^{4}+a b-2\right)^{2}<16 b^{8}+8 a b^{5}-8 b^{4}-4 b^{3}-2 a b+1<\left(4 b^{4}+a b\right)^{2} . \tag{7}
\end{equation*}
$$

Indeed, these inequalities are equivalent to the following ones:

$$
\begin{equation*}
8 b^{4}-2-\left(4 b^{3}+(a b-1)^{2}\right)>0, \quad \text { and } \quad 8 b^{4}+4 b^{3}-2+(a b+1)^{2}>0 \tag{8}
\end{equation*}
$$

We have

$$
\begin{equation*}
|a| \leq|b| \Longrightarrow|a b| \leq b^{2} \Longrightarrow|a b-1| \leq|a b|+1 \leq b^{2}+1 \Longrightarrow(a b-1)^{2} \leq b^{4}+2 b^{2}+1 . \tag{9}
\end{equation*}
$$

From this we obtain

$$
\begin{equation*}
\left|4 b^{3}+(a b-1)^{2}\right| \leq 4|b|^{3}+(a b-1)^{2} \leq b^{4}+4|b|^{3}+2 b^{2}+1 \tag{10}
\end{equation*}
$$

To prove the first inequality in (8), note that

$$
\begin{aligned}
& 8 b^{4}-2-\left(4 b^{3}+(a b-1)^{2}\right) \geq 8 b^{4}-2-\left|4 b^{3}+(a b-1)^{2}\right| \geq \\
\geq & 8 b^{4}-2-\left(b^{4}+4|b|^{3}+2 b^{2}+1\right)=7 b^{4}-4|b|^{3}-2 b^{2}-3= \\
= & 7|b|^{4}-4|b|^{3}-2|b|^{2}-3=4|b|^{3}(|b|-1)+2|b|^{2}\left(|b|^{2}-1\right)+\left(|b|^{4}-3\right) \geq \\
\geq & 4|b|^{3}+2|b|^{2}+|b|^{4}-3 \geq 4 \cdot 2^{3}+2 \cdot 2^{2}+2^{4}-3>0 .
\end{aligned}
$$

The second inequality in (8) is much easier to prove:

$$
8 b^{4}+4 b^{3}-2+(a b+1)^{2} \geq 8 b^{4}+4 b^{3}-2 \geq 8|b|^{4}-4|b|^{3}-2 \geq 8 \cdot 2^{4}-4 \cdot 2^{3}-2>0
$$

Hence, the inequalities (7) hold.
If the middle term in (7) were to be a perfect square, the only option remaining is

$$
16 b^{8}+8 a b^{5}-8 b^{4}-4 b^{3}-2 a b+1=\left(4 b^{4}+a b-1\right)^{2}, \text { which implies } b^{2}\left(a^{2}+4 b\right)=0 .
$$

However, this is impossible if $a^{2}+4 b \neq 0$. Hence, if one assumes that $|a| \leq|b|$ and $a^{2}+4 b \neq 0$, then $16 b^{8}+8 a b^{5}-8 b^{4}-4 b^{3}-2 a b+1$ cannot be a perfect square.

Suppose next that $(-b)\left(16 b^{8}+8 a b^{5}-8 b^{4}-4 b^{3}-2 a b+1\right)$ is a perfect square. Since the two factors are mutually prime, it follows that both have to be perfect squares. In particular, the second one has to be a perfect square, and we have already proved that it cannot be. It follows that the sequence $\left(x_{n}\right)$ does not contain any terms equal to 0 . This completes the proof of Theorem 1 in case II.

Case III: $1 \leq|a| \leq|b|$ and $|b|$ is a prime.
We divide the proof of this case into three subcases: $|a|=1,|a|=|b|$ and $2 \leq|a|<|b|$.
Subcase IIIa: $|a|=1,|b|$ is a prime.

If $a=1$ and $b>0$, then take $x_{0}=\left(2 b^{2}-1\right)^{2}, x_{1}=b\left(b^{2}-1\right)$. Clearly, x_{0} and x_{1} are positive, relatively prime, composite integers. It follows immediately that $x_{2}=b^{3}\left(4 b^{2}-3\right)$ is also composite. Finally, an easy induction shows that $x_{n} \equiv 0\left(\bmod b^{2}\right)$ and that $\frac{x_{n}}{b^{2}} \equiv-1(\bmod b)$ for all $n \geq 3$. Hence, $\left|x_{n}\right|$ is necessarily composite for all $n \geq 3$.

The other situations can be dealt with similarly.
If $a=-1$ and $b<0$, take $x_{0}=\left(2 b^{2}-1\right)^{2}, x_{1}=-b\left(b^{2}-1\right)$. Then $x_{2}=b^{3}\left(4 b^{2}-3\right)$, and for $n \geq 3$ one can show that $x_{n} \equiv 0\left(\bmod b^{2}\right)$ and $\frac{x_{n}}{b^{2}} \equiv(-1)^{n+1}(\bmod b)$. Again, all $\left|x_{n}\right|$ are composite.

If $a=1$ and $b<0$, we take $x_{0}=\left(2 b^{2}-1\right)^{2}, x_{1}=-b\left(b^{2}+1\right)$. Then $x_{2}=b^{3}\left(4 b^{2}-5\right)$, and for all $n \geq 3$ one can prove that $x_{n} \equiv 0\left(\bmod b^{2}\right)$ and $\frac{x_{n}}{b^{2}} \equiv-1(\bmod b)$. Hence, all $\left|x_{n}\right|$ are composite.

Finally, if $a=-1$ and $b>0$, select $x_{0}=\left(2 b^{2}-1\right)^{2}, x_{1}=b\left(b^{2}+1\right)$. Then $x_{2}=b^{3}\left(4 b^{2}-5\right)$, and for all $n \geq 3$ we have that $x_{n} \equiv 0\left(\bmod b^{2}\right)$ and $\frac{x_{n}}{b^{2}} \equiv(-1)^{n+1}(\bmod b)$. All $\left|x_{n}\right|$ are composite.

This completes the proof of Theorem 1 in subcase IIIa.
Subcase IIIb: $|a|=|b|,|b|$ is a prime.
If $a=b$, take $x_{0}=4 b^{4}-1, x_{1}=2 b^{2}$. Then $x_{2}=b\left(4 b^{4}+2 b^{2}-1\right)$ is composite, and $x_{n} \equiv 0\left(\bmod b^{2}\right)$ for all $n \geq 3$. It remains to show that $x_{n} \neq 0$ for all n.

As in Case II, $x_{n+1}=0$ implies that either $16 b^{8}+8 b^{6}-8 b^{4}-4 b^{3}-2 b^{2}+1$ or $(-b)\left(16 b^{8}+\right.$ $\left.8 b^{6}-8 b^{4}-4 b^{3}-2 b^{2}+1\right)$ is a perfect square. One can use the same technique as in Case II to prove that this cannot happen if $a^{2}+4 b=b^{2}+4 b \neq 0$.

If $a=-b$, take $x_{0}=4 b^{4}-1, x_{1}=2 b^{2}$ (same choice). Then $x_{2}=b\left(4 b^{4}-2 b^{2}-1\right.$) is composite, and $x_{n} \equiv 0\left(\bmod b^{2}\right)$ for all $n \geq 3$. It remains to show that $x_{n} \neq 0$ for all n.

As in Case II, $x_{n+1}=0$ implies that either $16 b^{8}-8 b^{6}-8 b^{4}-4 b^{3}+2 b^{2}+1$ or $(-b)\left(16 b^{8}-\right.$ $\left.8 b^{6}-8 b^{4}-4 b^{3}+2 b^{2}+1\right)$ is a perfect square. The same approach as in Case II shows that this is impossible if $a^{2}+4 b=b^{2}+4 b \neq 0$.

Subcase IIIc: $2 \leq|a|<|b|,|b|$ is a prime.
It follows that $\operatorname{gcd}(a, b)=1$.
If $a>0, b>0$, take $x_{0}=a^{3}, x_{1}=b\left(b^{2}-a^{2}\right)$. Then $x_{2}=a b^{3}$. For $n \geq 3, x_{n} \equiv 0\left(\bmod b^{2}\right)$ and $\frac{x_{n}}{b^{2}} \equiv-a^{n-1}(\bmod b)$. Since $\operatorname{gcd}(a, b)=1, x_{n} \neq 0$.

If $a<0, b<0$, take $x_{0}=-a^{3}, x_{1}=-b\left(b^{2}-a^{2}\right)$. Then $x_{2}=-a b^{3}$. For $n \geq 3$, $x_{n} \equiv 0\left(\bmod b^{2}\right)$ and $\frac{x_{n}}{b^{2}} \equiv a^{n-1}(\bmod b)$. Hence, $x_{n} \neq 0$ for all n.

If $a<0, b>0$, take $x_{0}=-a^{3}, x_{1}=b\left(b^{2}+a^{2}\right)$. Then $x_{2}=a b^{3}$, and for $n \geq 3$, $x_{n} \equiv 0\left(\bmod b^{2}\right)$ and $\frac{x_{n}}{b^{2}} \equiv a^{n-1}(\bmod b)$. So, $x_{n} \neq 0$ for all n.

Lastly, if $a>0, b<0$, take $x_{0}=a^{3}, x_{1}=-b\left(b^{2}+a^{2}\right)$. Then $x_{2}=-a b^{3}$. For $n \geq 3$, $x_{n} \equiv 0\left(\bmod b^{2}\right)$ and $\frac{x_{n}}{b^{2}} \equiv-a^{n-1}(\bmod b)$. Since $\operatorname{gcd}(a, b)=1$, we have $x_{n} \neq 0$ for all n.

Hence, in each case one can choose x_{0} and x_{1} to be positive, composite and relatively prime so that x_{2} is composite, and for all $n \geq 3$ we have that $x_{n} \equiv 0\left(\bmod b^{2}\right)$ and $x_{n} \neq 0$. It follows that $\left|x_{n}\right|$ is composite for all $n \geq 0$, and this completes the proof of Theorem 1 in the case $|b| \geq 2$.

5 The case $|b|=1$

The main idea behind the proof of Theorem 1 in this particular case can be summarized as follows: we want to find a finite set of primes $p_{1}, p_{2}, \ldots, p_{t}$ such that for every $n \geq 0$ the number $\left|x_{n}\right|$ is divisible by at least one of these primes.

We start the analysis with the simple case in which $|a|$ has at least two distinct prime factors.

Lemma 5. Let $|b|=1$, and suppose that $|a|$ has at least two distinct prime factors: p_{1} and p_{2}, with $p_{1}<p_{2}$. Then the sequence given by (1) and the initial terms $x_{0}=p_{1}^{2}, x_{1}=p_{2}^{2}$ satisfies the conditions in Theorem 1.

Proof. Clearly, x_{0} and x_{1} are positive relatively prime composite integers. An easy induction shows that $x_{n} \equiv 0\left(\bmod p_{1}\right)$ if n is even and $x_{n} \equiv 0\left(\bmod p_{2}\right)$ if n is odd. Since $\left|x_{0}\right|<\left|x_{1}\right|$ and $1=|b|<|a|$, the hypotheses of Lemma 3 are satisfied; hence $\left(\left|x_{n}\right|\right)_{n \geq 0}$ is strictly increasing. It follows that x_{n} is composite for all $n \geq 0$, and therefore Theorem 1 is verified in this case.

Remark 6. In all what follows we will assume that $|a|=p_{1}^{s}$ for some prime p_{1} and some nonnegative integer $s \geq 0$. Note that this allows the possibility of $|a|=1$.

Next, we introduce a special sequence $\left(u_{n}\right)_{n \geq 0}$ given by

$$
\begin{equation*}
u_{0}=0, u_{1}=1, \quad u_{n+1}=a u_{n}+b u_{n-1} \quad \text { for all } n \geq 1 \tag{11}
\end{equation*}
$$

This sequence is called the Lucas sequence of the first kind.
One can prove that $\left(u_{n}\right)_{n \geq 0}$ is a divisibility sequence; that is, u_{m} divides u_{n} whenever m divides n. Indeed, suppose that $a^{2}+4 b \neq 0$, which implies that the roots α and β of the characteristic equation are distinct, $\alpha \neq \beta$. Assume that $n=m k$. Then

$$
\begin{aligned}
u_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}=\frac{\alpha^{m k}-\beta^{m k}}{\alpha-\beta} & =\frac{\alpha^{m}-\beta^{m}}{\alpha-\beta} \cdot\left(\alpha^{m(k-1)}+\alpha^{m(k-2)} \beta^{m}+\cdots+\beta^{m(k-1)}\right) \\
& =u_{m}\left(\alpha^{m(k-1)}+\alpha^{m(k-2)} \beta^{m}+\cdots+\beta^{m(k-1)}\right)
\end{aligned}
$$

The second factor of the last term in the equality above is a symmetric function in α and β, and therefore it can be written as a polynomial function of $\alpha+\beta=a$ and $\alpha \beta=-b$. It follows that u_{n} / u_{m} is an integer, as claimed.

Of particular interest in the sequel are the values of u_{4} and u_{6} :

$$
\begin{equation*}
u_{4}=a\left(a^{2}+2 b\right) \quad \text { and } \quad u_{6}=a\left(a^{2}+b\right)\left(a^{2}+3 b\right) \tag{12}
\end{equation*}
$$

The next two results give information regarding the prime factors of u_{4} and u_{6} when $|b|=1$.
Lemma 7. Suppose that $b=-1,|a| \geq 4$ and $|a|=p_{1}^{s}$ for some prime p_{1} and some $s \geq 1$. Then $u_{6}=a\left(a^{2}-1\right)\left(a^{2}-3\right)$ has at least three additional distinct prime factors, p_{2}, p_{3} and p_{4}, all three different from p_{1}.

Proof. Note that $a^{2}-3$ is not divisible by 4 or 9 . Since $a^{2}-3 \geq 13$, it follows that $a^{2}-3$ has an odd prime factor p_{4} different from 3 , and since $\operatorname{gcd}\left(a, a^{2}-3\right) \in\{1,3\}$ we have that $p_{4} \neq p_{1}$. Clearly, neither p_{1} nor p_{4} are factors of $a^{2}-1$. Note that $a^{2}-1$ has at least two distinct prime factors. Indeed, if one assumes the opposite, then both $|a-1|$ and $|a+1|$ are powers of some prime. But this cannot happen, since $|a| \geq 4$. It follows that $a^{2}-1$ has at least two distinct prime factors, p_{2} and p_{3}, both different from p_{1} and p_{4}.

To illustrate Lemma 7, let us take $(a, b)=(-9,-1)$. Then $a^{2}-3=78=2 \cdot 3 \cdot 13$ while $a^{2}-1=80=2^{4} \cdot 5$. Hence, one has $p_{1}=3, p_{4}=13, p_{2}=2$, and $p_{3}=5$.

Lemma 8. Suppose that $b=1,|a| \geq 6$ and $|a|=p_{1}^{s}$ for some prime p_{1} and some $s \geq 1$.
If $p_{1} \neq 3$, then $u_{4}=a\left(a^{2}+2\right)$ has at least two additional distinct prime factors, p_{2} and p_{3}, both different from p_{1}.

If $|a|=3^{s}$ for some $s \geq 2$, then $u_{6}=a\left(a^{2}+1\right)\left(a^{2}+3\right)$ has at least three additional distinct prime factors, p_{2}, p_{3} and p_{4}, all three different from p_{1}.

Proof. Suppose first that $p_{1}=2$; that is, $|a|=2^{s}$ for some $s \geq 3$. Note that $a^{2}+2 \equiv$ $0(\bmod 3)$, hence one can choose $p_{2}=3$. Note that $a^{2}=2\left(2^{2 s-1}+1\right)$ must have a prime factor different from 2 and 3. Indeed, if one assumes the opposite, then $2^{2 s-1}+1=3^{t}$ for some $t \geq 2$. However, under the assumption that $2 s-1 \geq 2$ and $t \geq 2$, the Catalan-Mihăilescu theorem implies that the only solution of this equation is $s=2, t=2$. But this implies that $|a|=2^{2}=4$, a contradiction.

Consider next the case $|a|=p_{1}^{s}$ with $p_{1}>3$. In particular, $a^{2}+2$ is odd and therefore $\operatorname{gcd}\left(a, a^{2}+2\right)=1$. Moreover, since $a^{2}+2 \equiv 0(\bmod 3)$ one can safely take $p_{2}=3$. We claim that $a^{2}+2$ has at least one other prime factor, p_{3}, different from p_{1} and p_{2}. Indeed, if one assumes otherwise, then $a^{2}+2=p_{1}^{2 s}+2=3^{t}$ for some $t \geq 2$. However, it was shown by Ljunggren [7] that the more general equation $x^{2}+2=y^{n}, n \geq 2$ has the unique solution $x=5, y=3, n=3$. This would give $|a|=5$, which is excluded from our analysis.

Finally, suppose that $p_{1}=3$ and therefore $|a|=3^{s}$ for some $s \geq 2$. Then both $a^{2}+1$ and $a^{2}+3$ are even, so one can take $p_{2}=2$. Note that $a^{2}+1=9^{s}+1$; hence $a^{2}+1 \equiv 10(\bmod 72)$ and $a^{2}+3 \equiv 12(\bmod 72)$. Hence, there exists a positive integer c such that $a^{2}+1=2(36 c+5)$ and $a^{2}+3=12(6 c+1)$. Let p_{3} be a prime factor of $36 c+5$ and let p_{4} be a prime factor of $6 c+1$. It follows immediately that $p_{1}=3, p_{2}=2, p_{3}$, and p_{4} are all distinct.

We present a couple of particular instances covered by the above lemma.
Suppose first that $a=8$ and $b=1$. Then $u_{2}=a=2^{3}$ while $u_{4}=2^{4} \cdot 3 \cdot 11$. Thus, in this case one can take $p_{1}=2, p_{2}=3, p_{3}=11$.

Suppose next that $a=-49$ and $b=1$. Then $u_{2}=a=-7^{2}$, while $u_{4}=-7^{2} \cdot 3^{3} \cdot 89$. It follows that we can choose $p_{1}=7, p_{2}=3, p_{3}=89$.

Finally, let us assume that $a=9$ and $b=1$. Then $u_{2}=a=3^{2}$, while $a^{2}+1=2 \cdot 41$, $a^{2}+3=2^{2} \cdot 3 \cdot 7$. Hence, in this case we have $p_{1}=3, p_{2}=2, p_{3}=41, p_{4}=7$.

The next lemma uses the concept of covering system introduced by Erdős in [4].

Definition 9. A collection of residue classes $r_{i}\left(\bmod m_{i}\right), 0 \leq r_{i}<m_{i}$, where $1 \leq i \leq t$ is said to be a covering system if every integer n satisfies at least one equality $n \equiv r_{i}\left(\bmod m_{i}\right)$.

In the proof of the theorem when $|b|=1$, except for finitely many values of a we will use one of the following two covering systems

$$
\begin{aligned}
& \{0(\bmod 2), \quad 1(\bmod 6), \quad 3(\bmod 6), \quad 5(\bmod 6)\} \quad \text { or } \\
& \{0(\bmod 2), \quad 1(\bmod 4), \quad 3(\bmod 4)\} \text {. }
\end{aligned}
$$

Lemma 10. Let a, b be two integers such that $|a| \geq 2$ and $|b|=1$. Let $\left(u_{n}\right)_{n \geq 0}$ be the Lucas sequence defined in (11), and suppose that there exists a finite collection of triples (p_{i}, m_{i}, r_{i}), $1 \leq i \leq t$ with the following properties:
(i) All primes p_{i} are distinct.
(ii) The residue classes $r_{i}\left(\bmod m_{i}\right)$ form a covering system.
(iii) $p_{i} \mid u_{m_{i}}$ for all $1 \leq i \leq t$.

Then there exist two relatively prime positive integers x_{0} and x_{1} such that each term of the sequence $\left(x_{n}\right)_{n \geq 0}$ defined in (1) is composite.

Proof. Let $P=p_{1} p_{2} \ldots p_{t}$.
By the Chinese remainder theorem, there exist $y, z \in\{0,1, \ldots P-1\}$ satisfying

$$
\begin{align*}
& y \equiv u_{m_{i}-r_{i}} \quad\left(\bmod p_{i}\right), \\
& z \equiv u_{m_{i}-r_{i}+1} \quad\left(\bmod p_{i}\right), \tag{13}
\end{align*}
$$

for $i=1,2, \ldots, t$. Note that there is no prime which divides y, z, and P simultaneously. Indeed, if such a prime p_{j} were to exist, then there would be two consecutive terms u_{n} and u_{n+1} both divisible by p_{j}. Since $u_{n+1}=a u_{n}+b u_{n-1}$ and $|b|=1$, then $p_{j} \mid u_{n-1}$. By induction, it follows that $p_{j} \mid u_{1}$ which is impossible since $u_{1}=1$.

Let $x_{0} \equiv y(\bmod P)$ and $x_{1} \equiv z(\bmod P)$.
Then we have $x_{0} \equiv u_{m_{i}-r_{i}}\left(\bmod p_{i}\right)$ and $x_{1} \equiv u_{m_{i}-r_{i}+1}\left(\bmod p_{i}\right)$ for all $i=1,2, \ldots, t$. By induction on n, we obtain $x_{n+1} \equiv u_{m_{i}-r_{i}+n}\left(\bmod p_{i}\right)$ for every $n \geq 0$ and every $1 \leq i \leq t$.

Since the residue classes $r_{i}\left(\bmod m_{i}\right)$ form a covering system, each nonnegative integer n belongs to one of these classes, say $n=r_{i}+k m_{i}$ for some $k \geq 0$ and some $i \in\{1,2, \ldots, t\}$. This implies that

$$
\begin{equation*}
x_{n+1} \equiv u_{m_{i}-r_{i}+n} \quad\left(\bmod p_{i}\right) \equiv u_{m_{i}(k+1)} \quad\left(\bmod p_{i}\right) \equiv 0 \quad\left(\bmod p_{i}\right), \tag{14}
\end{equation*}
$$

since $p_{i} \mid u_{m_{i}}$ and $u_{m_{i}} \mid u_{m_{i}(k+1)}$. Hence, every term of the sequence $\left(x_{n}\right)_{n}$ is divisible by some prime p_{i}. It remains to choose x_{0} and x_{1}, relatively prime positive integers $x_{0} \equiv y(\bmod P)$ and $x_{1} \equiv z(\bmod P)$ such that $\left|x_{n}\right| \geq P$ for every $n \in \mathbb{N}$.

In order to achieve this, take $x_{0}=y+P$ and $x_{1}=z+k P$ where $k \geq 2$ and $\operatorname{gcd}\left(x_{0}, x_{1}\right)=1$. Using Lemma 4 with $n_{1}=y+P, n_{2}=z$ and $n_{3}=P$ shows that such a choice is always possible. Recall that we proved earlier that $\operatorname{gcd}(y, z, P)=1$. Such a choice implies that $0<P \leq x_{0}<x_{1}$, and since $|a|>|b|=1$, Lemma 3 implies that $\left(\left|x_{n}\right|\right)_{n}$ is a strictly increasing sequence. It follows that $\left|x_{n}\right| \geq P$ for all $n \geq 0$, and therefore each such x_{n} is composite.

We can now prove the theorem if $|b|=1$.
Suppose first that $b=-1$ and $|a|=p_{1}^{s} \geq 4$. Then, by Lemma 7, there are four distinct primes $p_{1}, p_{2}, p_{3}, p_{4}$ dividing $u_{2}, u_{6}, u_{6}, u_{6}$, respectively. The theorem follows after using Lemma 10 for the triples $\left(p_{1}, 2,0\right),\left(p_{2}, 6,1\right),\left(p_{3}, 6,3\right),\left(p_{4}, 6,5\right)$.

As a numerical illustration, suppose that $a=-9, b=-1$. Then, as described in the paragraph following the proof of Lemma 7 , we have $p_{1}=3, p_{2}=2, p_{3}=5$ and $p_{4}=13$.

The system (13) becomes

$$
\begin{array}{llll}
y \equiv u_{2} & (\bmod 3) & z \equiv u_{3} & (\bmod 3) \\
y \equiv u_{5} & (\bmod 2) & z \equiv u_{6} & (\bmod 2) \\
y \equiv u_{3} & (\bmod 5) & z \equiv u_{4} & (\bmod 5) \\
y \equiv u_{1} & (\bmod 13) & z \equiv u_{2} & (\bmod 13)
\end{array}
$$

and its solution is $P=p_{1} p_{2} p_{3} p_{4}=390, y=105, z=134$. Since $y<z$ and $\operatorname{gcd}(y, z)=1$, one can safely take $x_{0}=y=105$ and $x_{1}=z=134$. Then the sequence $\left(\left|x_{n}\right|\right)_{n \geq 0}$ is strictly increasing, and for every $n \geq 0$ we have that $x_{2 n} \equiv 0(\bmod 3), x_{6 n+1} \equiv 0(\bmod 2), x_{6 n+3} \equiv$ $0(\bmod 5)$ and $x_{6 n+5} \equiv 0(\bmod 13)$. It follows that all terms of the sequence are composite.

Next suppose that $b=1$ and $|a|=p_{1}^{s} \geq 6$ for some prime p_{1}. If $p_{1} \neq 3$, then by Lemma 8 there exist three distinct primes p_{1}, p_{2}, p_{3}, dividing u_{2}, u_{4}, u_{4}, respectively.

The theorem follows after using Lemma 10 for the triples $\left(p_{1}, 2,0\right),\left(p_{2}, 4,1\right),\left(p_{3}, 4,3\right)$. As in the case $b=-1$, we present the details in a couple of particular cases.

Suppose first that $a=8, b=1$. Then, as described in the paragraph following the proof of Lemma 8, we have $p_{1}=2, p_{2}=3, p_{3}=11$. The system (13) becomes

$$
\begin{array}{llll}
y \equiv u_{0} & (\bmod 2) & z \equiv u_{1} & (\bmod 2) \\
y \equiv u_{3} & (\bmod 3) & z \equiv u_{4} & (\bmod 3) \\
y \equiv u_{1} & (\bmod 11) & z \equiv u_{2} & (\bmod 11)
\end{array}
$$

and its solution is $P=p_{1} p_{2} p_{3}=66, y=56, z=63$. Note that in this case $\operatorname{gcd}(y, z)=7>1$. Still, one can safely take $x_{0}=y=56$ and $x_{1}=z+P=129$, and now $\operatorname{gcd}\left(x_{0}, x_{1}\right)=1$ as desired. Then, since $0<x_{0}<x_{1}$, the sequence $\left(\left|x_{n}\right|\right)_{n \geq 0}$ is strictly increasing and for every $n \geq 0$ we have that $x_{2 n} \equiv 0(\bmod 2), x_{4 n+1} \equiv 0(\bmod 3)$, and $x_{4 n+3} \equiv 0(\bmod 11)$. It follows that all terms of the sequence are composite.

Next assume that $a=-49, b=1$. Then $p_{1}=7, p_{2}=3, p_{3}=89$, and the system (13) becomes

$$
\begin{array}{llll}
y \equiv u_{0} & (\bmod 7) & z \equiv u_{1} & (\bmod 7) \\
y \equiv u_{3} & (\bmod 3) & z \equiv u_{4} & (\bmod 3) \\
y \equiv u_{1} & (\bmod 89) & z \equiv u_{2} & (\bmod 89)
\end{array}
$$

The solution is $P=p_{1} p_{2} p_{3}=1869, y=980, z=1464$. Notice that in this case $\operatorname{gcd}(y, z)=$ $4>1$. Still, one can safely take $x_{0}=y=980$ and $x_{1}=z+P=3333$ and now $\operatorname{gcd}\left(x_{0}, x_{1}\right)=1$ as desired. Moreover, since $0<x_{0}<x_{1}$, the sequence $\left(\left|x_{n}\right|\right)_{n \geq 0}$ is strictly increasing, and for every $n \geq 0$ we have that $x_{2 n} \equiv 0(\bmod 7), x_{4 n+1} \equiv 0(\bmod 3)$, and $x_{4 n+3} \equiv 0(\bmod 89)$. It follows that all terms of the sequence are composite.

For the case $b=1$ and $|a|=3^{s}$ with $s \geq 2$, we use the second part of Lemma 8 to conclude that there are four distinct primes $p_{1}, p_{2}, p_{3}, p_{4}$, dividing $u_{2}, u_{6}, u_{6}, u_{6}$, respectively. The theorem follows after using Lemma 10 for the triples $\left(p_{1}, 2,0\right),\left(p_{2}, 6,1\right),\left(p_{3}, 6,3\right),\left(p_{4}, 6,5\right)$.

We show the full details if $a=9, b=1$. Then, as mentioned in the paragraph following the proof of Lemma 8, we have $p_{1}=3, p_{2}=2, p_{3}=41, p_{4}=7$. The system (13) becomes

$$
\begin{array}{llll}
y \equiv u_{2} & (\bmod 3) & z \equiv u_{3} & (\bmod 3) \\
y \equiv u_{5} & (\bmod 2) & z \equiv u_{6} & (\bmod 2) \\
y \equiv u_{3} & (\bmod 41) & z \equiv u_{4} & (\bmod 41) \\
y \equiv u_{1} & (\bmod 7) & z \equiv u_{2} & (\bmod 7) .
\end{array}
$$

Solving, we obtain $P=p_{1} p_{2} p_{3} p_{4}=1722, y=1107, z=1444$. In this case we can simply choose $x_{0}=y=1107$ and $x_{1}=z=1144$.

Then $\operatorname{gcd}\left(x_{0}, x_{1}\right)=1$, and since $0<x_{0}<x_{1}$, the sequence $\left(\left|x_{n}\right|\right)_{n \geq 0}$ is strictly increasing. Moreover, for every $n \geq 0$ we have that $x_{2 n} \equiv 0(\bmod 3), x_{6 n+1} \equiv 0(\bmod 2), x_{6 n+3} \equiv$ $0(\bmod 41)$, and $x_{6 n+5} \equiv 0(\bmod 7)$. It follows that all terms of the sequence are composite as desired.

At this point we have proved the main theorem when $|b|=1$ for all but finitely many values of a. We still have to study what happens when $b=-1$ and $|a| \leq 3$ as well as the cases when $b=1$ and $|a| \leq 5$. Recall that the cases $a=0$ and $(a, b)=(\pm 2,-1)$ were already handled in section 2 .

For most of these cases, we will still use Lemma 10; the only difference is that the set of triples $\left\{p_{i}, m_{i}, r_{i}\right\}_{i=1}^{i=t}$ is occasionally going to be slightly more numerous.

We summarize our findings in the table below. We invite the reader to verify that the collections $\left\{p_{i}, m_{i}, r_{i}\right\}_{i=1}^{i=t}$ do indeed satisfy the three conditions in Lemma 10. Note that in each case we have $0<x_{0}<x_{1}$, and since $|a|>|b|=1$, Lemma 3 implies that $\left(\left|x_{n}\right|\right)_{n \geq 0}$ is strictly increasing.

It remains to see what happens when $|a|=|b|=1$, as in these cases Lemma 10 does not apply.

a	b	$\left\{\left(p_{i}, m_{i}, r_{i}\right)\right\}$	x_{0}	x_{1}
5	1	$(5,2,0),(2,6,1),(7,6,3),(13,6,5)$	495	1136
-5	1	$(5,2,0),(2,6,1),(7,6,3),(13,6,5)$	495	866
4	1	$(2,2,0),(3,4,1),(7,8,3),(23,8,7)$	116	165
-4	1	$(2,2,0),(3,4,1),(7,8,3),(23,8,7)$	116	801
3	1	$(3,2,0),(11,4,1),(7,8,3),(17,8,7)$	1803	3454
-3	1	$(3,2,0),(11,4,1),(7,8,3),(17,8,7)$	1803	3091
2	1	$(2,2,0),(5,3,0),(3,4,1),(7,6,5),(11,12,7)$	260	807
-2	1	$(2,2,0),(5,3,0),(3,4,1),(7,6,5),(11,12,7)$	260	1503
3	-1	$(3,2,0),(2,3,0),(7,4,3),(47,8,5),(23,12,5),(1103,24,1)$	7373556	2006357
-3	-1	$(3,2,0),(2,3,0),(7,4,3),(47,8,5),(23,12,5),(1103,24,1)$	7373556	14686445

Table 1: Covering triples for the cases $b=1, a= \pm 2, \pm 3, \pm 4, \pm 5$ and $b=-1, a= \pm 3$

If $a=-1, b=-1$, then it can be easily verified that the sequence given by the recurrence $x_{n+1}=-x_{n}-x_{n-1}$ has period 3. Hence, if one chooses $x_{0}=8$ and $x_{1}=27$, then $x_{2}=-35$, and due to the periodic behavior all terms of the sequence are composite.

Similarly, if $a=1, b=-1$, then the sequence given by the recurrence $x_{n+1}=x_{n}-x_{n-1}$ has period 6. Again, if one chooses $x_{0}=8$ and $x_{1}=35$, then the first few terms of the sequence are $8,35,27,-8,-35,-37,8,35,27, \ldots$; that is, x_{n} is always composite.

If $a=b=1$, then Vsemirnov's pair $v_{0}=106276436867, v_{1}=35256392432$ shows that all the numbers

$$
\begin{equation*}
v_{n}=v_{n-1}+v_{n-2}=v_{1} F_{n}+v_{0} F_{n-1} \tag{15}
\end{equation*}
$$

are composite. Here, F_{n} is the nth Fibonacci number, where $F_{-1}=1, F_{0}=0, F_{1}=1$.
For the case $a=-1, b=1$, we follow the solution in [3].
It can be easily checked that the general term of the sequence $x_{n+1}=-x_{n}+x_{n-1}$ can be written as

$$
\begin{equation*}
x_{n}=(-1)^{n+1} x_{1} F_{n}+(-1)^{n} x_{0} F_{n-1}, \quad n \geq 0 . \tag{16}
\end{equation*}
$$

We choose $x_{0}=v_{0}-v_{1}=71020044435$ and $x_{1}=v_{0}=106276436867$. It is easy to check that x_{0} and x_{1} are relatively prime composite integers. Moreover, from (15) and (16) we obtain that

$$
\begin{aligned}
x_{n} & =(-1)^{n+1} v_{0} F_{n}+(-1)^{n}\left(v_{0}-v_{1}\right) F_{n-1}+=(-1)^{n+1} v_{1} F_{n-1}+(-1)^{n+1} v_{0}\left(F_{n}-F_{n-1}\right)= \\
& =(-1)^{n+1} v_{1} F_{n-1}+(-1)^{n+1} v_{0} F_{n-2}=(-1)^{n+1}\left(v_{1} F_{n-1}+v_{0} F_{n-2}\right)=(-1)^{n-1} v_{n-1} .
\end{aligned}
$$

Hence, $\left|x_{n}\right|=v_{n-1}$ is composite for all $n \geq 0$. The proof of the theorem is now complete.

6 A surprising result

In this section we prove the following:

Theorem 11. Consider the integers a, b such that $|a| \geq 3$ and $b=-1$. Let $u_{0}=0, u_{1}=1$ and $u_{n+1}=a u_{n}+b u_{n-1}=a u_{n}-u_{n-1}$ be the Lucas sequence of the first kind associated with a and -1 . Then $\left|u_{n}\right|$ is composite for all $n \geq 3$.

Proof. One has $u_{3}=a^{2}-1$, and $u_{4}=a^{3}-2 a$, which are obviously composite. Since $|a|>|b|=1$, Lemma 3 implies that the sequence $\left(\left|u_{n}\right|\right)_{n \geq 0}$ is strictly increasing. Suppose for the sake of contradiction that there exists an $n \geq 2$ such that $\left|u_{n+1}\right|=p$, where p is some prime number. Since $\left|u_{n+1}\right| \geq\left|u_{3}\right|=a^{2}-1$ it follows that necessarily $p>|a|$.

Now using Lemma 2 for the sequence $\left(u_{n}\right)_{n \geq 0}$, equality (4) becomes

$$
u_{n+1}^{2}-a u_{n} u_{n+1}+u_{n}^{2}=u_{1}^{2}-a u_{1} u_{0}+u_{0}^{2},
$$

and since $u_{0}=0, u_{1}=1$, and $\left|u_{n+1}\right|=p$, we obtain that

$$
\begin{equation*}
u_{n}^{2} \pm a p u_{n}+p^{2}-1=0 . \tag{17}
\end{equation*}
$$

Regard the above equation as a quadratic in u_{n}. Since $u_{n} \in \mathbb{Z}$, it is necessary that the discriminant is a perfect square, that is, there exist a nonnegative integer c such that

$$
\begin{equation*}
a^{2} p^{2}-4\left(p^{2}-1\right)=c^{2} \quad \text { from which } \quad\left(a^{2}-4\right) p^{2}=c^{2}-4=(c-2)(c+2) . \tag{18}
\end{equation*}
$$

Since $|a| \geq 3$, one can assume that $c \geq 3$. Since p is a prime and p^{2} divides $(c-2)(c+2)$, we have two possibilities. If p divides both $c-2$ and $c+2$ then p divides 4 , which means that $p=2$. However, this is impossible since $p>|a| \geq 3$. Otherwise, p^{2} divides either $c-2$ or $c+2$. In either case we obtain that $c+2 \geq p^{2}$. Using this inequality in (18), it follows that

$$
\left(a^{2}-4\right) p^{2}=(c-2)(c+2) \geq p^{2}\left(p^{2}-4\right) \Longrightarrow|a| \geq p, \quad \text { a contradiction. }
$$

This completes the proof.
In particular, the above theorem holds if $a=4$ and $b=-1$, thus answering a question of Vos Post (see A001353 in [14]).

What is remarkable about this situation is that while u_{n} is composite for every $n \geq 3$, it seems likely that there is no finite set of primes $p_{1}, p_{2}, \ldots p_{t}$ such that every u_{n} is divisible by some $p_{i}, 1 \leq i \leq t$. In fact, we suspect the following is true.

Conjecture 12. Let $\left(u_{n}\right)_{n \geq 0}$ be the Lucas sequence of the first kind associated with some $|a| \geq 3$ and $b=-1$. Then for any two different primes p and q, u_{p} and u_{q} are relatively prime.

If true, this conjecture would immediately imply that there is no finite set of primes $p_{1}, p_{2}, \ldots p_{t}$ such that every u_{n} is divisible by some $p_{i}, 1 \leq i \leq t$.

References

[1] Y. Bilu, G. Hanrot, and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math. 539 (2001), 75-122.
[2] S. L. G. Choi, Covering the set of integers by congruence classes of distinct moduli, Math. Comp. 25 (1971), 885-895.
[3] A. Dubickas, A. Novikas, and J. Šiurys, A binary linear recurrence sequence of composite numbers, J. Number Theory 130 (2010), 1737-1749.
[4] P. Erdős, On a problem concerning congruence systems, (Hungarian. Russian, English summary) Mat. Lapok 3 (1952), 122-128.
[5] R. L. Graham, A Fibonacci-like sequence of composite numbers, Math. Mag. 37 (1964), 322-324.
[6] D. E. Knuth, A Fibonacci-like sequence of composite numbers, Math. Mag. 63 (1990), 21-25.
[7] W. Ljunggren, Über einige Arcustangensgleichungen die auf interessante unbestimmte Gleichungen führen, Ark. Mat. Astr. Fys. 29A (1943), 11 pp.
[8] P. Mihăilescu, Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math. 572 (2004), 167-195.
[9] T. Nagell, Verallgemeinerung eines Fermatschen Satzes, Arch. Math. (Basel) 5 (1954), 153-159.
[10] J. W. Nicol, A Fibonacci-like sequence of composite numbers, Electron. J. Combin. 6 (1999), Paper R44. Available at https://www.combinatorics.org/ojs/index.php/ eljc/article/view/v6i1r44.
[11] J. C. Parnami and T. N. Shorey, Subsequences of binary recursive sequences, Acta Arith. 40 (1981/82), 193-196.
[12] L. Somer, Second-order linear recurrences of composite numbers, Fibonacci Quart. 44 (2006), 358-361.
[13] B. Sury, On the diophantine equation $x^{2}+2=y^{n}$, Arch. Math. (Basel) 74 (2000), 350-355.
[14] N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences, 2019. Published electronically at https://oeis.org.
[15] M. Vsemirnov, A new Fibonacci-like sequence of composite numbers, J. Integer Sequences 7 (2004), Article 04.3.7.
[16] H. S. Wilf, Letters to the editor, Math. Mag. 63 (1990), 284.

2010 Mathematics Subject Classification: Primary 11B39; Secondary 11B37, 11A07, 11Y55. Keywords: second-order linear recurrence, Lucas sequence of the first kind, composite number, covering system of congruences.
(Concerned with sequences $\underline{\text { A001906, }} \underline{\text { A001353, }}$ A004254, and A001109.)

Received January 7 2019; revised versions received February 4 2019; September 8 2019; September 24 2019. Published in Journal of Integer Sequences, September 242019.

Return to Journal of Integer Sequences home page.

