

On Second-Order Linear Sequences of Composite Numbers

Dan Ismailescu
Department of Mathematics
Hofstra University
Hempstead, NY 11549
USA

dan.p.ismailescu@hofstra.edu

Adrienne Ko
Ethical Culture Fieldston School
Bronx, NY 10471
USA
19ako@ecfs.org

Celine Lee Chinese International School Hong Kong SAR China

celinl@student.cis.edu.hk

Jae Yong Park
The Lawrenceville School
Lawrenceville, NJ 08648
USA

jpark19@lawrenceville.org

Abstract

We present a new proof of the following result of Somer:

Let $(a,b) \in \mathbb{Z}^2$ and let $(x_n)_{n\geq 0}$ be the sequence defined by some initial values x_0 and x_1 and the second-order linear recurrence

$$x_{n+1} = ax_n + bx_{n-1}$$

for $n \geq 1$. Suppose that $b \neq 0$ and $(a,b) \neq (2,-1), (-2,-1)$. Then there exist two relatively prime positive integers x_0 , x_1 such that $|x_n|$ is a composite integer for all $n \in \mathbb{N}$.

The above theorem extends a result of Graham, who solved the problem when (a, b) = (1, 1).

1 Introduction

We give a new proof of the following result of Somer:

Theorem 1. [12, 3] Let $(a,b) \in \mathbb{Z}^2$ and let $(x_n)_{n\geq 0}$ be the sequence defined by some initial values x_0 and x_1 and the second-order linear recurrence

$$x_{n+1} = ax_n + bx_{n-1} (1)$$

for $n \ge 1$. Suppose that $b \ne 0$ and $(a,b) \ne (2,-1), (-2,-1)$. Then there exist two relatively prime positive integers x_0 , x_1 such that $|x_n|$ is a composite integer for all $n \in \mathbb{N}$.

Throughout the paper we will use the following convention: a nonnegative integer n is said to be *composite* if $n \neq 0, 1$, and n is not a prime number.

Graham [5] considered the problem above in the particular case (a, b) = (1, 1). He found two relatively prime positive integers x_0 and x_1 such that the sequence $x_{n+1} = x_n + x_{n-1}$, consists of composite numbers only. Graham's starting pair is

 $(x_0, x_1) = (331635635998274737472200656430763, 1510028911088401971189590305498785).$

Graham's technique was successively refined by Knuth [6], Wilf [16], and Nicol [10], who all found smaller pairs (x_0, x_1) . The current record is due to Vsemirnov [15]:

$$(x_0, x_1) = (106276436867, 35256392432). (2)$$

The above results are based on the fact that the Fibonacci sequence is a divisibility sequence, that is, $F_n \mid F_m$ whenever $n \mid m$, and on finding a finite covering system of congruences $r_i \pmod{m_i}$, $1 \le i \le t$, such that there exist distinct primes $p_1, p_2, \ldots p_t$, so that $p_i \mid F_{m_i}$ for all $i = 1, 2, \ldots, t$.

Somer's proof of Theorem 1 is relatively short since it relies on several results of Bilu, Hanrot and Voutier [1], Choi [2], and Parnami and Shorey [11].

A few years later, unaware of Somer's article, Dubickas, Novikas and Šiurys [3] published a new solution that, although somewhat lengthier, is essentially self-contained.

In this paper, we present another free-standing proof of this theorem that, while comparable to the one in [3], differs from it in several important ways.

We summarize our plan for proving Theorem 1 as follows.

In Section 2 we prove three easy lemmata, which will be useful later on. We believe that Lemma 2 is of independent interest. In Section 3 we study two simple cases: (i) a = 0 and (ii) $a^2 + 4b = 0$. In this section we also show that the condition $(a, b) \neq (\pm 2, -1)$ is necessary. Section 4 deals with the case $|b| \geq 2$. Following [3], we choose $x_1 \equiv 0 \pmod{|b|}$, since then (1) implies that $x_n \equiv 0 \pmod{|b|}$ for all $n \geq 2$. The main difficulty is to show that x_0 and x_1 can be chosen such that $x_n \neq -b, 0, b$ for every $n \geq 0$. In this case, Dubickas et al. present a mainly existential proof which relies on a series of six lemmata. In contrast, our proof is constructive, as we provide explicit expressions for x_0 and x_1 as polynomials in a and b.

In Section 5 we consider the case |b| = 1. Dubickas, Novikas and Šiurys prove that except for finitely many values of |a|, one can take x_0 and x_1 so that each x_n is divisible by one of five distinct appropriately chosen prime numbers. We prove that, with the exception of finitely many values of |a|, four primes suffice. The proof in the case |b| = 1 relies on the divisibility properties of the Lucas sequence of the first kind $(u_n)_{n\geq 0}$, defined as

$$u_0 = 0, u_1 = 1$$
 and $u_{n+1} = au_n + bu_{n-1}$, for $n \ge 1$. (3)

Finally, in Section 6 we prove that if $|a| \ge 3$ and b = -1, then u_n is composite for all $n \ge 3$. The interesting fact is that in this case it seems likely that there is no finite set of prime numbers $p_1, p_2, \ldots p_t$ such that each u_n is divisible by some $p_i, i = 1, 2, \ldots t$.

2 Three useful lemmata

Lemma 2. Consider the sequence $(x_n)_{n\geq 0}$ given by (1). Then

$$x_{n+1}^2 - ax_n x_{n+1} - bx_n^2 = (-b)^n (x_1^2 - ax_0 x_1 - bx_0^2).$$
(4)

Proof.

$$\begin{bmatrix} x_{n+2} & x_{n+1} \\ x_{n+1} & x_n \end{bmatrix} = \begin{bmatrix} ax_{n+1} + bx_n & ax_n + bx_{n-1} \\ x_{n+1} & x_n \end{bmatrix} = \begin{bmatrix} a & b \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} x_{n+1} & x_n \\ x_n & x_{n-1} \end{bmatrix} =$$

$$= \begin{bmatrix} a & b \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} a & b \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} x_n & x_{n-1} \\ x_{n-1} & x_{n-2} \end{bmatrix} = \begin{bmatrix} a & b \\ 1 & 0 \end{bmatrix}^2 \cdot \begin{bmatrix} x_n & x_{n-1} \\ x_{n-1} & x_{n-2} \end{bmatrix} = \cdots = \begin{bmatrix} a & b \\ 1 & 0 \end{bmatrix}^n \cdot \begin{bmatrix} x_2 & x_1 \\ x_1 & x_0 \end{bmatrix}.$$

Taking determinants on both sides we obtain

$$\det \begin{bmatrix} x_{n+2} & x_{n+1} \\ x_{n+1} & x_n \end{bmatrix} = \det \begin{bmatrix} a & b \\ 1 & 0 \end{bmatrix}^n \cdot \det \begin{bmatrix} x_2 & x_1 \\ x_1 & x_0 \end{bmatrix} \implies x_{n+2} \cdot x_n - x_{n+1}^2 = (-b)^n \cdot (x_2 x_0 - x_1^2)$$

$$\implies (ax_{n+1} + bx_n)x_n - x_{n+1}^2 = (-b)^n \cdot ((ax_1 + bx_0)x_0 - x_1^2), \text{ which after expanding}$$
becomes $x_{n+1}^2 - ax_n x_{n+1} - bx_n^2 = (-b)^n (x_1^2 - ax_0 x_1 - bx_0^2),$ as claimed.

Lemma 3. Consider the sequence $(x_n)_{n\geq 0}$ given by (1). Suppose that $1\leq |x_0|<|x_1|$ and $|a|>|b|\geq 1$. Then the sequence $(|x_n|)_{n\geq 0}$ is strictly increasing.

Proof. We use induction on n. By hypothesis, the statement is true for n = 0. Suppose that $|x_{n-1}| < |x_n|$ for some $n \ge 1$. We intend to prove that $|x_n| < |x_{n+1}|$. Indeed

$$|x_{n+1}| = |ax_n + bx_{n-1}| \ge |ax_n| - |bx_{n-1}| = |a||x_n| - |b||x_{n-1}| >$$

> $|a||x_n| - |b||x_n| = (|a| - |b|)|x_n|$, by the induction hypothesis.

Using $|a| - |b| \ge 1$, we obtain $|x_{n+1}| > |x_n|$, which completes the induction.

Lemma 4. Let n_1 , n_2 and n_3 be three positive integers such that no prime number p divides all of them. Then there exists an integer $k \geq 2$ such that n_1 and $n_2 + kn_3$ are relatively prime.

Proof. Let $d := \gcd(n_2, n_3)$. Note that $\gcd(n_1, d) = 1$, otherwise d divides n_1, n_2 and n_3 . By Dirichlet's theorem on arithmetic progressions there exists a k such that $n_2/d + kn_3/d$ is a prime number greater than n_1 . Then $d(n_2/d + k \cdot n_3/d) = n_2 + k n_3$ is both greater and relatively prime to n_1 .

3 Two simple special cases: (i) a = 0 and (ii) $a^2 + 4b = 0$

Case (i): Since a = 0, it can be easily proved that $x_{2n} = b^n x_0$ and $x_{2n+1} = b^n x_1$. It suffices to take $x_0 = 4$ and $x_1 = 9$ to obtain that x_n is composite for all $n \ge 0$.

Case (ii): If $a^2 + 4b = 0$, then a must be even; a = 2c and therefore $b = -a^2/4 = -c^2$. We divide the proof into two cases: $|b| \ge 2$ and b = -1.

If $|b| \ge 2$, we have $|c| \ge 2$. Let us now take $x_0 = 4c^2 - 1$ and $x_1 = 2c^3$. Then x_0 and x_1 are relative prime positive composite integers. One immediately obtains $x_2 = c^2$; thus x_2 is also composite. Also, it can be easily proved that $x_n = c^n ((n-1) - (2n-4)c^2)$ for all n > 3.

Note that for any $n \ge 3$ one cannot have $x_n = 0$; otherwise, $4 \le c^2 = (n-1)/(2n-4) \le 1$, which is impossible. It follows that $|x_n|$ is composite for all $n \ge 3$.

If b=-1, then |a|=2. If a=2, then a simple induction shows that

$$x_{n+1} = (n+1)x_1 - nx_0 = x_1 + n(x_1 - x_0)$$
 for all $n \ge 0$,

that is, $(x_n)_{n\geq 0}$ is an arithmetic sequence whose first term and common difference are relatively prime. By Dirichlet's theorem on primes in arithmetic progressions, it follows that $|x_n|$ is a prime number for infinitely many values of n. If a=-2, then one can show that $x_{n+1} = (-1)^n (x_1 + n(x_0 + x_1))$. In this case, $(x_n)_{n \ge 0}$ is the union of two arithmetic sequences, both of which have the first term and the common difference relatively prime. Again, for any choice of x_0 and x_1 relatively prime, $|x_n|$ is a prime for infinitely many n. This proves the necessity of the condition $(a, b) \neq (\pm 2, -1)$.

The case $|b| \ge 2$ 4

Based on the results from the previous section, from now on we can assume that

$$|a| > 1$$
 and $a^2 + 4b \neq 0$. (5)

We divide the proof into three separate cases:

Case I: |a| > |b|,

Case II: $1 \le |a| \le |b|$ and |b| is composite, and

Case III: $1 \le |a| \le |b|$ and |b| is a prime.

Case I: |a| > |b|. To complete the proof of Theorem 1, in this case we take $x_0 = b^4 - 1$, $x_1 = b^4$. Clearly, x_0 and x_1 are both positive, relatively prime and composite. Moreover, $x_0 < x_1$. Then $x_n \equiv 0 \pmod{b}$ for all $n \geq 1$, and by using Lemma 3 it follows that $(|x_n|)_{n>0}$ is strictly increasing. Hence, we have $|x_n| \ge x_0 > |b|$ for all $n \ge 0$, and therefore $|x_n|$ is composite for all $n \geq 0$.

Case II: $1 \leq |a| \leq |b|$ and |b| is composite. Choose $x_0 = 4b^4 - 1$, $x_1 = 2b^2$. Clearly, $\gcd(x_0, x_1) = 1$, and x_0, x_1 are positive composite integers. It also follows that $x_n \equiv 0 \pmod{b}$ for all $n \geq 1$, and since |b| is composite, it follows that $|x_n|$ is composite, unless $x_n = 0$ for some n. We will prove that this cannot happen.

To get a contradiction, suppose that $x_{n+1} = 0$ for some $n \geq 2$. Then, by Lemma 2, we have $x_n^2 = (-b)^{n-1}(x_1^2 - ax_0x_1 - bx_0^2)$. Since $x_0 = 4b^4 - 1$ and $x_1 = 2b^2$, we have

$$x_1^2 - ax_0x_1 - bx_0^2 = (-b)(16b^8 + 8ab^5 - 8b^4 - 4b^3 - 2ab + 1)$$
, which implies that
$$x_n^2 = (-b)^n(16b^8 + 8ab^5 - 8b^4 - 4b^3 - 2ab + 1).$$
 (6)

If n is even, this implies that $16b^8 + 8ab^5 - 8b^4 - 4b^3 - 2ab + 1$ is a perfect square. If n is odd, this implies that $(-b)(16b^8 + 8ab^5 - 8b^4 - 4b^3 - 2ab + 1)$ is a perfect square. We will prove that none of these are possible if $a^2 + 4b \neq 0$.

Note first that since $|a| \leq |b|$, we have

$$(4b^4 + ab - 2)^2 < 16b^8 + 8ab^5 - 8b^4 - 4b^3 - 2ab + 1 < (4b^4 + ab)^2.$$
 (7)

Indeed, these inequalities are equivalent to the following ones:

$$8b^4 - 2 - (4b^3 + (ab - 1)^2) > 0$$
, and $8b^4 + 4b^3 - 2 + (ab + 1)^2 > 0$. (8)

We have

$$|a| \le |b| \implies |ab| \le b^2 \implies |ab - 1| \le |ab| + 1 \le b^2 + 1 \implies (ab - 1)^2 \le b^4 + 2b^2 + 1.$$
 (9)

From this we obtain

$$|4b^{3} + (ab - 1)^{2}| \le 4|b|^{3} + (ab - 1)^{2} \le b^{4} + 4|b|^{3} + 2b^{2} + 1.$$
(10)

To prove the first inequality in (8), note that

$$8b^{4} - 2 - (4b^{3} + (ab - 1)^{2}) \ge 8b^{4} - 2 - |4b^{3} + (ab - 1)^{2}| \ge 8b^{4} - 2 - (b^{4} + 4|b|^{3} + 2b^{2} + 1) = 7b^{4} - 4|b|^{3} - 2b^{2} - 3 = 7|b|^{4} - 4|b|^{3} - 2|b|^{2} - 3 = 4|b|^{3}(|b| - 1) + 2|b|^{2}(|b|^{2} - 1) + (|b|^{4} - 3) \ge 4|b|^{3} + 2|b|^{2} + |b|^{4} - 3 \ge 4 \cdot 2^{3} + 2 \cdot 2^{2} + 2^{4} - 3 > 0.$$

The second inequality in (8) is much easier to prove:

$$8b^4 + 4b^3 - 2 + (ab + 1)^2 \ge 8b^4 + 4b^3 - 2 \ge 8|b|^4 - 4|b|^3 - 2 \ge 8 \cdot 2^4 - 4 \cdot 2^3 - 2 > 0.$$

Hence, the inequalities (7) hold.

If the middle term in (7) were to be a perfect square, the only option remaining is

$$16b^8 + 8ab^5 - 8b^4 - 4b^3 - 2ab + 1 = (4b^4 + ab - 1)^2$$
, which implies $b^2(a^2 + 4b) = 0$.

However, this is impossible if $a^2+4b \neq 0$. Hence, if one assumes that $|a| \leq |b|$ and $a^2+4b \neq 0$, then $16b^8+8ab^5-8b^4-4b^3-2ab+1$ cannot be a perfect square.

Suppose next that $(-b)(16b^8 + 8ab^5 - 8b^4 - 4b^3 - 2ab + 1)$ is a perfect square. Since the two factors are mutually prime, it follows that both have to be perfect squares. In particular, the second one has to be a perfect square, and we have already proved that it cannot be. It follows that the sequence (x_n) does not contain any terms equal to 0. This completes the proof of Theorem 1 in case II.

Case III: $1 \le |a| \le |b|$ and |b| is a prime.

We divide the proof of this case into three subcases: |a| = 1, |a| = |b| and $2 \le |a| < |b|$.

Subcase IIIa: |a| = 1, |b| is a prime.

If a=1 and b>0, then take $x_0=(2b^2-1)^2$, $x_1=b(b^2-1)$. Clearly, x_0 and x_1 are positive, relatively prime, composite integers. It follows immediately that $x_2=b^3(4b^2-3)$ is also composite. Finally, an easy induction shows that $x_n\equiv 0\pmod{b^2}$ and that $\frac{x_n}{b^2}\equiv -1\pmod{b}$ for all $n\geq 3$. Hence, $|x_n|$ is necessarily composite for all $n\geq 3$.

The other situations can be dealt with similarly.

If a=-1 and b<0, take $x_0=(2b^2-1)^2, x_1=-b(b^2-1)$. Then $x_2=b^3(4b^2-3)$, and for $n\geq 3$ one can show that $x_n\equiv 0\pmod{b^2}$ and $\frac{x_n}{b^2}\equiv (-1)^{n+1}\pmod{b}$. Again, all $|x_n|$ are composite.

If a=1 and b<0, we take $x_0=(2b^2-1)^2, x_1=-b(b^2+1)$. Then $x_2=b^3(4b^2-5)$, and for all $n\geq 3$ one can prove that $x_n\equiv 0\pmod{b^2}$ and $\frac{x_n}{b^2}\equiv -1\pmod{b}$. Hence, all $|x_n|$ are composite.

Finally, if a = -1 and b > 0, select $x_0 = (2b^2 - 1)^2$, $x_1 = b(b^2 + 1)$. Then $x_2 = b^3(4b^2 - 5)$, and for all $n \ge 3$ we have that $x_n \equiv 0 \pmod{b^2}$ and $\frac{x_n}{b^2} \equiv (-1)^{n+1} \pmod{b}$. All $|x_n|$ are composite.

This completes the proof of Theorem 1 in subcase IIIa.

Subcase IIIb: |a| = |b|, |b| is a prime.

If a = b, take $x_0 = 4b^4 - 1$, $x_1 = 2b^2$. Then $x_2 = b(4b^4 + 2b^2 - 1)$ is composite, and $x_n \equiv 0 \pmod{b^2}$ for all $n \geq 3$. It remains to show that $x_n \neq 0$ for all n.

As in Case II, $x_{n+1} = 0$ implies that either $16b^8 + 8b^6 - 8b^4 - 4b^3 - 2b^2 + 1$ or $(-b)(16b^8 + 8b^6 - 8b^4 - 4b^3 - 2b^2 + 1)$ is a perfect square. One can use the same technique as in Case II to prove that this cannot happen if $a^2 + 4b = b^2 + 4b \neq 0$.

If a = -b, take $x_0 = 4b^4 - 1$, $x_1 = 2b^2$ (same choice). Then $x_2 = b(4b^4 - 2b^2 - 1)$ is composite, and $x_n \equiv 0 \pmod{b^2}$ for all $n \ge 3$. It remains to show that $x_n \ne 0$ for all n.

As in Case II, $x_{n+1} = 0$ implies that either $16b^8 - 8b^6 - 8b^4 - 4b^3 + 2b^2 + 1$ or $(-b)(16b^8 - 8b^6 - 8b^4 - 4b^3 + 2b^2 + 1)$ is a perfect square. The same approach as in Case II shows that this is impossible if $a^2 + 4b = b^2 + 4b \neq 0$.

Subcase IIIc: $2 \le |a| < |b|$, |b| is a prime.

It follows that gcd(a, b) = 1.

If a > 0, b > 0, take $x_0 = a^3, x_1 = b(b^2 - a^2)$. Then $x_2 = ab^3$. For $n \ge 3$, $x_n \equiv 0 \pmod{b^2}$ and $\frac{x_n}{b^2} \equiv -a^{n-1} \pmod{b}$. Since $\gcd(a, b) = 1, x_n \ne 0$.

If a < 0, b < 0, take $x_0 = -a^3, x_1 = -b(b^2 - a^2)$. Then $x_2 = -ab^3$. For $n \ge 3$, $x_n \equiv 0 \pmod{b^2}$ and $\frac{x_n}{b^2} \equiv a^{n-1} \pmod{b}$. Hence, $x_n \ne 0$ for all n.

If a < 0, b > 0, take $x_0 = -a^3, x_1 = b(b^2 + a^2)$. Then $x_2 = ab^3$, and for $n \ge 3$, $x_n \equiv 0 \pmod{b^2}$ and $\frac{x_n}{b^2} \equiv a^{n-1} \pmod{b}$. So, $x_n \ne 0$ for all n.

Lastly, if a > 0, b < 0, take $x_0 = a^3$, $x_1 = -b(b^2 + a^2)$. Then $x_2 = -ab^3$. For $n \ge 3$, $x_n \equiv 0 \pmod{b^2}$ and $\frac{x_n}{b^2} \equiv -a^{n-1} \pmod{b}$. Since $\gcd(a,b) = 1$, we have $x_n \ne 0$ for all n.

Hence, in each case one can choose x_0 and x_1 to be positive, composite and relatively prime so that x_2 is composite, and for all $n \geq 3$ we have that $x_n \equiv 0 \pmod{b^2}$ and $x_n \neq 0$. It follows that $|x_n|$ is composite for all $n \geq 0$, and this completes the proof of Theorem 1 in the case $|b| \geq 2$.

5 The case |b| = 1

The main idea behind the proof of Theorem 1 in this particular case can be summarized as follows: we want to find a finite set of primes p_1, p_2, \ldots, p_t such that for every $n \geq 0$ the number $|x_n|$ is divisible by at least one of these primes.

We start the analysis with the simple case in which |a| has at least two distinct prime factors.

Lemma 5. Let |b| = 1, and suppose that |a| has at least two distinct prime factors: p_1 and p_2 , with $p_1 < p_2$. Then the sequence given by (1) and the initial terms $x_0 = p_1^2$, $x_1 = p_2^2$ satisfies the conditions in Theorem 1.

Proof. Clearly, x_0 and x_1 are positive relatively prime composite integers. An easy induction shows that $x_n \equiv 0 \pmod{p_1}$ if n is even and $x_n \equiv 0 \pmod{p_2}$ if n is odd. Since $|x_0| < |x_1|$ and 1 = |b| < |a|, the hypotheses of Lemma 3 are satisfied; hence $(|x_n|)_{n\geq 0}$ is strictly increasing. It follows that x_n is composite for all $n \geq 0$, and therefore Theorem 1 is verified in this case.

Remark 6. In all what follows we will assume that $|a| = p_1^s$ for some prime p_1 and some nonnegative integer $s \ge 0$. Note that this allows the possibility of |a| = 1.

Next, we introduce a special sequence $(u_n)_{n>0}$ given by

$$u_0 = 0, u_1 = 1, \quad u_{n+1} = au_n + bu_{n-1} \quad \text{for all } n \ge 1.$$
 (11)

This sequence is called the Lucas sequence of the first kind.

One can prove that $(u_n)_{n\geq 0}$ is a divisibility sequence; that is, u_m divides u_n whenever m divides n. Indeed, suppose that $a^2 + 4b \neq 0$, which implies that the roots α and β of the characteristic equation are distinct, $\alpha \neq \beta$. Assume that n = mk. Then

$$u_n = \frac{\alpha^n - \beta^n}{\alpha - \beta} = \frac{\alpha^{mk} - \beta^{mk}}{\alpha - \beta} = \frac{\alpha^m - \beta^m}{\alpha - \beta} \cdot \left(\alpha^{m(k-1)} + \alpha^{m(k-2)}\beta^m + \dots + \beta^{m(k-1)}\right)$$
$$= u_m \left(\alpha^{m(k-1)} + \alpha^{m(k-2)}\beta^m + \dots + \beta^{m(k-1)}\right).$$

The second factor of the last term in the equality above is a symmetric function in α and β , and therefore it can be written as a polynomial function of $\alpha + \beta = a$ and $\alpha\beta = -b$. It follows that u_n/u_m is an integer, as claimed.

Of particular interest in the sequel are the values of u_4 and u_6 :

$$u_4 = a(a^2 + 2b)$$
 and $u_6 = a(a^2 + b)(a^2 + 3b)$. (12)

The next two results give information regarding the prime factors of u_4 and u_6 when |b| = 1.

Lemma 7. Suppose that b = -1, $|a| \ge 4$ and $|a| = p_1^s$ for some prime p_1 and some $s \ge 1$. Then $u_6 = a(a^2 - 1)(a^2 - 3)$ has at least three additional distinct prime factors, p_2, p_3 and p_4 , all three different from p_1 .

Proof. Note that $a^2 - 3$ is not divisible by 4 or 9. Since $a^2 - 3 \ge 13$, it follows that $a^2 - 3$ has an odd prime factor p_4 different from 3, and since $\gcd(a, a^2 - 3) \in \{1, 3\}$ we have that $p_4 \ne p_1$. Clearly, neither p_1 nor p_4 are factors of $a^2 - 1$. Note that $a^2 - 1$ has at least two distinct prime factors. Indeed, if one assumes the opposite, then both |a - 1| and |a + 1| are powers of some prime. But this cannot happen, since $|a| \ge 4$. It follows that $a^2 - 1$ has at least two distinct prime factors, p_2 and p_3 , both different from p_1 and p_4 .

To illustrate Lemma 7, let us take (a, b) = (-9, -1). Then $a^2 - 3 = 78 = 2 \cdot 3 \cdot 13$ while $a^2 - 1 = 80 = 2^4 \cdot 5$. Hence, one has $p_1 = 3$, $p_4 = 13$, $p_2 = 2$, and $p_3 = 5$.

Lemma 8. Suppose that b=1, $|a| \ge 6$ and $|a|=p_1^s$ for some prime p_1 and some $s \ge 1$.

If $p_1 \neq 3$, then $u_4 = a(a^2 + 2)$ has at least two additional distinct prime factors, p_2 and p_3 , both different from p_1 .

If $|a| = 3^s$ for some $s \ge 2$, then $u_6 = a(a^2 + 1)(a^2 + 3)$ has at least three additional distinct prime factors, p_2 , p_3 and p_4 , all three different from p_1 .

Proof. Suppose first that $p_1 = 2$; that is, $|a| = 2^s$ for some $s \ge 3$. Note that $a^2 + 2 \equiv 0 \pmod{3}$, hence one can choose $p_2 = 3$. Note that $a^2 = 2(2^{2s-1} + 1)$ must have a prime factor different from 2 and 3. Indeed, if one assumes the opposite, then $2^{2s-1} + 1 = 3^t$ for some $t \ge 2$. However, under the assumption that $2s - 1 \ge 2$ and $t \ge 2$, the Catalan-Mihäilescu theorem implies that the only solution of this equation is s = 2, t = 2. But this implies that $|a| = 2^2 = 4$, a contradiction.

Consider next the case $|a| = p_1^s$ with $p_1 > 3$. In particular, $a^2 + 2$ is odd and therefore $\gcd(a, a^2 + 2) = 1$. Moreover, since $a^2 + 2 \equiv 0 \pmod{3}$ one can safely take $p_2 = 3$. We claim that $a^2 + 2$ has at least one other prime factor, p_3 , different from p_1 and p_2 . Indeed, if one assumes otherwise, then $a^2 + 2 = p_1^{2s} + 2 = 3^t$ for some $t \geq 2$. However, it was shown by Ljunggren [7] that the more general equation $x^2 + 2 = y^n$, $n \geq 2$ has the unique solution x = 5, y = 3, n = 3. This would give |a| = 5, which is excluded from our analysis.

Finally, suppose that $p_1 = 3$ and therefore $|a| = 3^s$ for some $s \ge 2$. Then both $a^2 + 1$ and $a^2 + 3$ are even, so one can take $p_2 = 2$. Note that $a^2 + 1 = 9^s + 1$; hence $a^2 + 1 \equiv 10 \pmod{72}$ and $a^2 + 3 \equiv 12 \pmod{72}$. Hence, there exists a positive integer c such that $a^2 + 1 = 2(36c + 5)$ and $a^2 + 3 = 12(6c + 1)$. Let p_3 be a prime factor of 36c + 5 and let p_4 be a prime factor of 6c + 1. It follows immediately that $p_1 = 3$, $p_2 = 2$, p_3 , and p_4 are all distinct.

We present a couple of particular instances covered by the above lemma.

Suppose first that a=8 and b=1. Then $u_2=a=2^3$ while $u_4=2^4\cdot 3\cdot 11$. Thus, in this case one can take $p_1=2, p_2=3, p_3=11$.

Suppose next that a=-49 and b=1. Then $u_2=a=-7^2$, while $u_4=-7^2\cdot 3^3\cdot 89$. It follows that we can choose $p_1=7, p_2=3, p_3=89$.

Finally, let us assume that a = 9 and b = 1. Then $u_2 = a = 3^2$, while $a^2 + 1 = 2 \cdot 41$, $a^2 + 3 = 2^2 \cdot 3 \cdot 7$. Hence, in this case we have $p_1 = 3$, $p_2 = 2$, $p_3 = 41$, $p_4 = 7$.

The next lemma uses the concept of covering system introduced by Erdős in [4].

Definition 9. A collection of residue classes $r_i \pmod{m_i}$, $0 \le r_i < m_i$, where $1 \le i \le t$ is said to be a *covering system* if every integer n satisfies at least one equality $n \equiv r_i \pmod{m_i}$.

In the proof of the theorem when |b| = 1, except for finitely many values of a we will use one of the following two covering systems

$$\{0 \pmod{2}, 1 \pmod{6}, 3 \pmod{6}, 5 \pmod{6}\}$$
 or $\{0 \pmod{2}, 1 \pmod{4}, 3 \pmod{4}\}.$

Lemma 10. Let a, b be two integers such that $|a| \ge 2$ and |b| = 1. Let $(u_n)_{n\ge 0}$ be the Lucas sequence defined in (11), and suppose that there exists a finite collection of triples (p_i, m_i, r_i) , $1 \le i \le t$ with the following properties:

- (i) All primes p_i are distinct.
- (ii) The residue classes $r_i \pmod{m_i}$ form a covering system.
- (iii) $p_i \mid u_{m_i}$ for all $1 \leq i \leq t$.

Then there exist two relatively prime positive integers x_0 and x_1 such that each term of the sequence $(x_n)_{n\geq 0}$ defined in (1) is composite.

Proof. Let $P = p_1 p_2 \dots p_t$.

By the Chinese remainder theorem, there exist $y, z \in \{0, 1, \dots P-1\}$ satisfying

$$y \equiv u_{m_i - r_i} \pmod{p_i},$$

$$z \equiv u_{m_i - r_i + 1} \pmod{p_i},$$
(13)

for i = 1, 2, ..., t. Note that there is no prime which divides y, z, and P simultaneously. Indeed, if such a prime p_j were to exist, then there would be two consecutive terms u_n and u_{n+1} both divisible by p_j . Since $u_{n+1} = au_n + bu_{n-1}$ and |b| = 1, then $p_j \mid u_{n-1}$. By induction, it follows that $p_j \mid u_1$ which is impossible since $u_1 = 1$.

Let $x_0 \equiv y \pmod{P}$ and $x_1 \equiv z \pmod{P}$.

Then we have $x_0 \equiv u_{m_i-r_i} \pmod{p_i}$ and $x_1 \equiv u_{m_i-r_i+1} \pmod{p_i}$ for all i = 1, 2, ..., t. By induction on n, we obtain $x_{n+1} \equiv u_{m_i-r_i+n} \pmod{p_i}$ for every $n \geq 0$ and every $1 \leq i \leq t$.

Since the residue classes r_i (mod m_i) form a covering system, each nonnegative integer n belongs to one of these classes, say $n = r_i + k m_i$ for some $k \ge 0$ and some $i \in \{1, 2, ..., t\}$. This implies that

$$x_{n+1} \equiv u_{m_i - r_i + n} \pmod{p_i} \equiv u_{m_i(k+1)} \pmod{p_i} \equiv 0 \pmod{p_i}, \tag{14}$$

since $p_i \mid u_{m_i}$ and $u_{m_i} \mid u_{m_i(k+1)}$. Hence, every term of the sequence $(x_n)_n$ is divisible by some prime p_i . It remains to choose x_0 and x_1 , relatively prime positive integers $x_0 \equiv y \pmod{P}$ and $x_1 \equiv z \pmod{P}$ such that $|x_n| \geq P$ for every $n \in \mathbb{N}$.

In order to achieve this, take $x_0 = y + P$ and $x_1 = z + kP$ where $k \ge 2$ and $\gcd(x_0, x_1) = 1$. Using Lemma 4 with $n_1 = y + P$, $n_2 = z$ and $n_3 = P$ shows that such a choice is always possible. Recall that we proved earlier that $\gcd(y, z, P) = 1$. Such a choice implies that $0 < P \le x_0 < x_1$, and since |a| > |b| = 1, Lemma 3 implies that $(|x_n|)_n$ is a strictly increasing sequence. It follows that $|x_n| \ge P$ for all $n \ge 0$, and therefore each such x_n is composite.

We can now prove the theorem if |b| = 1.

Suppose first that b = -1 and $|a| = p_1^s \ge 4$. Then, by Lemma 7, there are four distinct primes p_1, p_2, p_3, p_4 dividing u_2, u_6, u_6, u_6 , respectively. The theorem follows after using Lemma 10 for the triples $(p_1, 2, 0), (p_2, 6, 1), (p_3, 6, 3), (p_4, 6, 5)$.

As a numerical illustration, suppose that a = -9, b = -1. Then, as described in the paragraph following the proof of Lemma 7, we have $p_1 = 3, p_2 = 2, p_3 = 5$ and $p_4 = 13$.

The system (13) becomes

```
y \equiv u_2 \pmod{3} z \equiv u_3 \pmod{3}

y \equiv u_5 \pmod{2} z \equiv u_6 \pmod{2}

y \equiv u_3 \pmod{5} z \equiv u_4 \pmod{5}

y \equiv u_1 \pmod{13} z \equiv u_2 \pmod{13}
```

and its solution is $P = p_1p_2p_3p_4 = 390, y = 105, z = 134$. Since y < z and gcd(y, z) = 1, one can safely take $x_0 = y = 105$ and $x_1 = z = 134$. Then the sequence $(|x_n|)_{n\geq 0}$ is strictly increasing, and for every $n \geq 0$ we have that $x_{2n} \equiv 0 \pmod{3}, x_{6n+1} \equiv 0 \pmod{2}, x_{6n+3} \equiv 0 \pmod{5}$ and $x_{6n+5} \equiv 0 \pmod{13}$. It follows that all terms of the sequence are composite.

Next suppose that b = 1 and $|a| = p_1^s \ge 6$ for some prime p_1 . If $p_1 \ne 3$, then by Lemma 8 there exist three distinct primes p_1, p_2, p_3 , dividing u_2, u_4, u_4 , respectively.

The theorem follows after using Lemma 10 for the triples $(p_1, 2, 0), (p_2, 4, 1), (p_3, 4, 3)$. As in the case b = -1, we present the details in a couple of particular cases.

Suppose first that a = 8, b = 1. Then, as described in the paragraph following the proof of Lemma 8, we have $p_1 = 2, p_2 = 3, p_3 = 11$. The system (13) becomes

$$y \equiv u_0 \pmod{2}$$
 $z \equiv u_1 \pmod{2}$
 $y \equiv u_3 \pmod{3}$ $z \equiv u_4 \pmod{3}$
 $y \equiv u_1 \pmod{11}$ $z \equiv u_2 \pmod{11}$

and its solution is $P = p_1p_2p_3 = 66$, y = 56, z = 63. Note that in this case $\gcd(y, z) = 7 > 1$. Still, one can safely take $x_0 = y = 56$ and $x_1 = z + P = 129$, and now $\gcd(x_0, x_1) = 1$ as desired. Then, since $0 < x_0 < x_1$, the sequence $(|x_n|)_{n \ge 0}$ is strictly increasing and for every $n \ge 0$ we have that $x_{2n} \equiv 0 \pmod{2}$, $x_{4n+1} \equiv 0 \pmod{3}$, and $x_{4n+3} \equiv 0 \pmod{11}$. It follows that all terms of the sequence are composite.

Next assume that a = -49, b = 1. Then $p_1 = 7, p_2 = 3, p_3 = 89$, and the system (13) becomes

$$y \equiv u_0 \pmod{7}$$
 $z \equiv u_1 \pmod{7}$
 $y \equiv u_3 \pmod{3}$ $z \equiv u_4 \pmod{3}$
 $y \equiv u_1 \pmod{89}$ $z \equiv u_2 \pmod{89}$.

The solution is $P = p_1p_2p_3 = 1869$, y = 980, z = 1464. Notice that in this case $\gcd(y, z) = 4 > 1$. Still, one can safely take $x_0 = y = 980$ and $x_1 = z + P = 3333$ and now $\gcd(x_0, x_1) = 1$ as desired. Moreover, since $0 < x_0 < x_1$, the sequence $(|x_n|)_{n \ge 0}$ is strictly increasing, and for every $n \ge 0$ we have that $x_{2n} \equiv 0 \pmod{7}$, $x_{4n+1} \equiv 0 \pmod{3}$, and $x_{4n+3} \equiv 0 \pmod{89}$. It follows that all terms of the sequence are composite.

For the case b = 1 and $|a| = 3^s$ with $s \ge 2$, we use the second part of Lemma 8 to conclude that there are four distinct primes p_1, p_2, p_3, p_4 , dividing u_2, u_6, u_6, u_6 , respectively. The theorem follows after using Lemma 10 for the triples $(p_1, 2, 0), (p_2, 6, 1), (p_3, 6, 3), (p_4, 6, 5)$.

We show the full details if a = 9, b = 1. Then, as mentioned in the paragraph following the proof of Lemma 8, we have $p_1 = 3, p_2 = 2, p_3 = 41, p_4 = 7$. The system (13) becomes

```
y \equiv u_2 \pmod{3} z \equiv u_3 \pmod{3}

y \equiv u_5 \pmod{2} z \equiv u_6 \pmod{2}

y \equiv u_3 \pmod{41} z \equiv u_4 \pmod{41}

y \equiv u_1 \pmod{7} z \equiv u_2 \pmod{7}.
```

Solving, we obtain $P = p_1 p_2 p_3 p_4 = 1722, y = 1107, z = 1444$. In this case we can simply choose $x_0 = y = 1107$ and $x_1 = z = 1144$.

Then $gcd(x_0, x_1) = 1$, and since $0 < x_0 < x_1$, the sequence $(|x_n|)_{n \ge 0}$ is strictly increasing. Moreover, for every $n \ge 0$ we have that $x_{2n} \equiv 0 \pmod{3}$, $x_{6n+1} \equiv 0 \pmod{2}$, $x_{6n+3} \equiv 0 \pmod{41}$, and $x_{6n+5} \equiv 0 \pmod{7}$. It follows that all terms of the sequence are composite as desired.

At this point we have proved the main theorem when |b|=1 for all but finitely many values of a. We still have to study what happens when b=-1 and $|a|\leq 3$ as well as the cases when b=1 and $|a|\leq 5$. Recall that the cases a=0 and $(a,b)=(\pm 2,-1)$ were already handled in section 2.

For most of these cases, we will still use Lemma 10; the only difference is that the set of triples $\{p_i, m_i, r_i\}_{i=1}^{i=t}$ is occasionally going to be slightly more numerous.

We summarize our findings in the table below. We invite the reader to verify that the collections $\{p_i, m_i, r_i\}_{i=1}^{i=t}$ do indeed satisfy the three conditions in Lemma 10. Note that in each case we have $0 < x_0 < x_1$, and since |a| > |b| = 1, Lemma 3 implies that $(|x_n|)_{n \ge 0}$ is strictly increasing.

It remains to see what happens when |a| = |b| = 1, as in these cases Lemma 10 does not apply.

\overline{a}	b	$\{(p_i, m_i, r_i)\}$	x_0	x_1
5	1	(5,2,0), (2,6,1), (7,6,3), (13,6,5)	495	1136
-5	1	(5,2,0), (2,6,1), (7,6,3), (13,6,5)	495	866
4	1	(2,2,0), (3,4,1), (7,8,3), (23,8,7)	116	165
-4	1	(2,2,0), (3,4,1), (7,8,3), (23,8,7)	116	801
3	1	(3, 2, 0), (11, 4, 1), (7, 8, 3), (17, 8, 7)	1803	3454
-3	1	(3, 2, 0), (11, 4, 1), (7, 8, 3), (17, 8, 7)	1803	3091
2	1	(2,2,0), (5,3,0), (3,4,1), (7,6,5), (11,12,7)	260	807
-2	1	(2,2,0), (5,3,0), (3,4,1), (7,6,5), (11,12,7)	260	1503
3	-1	(3, 2, 0), (2, 3, 0), (7, 4, 3), (47, 8, 5), (23, 12, 5), (1103, 24, 1)	7373556	2006357
-3	-1	(3, 2, 0), (2, 3, 0), (7, 4, 3), (47, 8, 5), (23, 12, 5), (1103, 24, 1)	7373556	14686445

Table 1: Covering triples for the cases $b=1, a=\pm 2, \pm 3, \pm 4, \pm 5$ and $b=-1, a=\pm 3$

If a = -1, b = -1, then it can be easily verified that the sequence given by the recurrence $x_{n+1} = -x_n - x_{n-1}$ has period 3. Hence, if one chooses $x_0 = 8$ and $x_1 = 27$, then $x_2 = -35$, and due to the periodic behavior all terms of the sequence are composite.

Similarly, if a = 1, b = -1, then the sequence given by the recurrence $x_{n+1} = x_n - x_{n-1}$ has period 6. Again, if one chooses $x_0 = 8$ and $x_1 = 35$, then the first few terms of the sequence are $8, 35, 27, -8, -35, -37, 8, 35, 27, \ldots$; that is, x_n is always composite.

If a = b = 1, then Vsemirnov's pair $v_0 = 106276436867$, $v_1 = 35256392432$ shows that all the numbers

$$v_n = v_{n-1} + v_{n-2} = v_1 F_n + v_0 F_{n-1}$$

$$\tag{15}$$

are composite. Here, F_n is the nth Fibonacci number, where $F_{-1} = 1$, $F_0 = 0$, $F_1 = 1$.

For the case a = -1, b = 1, we follow the solution in [3].

It can be easily checked that the general term of the sequence $x_{n+1} = -x_n + x_{n-1}$ can be written as

$$x_n = (-1)^{n+1} x_1 F_n + (-1)^n x_0 F_{n-1}, \quad n \ge 0.$$
(16)

We choose $x_0 = v_0 - v_1 = 71020044435$ and $x_1 = v_0 = 106276436867$. It is easy to check that x_0 and x_1 are relatively prime composite integers. Moreover, from (15) and (16) we obtain that

$$x_n = (-1)^{n+1}v_0F_n + (-1)^n(v_0 - v_1)F_{n-1} + = (-1)^{n+1}v_1F_{n-1} + (-1)^{n+1}v_0(F_n - F_{n-1}) =$$

$$= (-1)^{n+1}v_1F_{n-1} + (-1)^{n+1}v_0F_{n-2} = (-1)^{n+1}(v_1F_{n-1} + v_0F_{n-2}) = (-1)^{n-1}v_{n-1}.$$

Hence, $|x_n| = v_{n-1}$ is composite for all $n \ge 0$. The proof of the theorem is now complete.

6 A surprising result

In this section we prove the following:

Theorem 11. Consider the integers a, b such that $|a| \ge 3$ and b = -1. Let $u_0 = 0$, $u_1 = 1$ and $u_{n+1} = au_n + bu_{n-1} = au_n - u_{n-1}$ be the Lucas sequence of the first kind associated with a and $a_n - 1$. Then $a_n - 1$ is composite for all $a_n \ge 3$.

Proof. One has $u_3 = a^2 - 1$, and $u_4 = a^3 - 2a$, which are obviously composite. Since |a| > |b| = 1, Lemma 3 implies that the sequence $(|u_n|)_{n \ge 0}$ is strictly increasing. Suppose for the sake of contradiction that there exists an $n \ge 2$ such that $|u_{n+1}| = p$, where p is some prime number. Since $|u_{n+1}| \ge |u_3| = a^2 - 1$ it follows that necessarily p > |a|.

Now using Lemma 2 for the sequence $(u_n)_{n>0}$, equality (4) becomes

$$u_{n+1}^2 - au_n u_{n+1} + u_n^2 = u_1^2 - au_1 u_0 + u_0^2,$$

and since $u_0 = 0$, $u_1 = 1$, and $|u_{n+1}| = p$, we obtain that

$$u_n^2 \pm apu_n + p^2 - 1 = 0. (17)$$

Regard the above equation as a quadratic in u_n . Since $u_n \in \mathbb{Z}$, it is necessary that the discriminant is a perfect square, that is, there exist a nonnegative integer c such that

$$a^2p^2 - 4(p^2 - 1) = c^2$$
 from which $(a^2 - 4)p^2 = c^2 - 4 = (c - 2)(c + 2)$. (18)

Since $|a| \ge 3$, one can assume that $c \ge 3$. Since p is a prime and p^2 divides (c-2)(c+2), we have two possibilities. If p divides both c-2 and c+2 then p divides 4, which means that p=2. However, this is impossible since $p>|a|\ge 3$. Otherwise, p^2 divides either c-2 or c+2. In either case we obtain that $c+2\ge p^2$. Using this inequality in (18), it follows that

$$(a^2 - 4)p^2 = (c - 2)(c + 2) \ge p^2(p^2 - 4) \implies |a| \ge p$$
, a contradiction.

This completes the proof.

In particular, the above theorem holds if a = 4 and b = -1, thus answering a question of Vos Post (see A001353 in [14]).

What is remarkable about this situation is that while u_n is composite for every $n \geq 3$, it seems likely that there is no finite set of primes $p_1, p_2, \dots p_t$ such that every u_n is divisible by some p_i , $1 \leq i \leq t$. In fact, we suspect the following is true.

Conjecture 12. Let $(u_n)_{n\geq 0}$ be the Lucas sequence of the first kind associated with some $|a|\geq 3$ and b=-1. Then for any two different primes p and q, u_p and u_q are relatively prime.

If true, this conjecture would immediately imply that there is no finite set of primes $p_1, p_2, \dots p_t$ such that every u_n is divisible by some $p_i, 1 \le i \le t$.

References

- [1] Y. Bilu, G. Hanrot, and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math. **539** (2001), 75–122.
- [2] S. L. G. Choi, Covering the set of integers by congruence classes of distinct moduli, *Math. Comp.* **25** (1971), 885–895.
- [3] A. Dubickas, A. Novikas, and J. Šiurys, A binary linear recurrence sequence of composite numbers, J. Number Theory 130 (2010), 1737–1749.
- [4] P. Erdős, On a problem concerning congruence systems, (Hungarian. Russian, English summary) *Mat. Lapok* **3** (1952), 122–128.
- [5] R. L. Graham, A Fibonacci-like sequence of composite numbers, *Math. Mag.* **37** (1964), 322–324.
- [6] D. E. Knuth, A Fibonacci-like sequence of composite numbers, *Math. Mag.* **63** (1990), 21–25.
- [7] W. Ljunggren, Über einige Arcustangensgleichungen die auf interessante unbestimmte Gleichungen führen, Ark. Mat. Astr. Fys. 29A (1943), 11 pp.
- [8] P. Mihăilescu, Primary cyclotomic units and a proof of Catalan's conjecture, *J. Reine Angew. Math.* **572** (2004), 167–195.
- [9] T. Nagell, Verallgemeinerung eines Fermatschen Satzes, Arch. Math. (Basel) 5 (1954), 153–159.
- [10] J. W. Nicol, A Fibonacci-like sequence of composite numbers, *Electron. J. Combin.* 6 (1999), Paper R44. Available at https://www.combinatorics.org/ojs/index.php/eljc/article/view/v6i1r44.
- [11] J. C. Parnami and T. N. Shorey, Subsequences of binary recursive sequences, *Acta Arith.* **40** (1981/82), 193–196.
- [12] L. Somer, Second-order linear recurrences of composite numbers, Fibonacci Quart. 44 (2006), 358–361.
- [13] B. Sury, On the diophantine equation $x^2 + 2 = y^n$, Arch. Math. (Basel) **74** (2000), 350–355.
- [14] N. J. A. Sloane et al., *The On-Line Encyclopedia of Integer Sequences*, 2019. Published electronically at https://oeis.org.
- [15] M. Vsemirnov, A new Fibonacci-like sequence of composite numbers, J. Integer Sequences 7 (2004), Article 04.3.7.

[16] H. S. Wilf, Letters to the editor, Math. Mag. 63 (1990), 284.

2010 Mathematics Subject Classification: Primary 11B39; Secondary 11B37, 11A07, 11Y55. Keywords: second-order linear recurrence, Lucas sequence of the first kind, composite number, covering system of congruences.

(Concerned with sequences <u>A001906</u>, <u>A001353</u>, <u>A004254</u>, and <u>A001109</u>.)

Received January 7 2019; revised versions received February 4 2019; September 8 2019; September 24 2019. Published in *Journal of Integer Sequences*, September 24 2019.

Return to Journal of Integer Sequences home page.