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Abstract

For integers s ≥ 1 and n ≥ 2, we define the function Ts as follows: Ts(n) =
Ts(p

aqb · · · rc) = aps + bqs + · · · + crs. Thus Ts(n) is the sum of the sth powers of
the prime factors of n, counted according to multiplicity of the prime factors. The set
T ∗(s) is defined as {n : Ts(n) = n}, and we let a(s) be the smallest element in T ∗(s).
We consider several natural questions. Is the set T ∗(s) empty, finite or infinite for some
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particular values of s? Suppose y is a prime power, say y = pm. Is it possible that
y = Ts(y) for some s? What is the smallest element a(s) in the set T ∗(s)? The answer
for the last question is documented, but only for certain small values of s in the title
sequence, a(s), for s = 1, 2, . . ., namely sequence A068916 in the Online Encyclopedia

of Integer Sequences. It begins 2, 16, 1096744, 3125, . . .. Some sets T ∗(s) are known to
have one or two elements, and T ∗(1) is infinite. Some sets T ∗(s) have prime powers.
In fact, infinitely often T ∗(s) contains py for some power y and prime p. For example
T ∗(24) contains 327, which may be the value of a(24). The set T ∗(3) contains six
known elements, and none of these are prime powers. We prove T ∗(3) does not contain
any prime powers at all. Curiously, every known member of T ∗(s) for any value of s,
except s = 3, is in fact a prime power. We also briefly discuss algorithms and functions
related to Ts(n).

1 Introduction

The decomposition of a number into prime factors is sometimes critical for understanding
the action of a function whose range and domain are contained in the set of natural numbers.
Insight may be obtained from computer searches related to the function. Here these ideas
play a role in the function of this note whose very definition also depends on this prime
decomposition.

Definition 1. Let n > 1 be any positive integer whose prime factorization into distinct
prime factors is given by n = paqb · · · rc. We define, for each positive integer s, the function
Ts on the set {n : n ∈ Z, n > 1} as follows:

Ts(n) = Ts(p
aqb · · · rc) = aps + bqs + · · ·+ crs.

Further, we say that Ts(n) is the sum of the sth powers of the prime factors of n, counted
according to multiplicity of the prime factor. The set T ∗(s) is defined as {n : Ts(n) = n},
and we denote the smallest element in T ∗(s) by a(s).

Example 2. Ts(200) = Ts(2
352) = 2s + 2s + 2s + 5s + 5s = 3(2s) + 2(5s) and for s = 4,

T4(200) = 3(24)+2(54) = 1298. Since 23 ‖ 200, 3 ·24 occurs in T4(200). Since T4(200) 6= 200,
200 6∈ T ∗(4). From Table 1, a(4) = 3125, the smallest element in T ∗(4).

In this note we consider several natural questions. Is the set T ∗(s) empty, finite or infinite
for some particular values of s? Suppose y is a prime power, say y = pm. Is it possible that
y = Ts(y) for some s? What is the smallest element a(s) in the set T ∗(s)?

The answer for the last question is documented, but only for certain small s, and this
brings us to the title sequence, which is a(s), for s = 1, 2, . . .. It is sequence A068916 in
the Online Encyclopedia of Integer Sequences [5]. It begins 2, 16, 1096744, 3125, . . .. We list
what is known of these values in Table 1. We also list the smallest known values as upper
bounds for a(s) when a(s) is not known. We write “unknown” in Table 1 to mean not only
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s a(s) s a(s)
1 2 12 65536 = 216

2 16 = 24 13–15 unknown
3 1096744 = 23 · 113 · 103 16 ≤ 1717

4 3125 = 55 17 unknown

5 256 = 22
3

18 ≤ 1919

6 823543 = 77 19–21 unknown

7 19683 = 33
2

22 ≤ 2323

8, 9 unknown 23 ≤ 298023223876953125 = 525

10 285311670611 = 1111 24 7625597484987 = 327

11 unknown

Table 1: The sequence A068916, a(s) is the smallest element in T ∗(s)

is a(s) not known but also that no elements in T ∗(s) have even been discovered! For any set
T we use card(T ) to denote its cardinality, and we are especially interested in card

(

T ∗(s)
)

for any value of s.
For s = 16, we may calculate T16(17

17) = 17(1716) = 1717. Thus, 1717 ∈ T ∗(16) and thus
a(16) ≤ 1717. Currently this number 1717 only provides an upper bound for a(16) because
its minimality has not yet been confirmed by a computer search. Indeed, there is no method
yet known other than a computer verification for determining the correctness of the entries
in the sequence A068916, except for very small values of s.

Two facts about Table 1 are immediately clear. First, many of the entries are powers of
a prime. So, a(s) = py quite often for some power y and prime p.

Secondly, not all of the elements of T ∗(s) are prime powers. Note for s = 3 that a(3) is
the product of seven primes, three of which are distinct. Nevertheless, it is further striking
that, except for s = 3, all the entries in Table 1 are powers of a prime. It is still more striking
that T ∗(3) has six known elements, none of which are prime powers, and these six are the
only non-prime powers known to be in T ∗(s) for any s. (See Section 3 and Table 4.)

Theorem 3. Suppose the number y is a prime power, say y = pm. Then y is in set T ∗(s)
if and only if m = pk for some k, and s = pk − k.

Proof. By the hypothesis, y = pm. First suppose y is in set T ∗(s). This means Ts(y) = y =
pm. But by the definition of Ts, Ts(p

m) = mps, from which mps = pm. By division, m = pk

for k = m− s. Thus, s = m− k = pk − k.
Conversely, by substitution, Ts(y) = Ts(p

m) = T(m−k)(p
m) = mpm−k = pkpm−k = pm = y.

So, y is in the set T ∗(s).

Corollary 4. Let s = p− 1 for some prime p. Then Ts(p
p) = pp.

Proof. Take k = 1 in Theorem 3.

Example 5. Observe 256 is in set T ∗(5) since T5(256) = T5(2
8) = 8 · 25 = 28 = 256. This

illustrates Theorem 3 as s = 5 = 23 − 3, and 256 = 22
3

.
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1.1 Historical remarks

The sequence A068916 was first recorded by D. Hickerson in March 2002 in the Online
Encyclopedia of Integer Sequences [5]. It was based on the related sequence A067688, which
was recorded a month earlier by J. L. Pe, on February 4 2002. The earlier sequence lists only
composite m for which there is some s such that Ts(m) = m. Focusing on A068916 allows
us to consider the sets T ∗(s) more deeply, as well as the numbers m that satisfy Ts(m) = m

for some s.
The pattern for prime power elements in T ∗(s), that pp

k

was in T ∗(s) when s = pk − k

was noted in 2003 (JSM). The other half of Theorem 3, that all prime powers in T ∗(s) for
any s must have this form, seems to be new here.

Later contributors D. Hickerson (March 07 2003) and J. S. McCranie (March 16 2003)
confirmed earlier entries and extended the list. Donovan Johnson (May 17 2010) noted,
in our notation, that T ∗(24) contained 327 and that T ∗(12) contained 1313. M. Marcus
(A068916) and C. R. Greathouse (A067688) added programs for testing numbers in January
2016. McCranie (January 18 2016) put upper bounds on a(23) and a(24) in Table 1 and
reported (on January 30 2016) that a(24) = 327. In between he reported that a(10) = 1111.
The new sequence A268036 contains material in our Table 4.

Table 2 contains a new listing of small s such that T ∗(s) is known to contain (at least)
two elements. We conjecture that there are infinitely many s such that T ∗(s) contains two
prime powers (see Section 5).

Recently we learned of papers [3] and [4], in which J.-M. De Koninck and F. Luca consider
two different functions similar to our Ts. In these, an integer n is represented as a sum of
equal powers s of some subset (not necessarily all) of its prime factors, and the prime factors
are not counted by the multiplicity of the prime factor in the factorization. They list the
second through sixth items in our Table 4 (in Section 3) in their papers. For example they
also give 378 = 2 · 33 · 7 = 23 + 33 + 73, as 378 can be written as the sum of the cubes of
its prime factors, with multiplicity ignored, and 870 = 2 · 3 · 5 · 29 = 22 + 52 + 292 equal to
squares of a proper subset of its prime factors.

2 The sets T ∗(s) for various s

It turns out that for many values of s, card(T ∗(s)) ≥ 2, but there are no known values of s
such that card(T ∗(s)) is exactly 2. The smallest values of s are shown in Table 2.

T1(2) = 2 and T1(4) = T1(2
2) = 2(21) = 4. So, T ∗(1) contains {2, 4} and these are the

prime powers guaranteed by Theorem 3. What other elements are in T ∗(1)? Is T ∗(1) a finite
set?

Theorem 6. We have T ∗(1) = {4, 2, 3, 5, 7, . . .} = {4, all primes}.
Proof. For any prime p, we have T1(p

1) = 1(p1) = p. So T ∗(1) contains {4, all primes}. But
for any composite greater than 4, the sum of its prime factors (counted by multiplicity) is
less than the product.
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s pk − k q − 1 s pk − k q − 1
2 22 − 2 3− 1 65520 216 − 16 65521− 1
12 24 − 4 13− 1 161046 115 − 5 161047− 1
58 26 − 6 59− 1 262126 218 − 18 262127− 1
238 35 − 5 239− 1 300760 673 − 3 300761− 1
3120 55 − 5 3121− 1 1295026 1093 − 3 1295027− 1
6856 193 − 3 6857− 1 3442948 1513 − 3 3442949− 1
29788 313 − 3 29789− 1 9393928 2113 − 3 9393929− 1
50650 373 − 3 50651− 1

Table 2: Small s such that T ∗(s) has two prime powers, see A268594

Are there other values of s for which T ∗(s) is infinite? None are known, but likewise
there is no reason to suppose any is finite. Or is there? We conjecture T ∗(2) is a finite set.

We observe that T2(16) = T2(2
4) = 4 ·22 = 4 ·4 = 16. Also, T2(27) = T2(3

3) = 3 ·32 = 27.
This shows the set T ∗(2) contains {16, 27}, both prime powers, and 2 = 22 − 2 = 31 − 1.
Examination of cases shows a(2) = 16. Are other prime powers in T ∗(2) besides 24 and 33?
No, because it would require, by Theorem 3, that 2 = pk − k, for some prime p and integer
k. If k = 1, 2 then p = 3, 2 respectively. Suppose k > 2, p > 3, and 2 = pk − k. Then we
claim pk = 2 + k is contradictory. To see this, observe that 2 + k < 5k for any k > 2. But
3 < p implies 5k ≤ pk as p is an odd prime. Combining inequalities, 2+k < 5k ≤ pk = 2+k,
the desired contradiction. We extend this argument to other cases in Theorem 7.

Theorem 7. Suppose p is a prime, s > 1, and s+ 1 < p. Then no power of p is contained
in T ∗(s).

Proof. We observe the result is true for s = 2, so we may suppose 3 ≤ s and 5 ≤ p. Suppose
on the contrary that Ts(p

m) = pm for some m. Then, by Theorem 3, m = pk for some k, and
s = pk − k. So, pk − k = s < p− 1. Thus, pk < p+ k− 1. Now, for k = 1, the last inequality
reduces to p < p, a contradiction. If 1 < k, then define f(p) = pk− (p+k−1). Note that the
derivative of f , f ′(p) = kpk−1 − 1, is positive and thus f(p) is a strictly increasing function
since k > 1. Thus, pk > p+ k − 1, a contradiction.

An obvious consequence of Theorem 7 is that, for any s, the subset of T ∗(s) that contains
only prime powers is finite, bounded above by the case s = p− 1.

Example 8. Using Example 5, with s = 26 − 6, we get the following: T58(2
64) = T58(2

26) =
(26)T58(2) = (26)258 = 264. Note T58(59

59) = 5959. We may calculate: log2(59
59) = 59 ·

log2(59) > 59 · log2(32) = 59 · 5 = 295 > 64 = log2(2
64). This shows a(58) may be 264, which

is smaller than 5959. We generalize this example in Theorem 11.

We have no examples such that pk − k = qj − j with neither j = 1 nor k = 1, and we
conjecture that none exist. If p = 2 and j > 1, our computer search shows that there are no
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1 2 4 5 6 7 10 12 16 18 22 23 24 27 28 30 36 40 42 46 47 52 58 60
66 70 72 77 78 82 88 96 100 102 106 108 112 119 121 122 126 130
136 138 148 150 156 162 166 167 172 178 180 190 192 196 198
210 222 226 228 232 238 240 248 250 256 262 268 270 276 280

Table 3: Numbers s of the form s = pk − k for some k ≥ 0, sequence A318606

such q for 2k − k = qj − j up to 1.84 × 1019. C. R. Greathouse has extended this to 1040.
See A268594 for a partial list of s = pk − k = qj − j, as in Table 2.

The Catalan conjecture (now Mihăilescu’s theorem) is that pk and qj never differ by 1
when min (k, j) ≥ 2, except for 23 = 8 and 32 = 9. We also mention the related Pillai
conjecture (unproved) that, for any fixed positive integer r, there are only finitely many
differences of prime powers that equal r. More generally, it is equivalent to the following
claim: for fixed positive integers A, B, and C, the equation Axn−Bym = C has only finitely
many solutions (x, y,m, n) with (m,n) 6= (2, 2).

Assume that every natural number C will occur as a difference of prime powers only
finitely often. We are looking for special elements in such a finite set — those whose prime
powers have a difference C and also such that the powers themselves have C as their differ-
ence. Such dual differences must be especially scarce.

Conjecture 9. Suppose p, q are distinct primes. Then we conjecture pk − qj 6= k − j if
j, k > 1. Further, there are infinitely many triples (p, k, q) such that pk − k = q − 1.

See Table 2 for examples for which this equality holds. See Table 3 for examples of s
such that T ∗(s) is not empty.

For every example in Table 2, the second item is s = q − 1. Is this always the case? We
conjecture the following.

Conjecture 10. Whenever exactly two elements are contained in T ∗(s), both are prime
powers and one of them is qq for s = q − 1 and the other is pm for m = pk and s = pk − k.

Theorem 11. Suppose p, q are primes with p < q and that s, k, i are natural numbers with
i ≥ 1 such that pk − k = qi − i = s. Then asymptotically, a(s) ≤ pp

k

< qq
i

.

Proof. To begin with, a(s) ≤ pp
k

is a result of Theorem 3. Now by hypothesis we have
p < q or equivalently q

p
< 1. Let J1 denote the inequality pp

k

< qq
i

and let J2 denote the

inequality (p
q
)s < 1− k−i

pk
. It is easy to show by elementary algebra, the target inequality J1

is true if and only if J2 is true asymptotically. (It is convenient for this algebra to note that
pk = s+ k and qi = s+ i.) We will argue that J2 is true. First, since s = pk − k, s increases
exponentially with k and thus (p

q
)s decreases exponentially towards 0. But k−i

pk
converges

to 0 as well. It follows that the left-hand side of J2 converges to 0 and the right-hand side
converges to 1 as s increases. This shows that J2 is true asymptotically.
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n in set T ∗(3) Prime decomposition
1096744 = a(3) 23 · 113 · 103

2836295 5 · 7 · 11 · 53 · 139
4473671462 2 · 13 · 179 · 593 · 1621
23040925705 5 · 7 · 167 · 1453 · 2713

13579716377989 19 · 157 · 173 · 1103 · 23857
119429556097859 7 · 53 · 937 · 6983 · 49199

Table 4: Known elements in T ∗(3), sequence A268036

We note that for all known cases for which T ∗(s) has two prime powers (see Table 2),
pk and qi with p < q, it is always the case that i = 1. For an illustration of Theorem 11,
consider p = 37 in Table 2. We have k = 3, q = 50651 and i = 1, and s = q1 − 1 = 50650.
Then J2 gives ( 2

50651
)50650 < 1 − 2

373
. The left side is too small to calculate without a few

pages of decimal zeroes. The right side is 0.99996 . . ..
When there are two (or possibly more) prime power elements in T ∗(s) for some s, the

lesser prime always corresponds to the smaller element and gives the lower upper bound for
a(s) according to Theorem 11.

Theorem 3 gives an upper bound for a search criterion for a(s) provided there is a prime
p such that s = pk − k for some k. We suspect that most searches looked for these special s.
We listed in Table 3 numbers of the form s = pk − k for some p, k, such that s < 1000. Of
course the corresponding T -values are relatively huge, as Ts(y) = y = pp

k

.

3 The sets T ∗(3) and related questions

Table 4 lists the numbers presently known to be in T ∗(3), a case that is strikingly different
from all the other known cases.

For example, let y = 1096744 = 23 · 113 · 103. Then T3(y) = 3 · 23 + 3 · 113 + 1 · 1033 =
1096744 = y. Exhaustive computer calculation shows 1096744 = a(3), the smallest element
of T ∗(3).

We classify the examples in Table 4 as “irregular”. They do not occur with the prime
power form suggested in Theorem 3. We do not know if the set T ∗(s) will often contain
a lengthy product of (distinct) primes or other elements with exactly five distinct prime
factors. Will any of the sets T ∗(s) contain numbers with arbitrarily many distinct prime
factors? This is unknown.

An entry in Table 4 mentions that n = 2836295 = 53 + 73 + 113 + 533 + 1393 is the
smallest number that is a product of five distinct prime factors and is also the sum of the
cubes of these distinct prime factors. The third entry in Table 4 is due to McCranie (2003),
the fourth to D. Johnson (2010), and the fifth and sixth to McCranie (February 07 2016).
But see the comment at the end of Section 1.
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Index s m

1 2 4 = 22

2 2 16 = 24

3 2 27 = 33

4 5 256 = 28

5 4 3125 = 55

6 7 19683 = 39

7 12 65536 = 216

8 6 823543 = 77

9 3 1096744 = 23 · 113 · 103
10 3 2836295 = 5 · 7 · 11 · 53 · 139
11 27 4294967296 = 232

12 3 4473671462 = 2 · 13 · 179 · 593 · 1621
13 3 23040925705 = 5 · 7 · 167 · 1453 · 2713
14 10 2825311670611 = 1111

15 24 7625597484987 = 327

16 3 13579716377989 = 19 · 157 · 8173 · 1103 · 23857
17 3 119429556097859 = 7 · 53 · 937 · 6983 · 49199
18 12 302875106592253 = 1313

19? 23 298023223876953125 = 525

20 ? unknown

Table 5: Sequence A067688, ordered by size of m

3.1 Remarks on computation

Running our program (by JSM) on 16 CPUs for about 47 hours determined that 13579716377989
is the fifth solution for T ∗(3) and that there is no other smaller element in T ∗(4). The de-
termination of the sixth element took 27 days.

In Table 5 we have factored each value of m so that we are able to see the interplay in the
related sequences and the applications of Theorem 3. The sixth element 119429556097859
from our Table 4 is the seventeenth in the sequence A067688 (see the end of Section 1).
Forty-eight days of computing by JSM revealed on April 22 2016 that 1313 was confirmed to
be the eighteenth value (in size) of m so that Ts(13

13) = 1313 for s = 12, and it became the
eighteenth element in A067688. At present we can say the nineteenth element is conjectured
to be 525.

Theorem 12. If s ≥ 1, p, q, . . . , r are 2u distinct primes, and n = pq · · · r, then n 6∈ T ∗(s).

Proof. First suppose the 2u primes are odd. Observe Ts(n) = ps+ qs+ · · ·+ rs is even, being
the sum of an even number of odd integers. However, n is odd. Now suppose p = 2, and
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n = 2q · · · r. Here n is even, but Ts(n) sums to 2s plus an odd number of odd integers and
is thus odd. In both cases, n 6∈ Ts(n).

Theorem 13. Suppose p, q, and r are three distinct odd primes. (a) If n = pqr, then
n 6= T3(n). (b) If n = 2kpqr, then n 6= T3(n).

Proof. First, for part (a) suppose p ≡ q ≡ r ≡ 1 (mod 4). Then n ≡ 1 (mod 4) but
T3(n) ≡ 13 + 13 + 13 ≡ 3 (mod 4). Next suppose n ≡ (−1)(1)(1) ≡ −1 (mod 4). However,
here T3(n) ≡ (−1)3 + 13 + 13 ≡ 1 (mod 4). Next, if n ≡ (−1)(−1)(1) ≡ 1 (mod 4), then
T3(n) ≡ (−1)3 + (−1)3 + 13 ≡ −1 (mod 4). Finally, if n ≡ (−1)(−1)(−1) ≡ −1 ≡ 3
(mod 4), then T3(n) ≡ (−1)3+(−1)3+(−1)3 ≡ −3 ≡ 1 (mod 4). Now for part (b), observe,
n 6= T3(n) because T3(n) = k · 23 + p3 + r3 + q3 which is odd; but n is even.

Theorem 13 also applies when there are 4k + 3 for k > 0. This, along with Theorem 12
means that for members of T ∗(3) that are the product of distinct odd primes, the number
of primes must be 1 more than a multiple of 4.

According to Theorem 12 (for s = 3) and Theorem 13, we should begin a search for n

in T ∗(3) by considering n = pqrst, a product of five distinct odd primes or n = paqbrc with
each of p, q, r, a, b, c odd (and at least one exponent at least 3), or n = 2kqbrc with b, c odd.
Happily this is exactly where the elements of T ∗(3) have been found.

Are there any prime powers in T ∗(3)? No, by Theorem 3, since 3 is not equal to pk − k

for any p, k. This is easily checked. By Theorem 7, we need only check primes not greater
than 4.

One wonders if there are many other numbers in T ∗(3), i.e., is T ∗(3) finite or very sparse?
It would be curious if a sieve argument, or any argument, could show T ∗(x) is finite for some
x, since T ∗(1) is infinite. In fact, the totality of examples for all known s suggest that integers
in T ∗(3) abound, compared to T ∗(s) for s = 2 or s > 3.

4 Eliminating possibilities for T ∗(2)

For some prime decomposition forms of the variable n we are able to show T2(n) is not equal
to n. The general purpose here is two-fold. Ideally, since T ∗(2) contains at least {16, 27}
one would like to prove that card(T ∗(2)) = 2, or to be able to use these results to simplify
or direct computer searches.

In what follows we use p, q, r, s to represent odd primes in increasing order. We observe
that if n = pq · · · s for a series of k distinct odd primes, then n ≡ 1, 3 (mod 4), T2(n) ≡ k

(mod 4).
We further note that, if p > 3 is prime, then (a) p ≡ 1, 2 (mod 3), and (b) p is -1 or +1

(mod 6), and so p2 ≡ 1 (mod 6). Similarly, since any odd integer u is 4v + 1 or 4v − 1 for
some v, it follows that u2 ≡ 1 (mod 8).

Lemma 14. Suppose n = paqb for two distinct odd primes p, q.
(a) If a+ b ≡ 0 (mod 2), then n 6= T2(n).
(b) If a = 2 and b = 1 then n 6= T2(n).
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Proof. For part (a), if a+b is even, then T2(n) is even but n is odd. For part (b), if n = T2(n),
then n = p2q = 2p2 + q2 = T2(n), from which p2(q − 2) = q2. This last equation implies q
divides either p or (q − 2), an impossibility in either case.

Lemma 15. Suppose n = p2aq2b+1 where p, q are distinct odd primes. Then

(a) if q > 2a or if p > 2b+ 1, then n 6= T2(n).

(b) if q2 ∤ a or if p2 ∤ 2b+ 1, then n 6= T2(n).

Proof. Part (a): Suppose q > 2a. If, on the contrary, n = p2aq2b+1 = T2(n) = 2ap2 + (2b +
1)q2, then rearranging terms, p2aq2b+1−2ap2 = (2b+1)q2. This implies p2[p2a−2q2b+1−2a] =
(2b+ 1)q2. The last equation implies, since q cannot divide p2, that q must divide the term
in brackets. This is only possible if q divides 2a. But q is larger than 2a. The other case is
similar, and in either case, n 6= T2(n).

Part (b): The equation p2(p2a−2q2b+1 − 2a) = (2b+ 1)q2 implies both that q2 divides the
term (p2a−2q2b+1 − 2a), and also that p2 divides 2b+ 1. But this contradicts the hypothesis,
and we conclude n 6= T2(n).

Lemma 16. If n = 2kpq, then n is not equal to T2(n).

Proof. Supposing otherwise, first let k = 1. Now q = p + a for some integer a. Then
n = 2p(p+a) and T2(n) = 4+p2+(p+a)2. Thus, equating n and T2(n), we get 2p

2+2pa =
4 + p2 + p2 + 2pa + a2. This simplifies to 0 = 4 + a2, a contradiction. If k > 1, then n ≡ 0
(mod 4), but T2(n) ≡ 4k + p2 + q2 ≡ 2 (mod 4).

Lemma 17. (a) Suppose n = 2kpq · · · r and k > 0. If pq · · · r is a product of an odd
number of distinct primes, then n 6∈ T ∗(2).

(b) Let n = 2kpxqy · · · rz, k > 0. Suppose the p, q, . . . , r are distinct odd primes and suppose
that 2m+ 1 of the exponents x, y, . . . , z are odd. Then n 6∈ T ∗(2).

(c) Suppose n = 2kpq · · · r and k > 1. If pq · · · r is a product of 4m + 2 distinct primes,
then n 6∈ T ∗(2).

Proof. This follows at once for (a) and (b) since n is even but T2(n) is odd. Part (c) follows
because n ≡ 0 (mod 4) but T2(n) ≡ 2 (mod 4).

Lemma 18. Suppose n = 2kpqrs and 1 ≤ k.

(a) If k = 1 then n 6= T2(n).

(b) If k = 2, then n 6= T2(n).

(c) Suppose p = 3 and n = 2k · 3qrs. If k = 6m+1 or 6m+5, then n = 2k · 3qrs 6= T2(n).
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Proof. For (a), if k = 1, then n ≡ 2 (mod 4). But then T2(n) ≡ 22 + p2 + q2 + r2 + s2 ≡ 0
(mod 4).

For part (b) first let 3 < p. Then n ≡ 1, 2 (mod 3), but then T2(n) ≡ 2 · 22 + p2 + q2 +
r2+ s2 ≡ 8+1+1+1+1 ≡ 12 ≡ 0 (mod 3). Now, let p = 3. Then n = 12qrs ≡ 0 (mod 3).
Note that T2(n) ≡ 2 · 22 + 9 + q2 + r2 + s2 ≡ 8 + 0 + 1 + 1 + 1 ≡ 2 (mod 3).

For part (c), n ≡ 0 (mod 3) since p = 3. Say k = 6m + w, for w = 1 or 5. Then
T2(n) ≡ 4(6m+ w) + 0 + 1 + 1 + 1 ≡ w ≡ 1, 5 (mod 3).

Theorem 19. Suppose n = 2kpqrs. If k = 2m, then n 6= T2(n).

Proof. In view of Lemma 18, we assume 4 ≤ k = 2m. Now n ≡ 0 (mod 8), by hypothesis.
We note that every odd integer u satisfies u = 4U + 1 or u = 4U − 1 for some U . In either
case, u2 ≡ 1 (mod 8). Thus, T2(n) = 2m(22) + p2 + q2 + r2 + s2 ≡ 4 (mod 8).

Theorem 20. Suppose n = 2kpqrs for k = 6m+ 5. Then n 6= T2(n).

Proof. We assume first, in view of Lemma 18(b), that 3 < p < q < r < s. Then n ≡ 1, 2
(mod 3) as each odd prime is ≡ 1, 2 (mod 3). However, T2(n) ≡ (6m+5)4+1+1+1+1 ≡ 0
(mod 3). Now we assume p = 3. Then n ≡ 0 (mod 3), but T2(n) ≡ (6m+5)4+0+1+1+1 ≡ 2
(mod 3).

Theorem 21. Suppose n = 2kpqrs for k = 6m+ 1. If n = T2(n), then n ≡ 2 (mod 3).

Proof. By Lemma 18(c) we need not consider possibility p = 3. Hence, we now suppose
3 < p < q < r < s. Now, n = T2(n) ≡ (6m+ 1)4 + 1 + 1 + 1 + 1 ≡ 8 ≡ 2 (mod 3).

Corollary 22. Suppose n = 2kpqrs for k = 6m+ 1. If n = T2(n), then pqrs ≡ 1 (mod 3).

Proof. We first note that 26m+1 ≡
(

(26)m
)

· 2 ≡ 1m · 2 ≡ 2 (mod 3). If pqrs ≡ 2 (mod 3),
then we have n ≡ 26t+1pqrs ≡ 2 · 2 ≡ 1 (mod 3), but this contradicts Theorem 21.

Theorem 23. Suppose n = 2kpqrs for k = 6m+ 3. If n = T2(n), then n ≡ 1 (mod 3).

Proof. Observe 2k ≡ (−1)6m+3 ≡ −1 ≡ 2 (mod 3). Thus, n = T2(n) ≡ (6m+ 3)4 + 1 + 1 +
1 + 1 ≡ 1 (mod 3).

Corollary 24. Suppose n = 2kpqrs for k = 6m+ 3. If n = T2(n), then pqrs ≡ 2 (mod 3).

Proof. If pqrs ≡ 1 (mod 3), then n ≡ 26t+1pqrs ≡ 2 · 1 ≡ 2 (mod 3), contradicting Theo-
rem 23.

Theorem 25. Suppose that n is a product of u distinct odd primes each greater than 3.

(a) If u = 6t+ 3, then n 6= T2(n).

(b) If u = 6t + 1 and n = T2(n), then it is necessary that an even number (possibly zero)
of the primes must be congruent to 2 (mod 3).
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(c) If u = 6t + 5 and n = T2(n), then it is necessary that an odd number of the primes
must be congruent to 2 mod 3.

Proof. (a) If y is any odd prime greater than 3, then y ≡ 1,−1 (mod 6). Thus, y2 ≡ 1
(mod 6). It follows that y2 ≡ 1 (mod 3). From this we infer T2(n) ≡ 6t + 3 ≡ 0 (mod 3).
But n is not a multiple of 3.

For part (b), T2(n) ≡ 6t+ 1 ≡ 1 (mod 3). Now n ≡ 1 (mod 3) since T2(n) is. Thus the
quantity of the prime factors which are congruent to 2 (mod 3) must be even — as, in pairs,
they are (3m+ 2)(3j + 2) ≡ 1 (mod 3).

For (c), T2(n) ≡ 6t+ 5 (mod 6) and thus T2(n) ≡ 2 (mod 3). Hence, n ≡ 2 (mod 3). It
follows that an odd number of the prime factors must be congruent to 2 (mod 3).

Corollary 26. Suppose n is a product distinct odd prime factors and n = 3qrs · · · t. Then,
if n = T2(n), n has 6u+ 1 distinct odd factors for some u > 1.

Proof. Now n must have an odd number 2w+1 of distinct odd prime factors by Theorem 12.
We calculate T2(n) = 9+ q2 + r2 + · · ·+ t2 ≡ 2w (mod 3). Since T2(n) = n ≡ 0 (mod 3) we
see w = 3u for some u. Thus n has 6u+ 1 distinct prime factors.

Theorem 27.

(a) If n = 2kp2qrs, then n 6∈ T ∗(2).

(b) If n = 2k(pq)2rs and k > 1, then n 6∈ T ∗(2).

(c) If n = 2k(pqr)2s then n 6∈ T ∗(2).

(d) If n = p2qrst, then n 6∈ T ∗(2).

Proof. For part (a), n is even and T2(n) is odd. For part (b), n ≡ 0 (mod 4) but T2(n) ≡
4k+2p2+2q2+ r2+ s2 ≡ 2 (mod 4). For (c) T2(n) = 4k+2p2+2q2+2r2+ s2 ≡ 1 (mod 2).
But n is even. For part (d), n is odd but T2(n) is even.

Algorithm 1: Application of lemmas. Set n = 26m+1pqrs with pqrs ≡ 1 (mod 3).

(a) Select p = 2 (mod 3). Now exactly 1 or 3 of q, r, s must be 2 (mod 3). Test cases.

(b) Select p ≡ 1 (mod 3). Now exactly 2 or none of q, r, s is 2 (mod 3). Test cases.
Set n = 26m+3pqrs with pqrs ≡ 2 (mod 3).

(c) Select p ≡ 1 (mod 3). Then one or three of q, r, s must be 2 (mod 3). Test cases.

(d) Select p = 2 (mod 3). Then none or two of q, r, s must be 2 (mod 3). Test cases.

Algorithm 2: Look at the Quadratic. Consider n = 2kpqrs = T2(n). This is quadratic
in s. It is necessary that the discriminant ∆ = b2 − 4ac be a perfect square. Evaluate the
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discriminant ∆ to see if it is a perfect square:
√
∆ =

√

22kp2q2r2 − 16k − 4(p2 + q2 + r2),
and this expression is independent of s. (We actually factor a 4 before calculating ∆.)

In general, using Algorithm 2, we can say there are no ‘small’ solutions to n = T2(n),
meaning ∆ is not a square number often enough, at least for b2− 4ac < 263, for any 3 ≤ k <

33.
With k fixed at 3, our initial computer search was unsuccessful. We determined that our

search always stopped because of the discriminant ∆. It was almost never a square. In first
week of April 2016, for k = 3, we checked p in the first 100 primes, q in the first 5000 primes,
and r in the first 10,000 primes. This revealed

√
∆ was never an integer, and thus neither

was s.
We revised the algorithm, improving the search. First setting k = 3, the smallest ‘admis-

sible’ value, we let the discriminant go up to 1024, rather than specifically limiting p, q, and
r. At last we finally found a square discriminant with p, q relatively small: p = 3, q = 23,
and r = 304151. The number r = 304151 is the 26, 335th prime. We mention that this
discriminant ∆ is given by ∆ = 7046784011265625 = 56 · 112 · 610512 = 839451252.

It did not lead to a suitable s. The resulting s = 167890801 is composite (13·97·211·631).
The other root s = 551 = 19 · 29 was not a prime either but since p < s, it would have
been considered and discarded earlier. Thus, the calculated n is n = 8 · 3 · 23 · 304151 ·
167890801 = 28187413568252952. No other discriminant ∆ < 1024 resulted in an integer s,
with p < q < r < 234.

For this we had k fixed at 3. The next ‘admissible’ values of k are 7, 9, 13, and 15. But
k = 13 for example will make the numbers 1000 times as large. As Richard K. Guy said,
“There are not enough small numbers to meet the many demands made of them.” See [1, 2].

If you are looking at numbers on the order of 1030, only about 1 in 1015 is a square.
When the numbers are under 264 (as much as the hardware does natively) we can check
several hundred million per second on one CPU. When they get larger, we have to go to
other methods, and can check on the order of 106 per second per CPU. And 1015 divided by
106 is a lot of seconds.

5 Conclusion

In searching for two prime power elements in a set T ∗(s) one needs to solve s = pk−k = qi−i,
or equivalently solve for a positive integer solution to the equation pk − qi = k − i, for p, q
distinct primes. Such solutions are plentiful for i = 1. It is clear that other solutions with
i > 1 are very rare and may not exist.

C. R. Greathouse reports (private correspondence, February 08 2016) that there are no
instances of such qi with i > 1 up to 1040. But there are about ten thousand less than 1040

with i = 1. For a contrast, when s = 3, the most abundant case, the elements in T ∗(3) start
quite large and get much larger. Nevertheless, searching among larger numbers produced no
more solutions.

The absence of “irregular” values in T ∗(2), or for other small s, is surprising to us — so
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surprising that we conjecture that card(T ∗(2)) = 2. Though we did not prove the conjecture,
we were able to eliminate many forms for an integer n so that n 6∈ T ∗(2). In any case, it is
clear that infinitely many sets T ∗(s) will contain some power of a prime p. In fact, whenever
s = pk − k for some k, pp

k

will be in T ∗(s). But whether these values will be the minimum
values (or the only values) in T ∗(s) is another (difficult) question.
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