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Abstract

Given an integer b ≥ 2, a well studied concept of a b-ary partition function of a

positive integer n counts the number of representations of n as sums of powers of b,

with each power occurring up to λ times, for a fixed λ ≥ 1. In this paper we introduce

and study a multivariable polynomial sequence that reduces to the restricted b-ary

partition function when all variables are taken to be 1. In particular, we show that this

polynomial sequence characterizes all restricted b-ary partitions for each n, generalizing

previous results on hyperbinary and hyper b-ary representations. All this follows from

considering more general concepts of restricted b-ary partition functions.
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1 Introduction

The (unrestricted) binary partition function, which we shall denote by S2(n), counts the
number of representations of a positive integer n as a sum of powers of 2. This function was
apparently first considered by Euler [14, pp. 162ff.] and later by other authors, including
Churchhouse [4] who studied congruence properties of S2(n). Reznick [20] later investigated
the following restricted binary partition function. Given an integer λ ≥ 1, let Sλ

2 (n) denote
the number of representations

n =
∑

j≥0

cj2
j, cj ∈ {0, 1, . . . , λ}. (1)

In particular, we have S1
2(n) = 1 since λ = 1 corresponds to the unique binary representation

of n, and S2
2(n) = s(n+ 1), where {s(n)} is the well-known Stern sequence; see [20, p. 470].

As an easy example, we consider n = 6. Then the binary partitions are

4 + 2, 4 + 1 + 1, 2 + 2 + 2, 2 + 2 + 1 + 1, 2 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1 + 1.

Hence S2(6) = 6, and S2
2(6) = 3 = s(7), this latter number counting the hyperbinary

representations 4 + 2, 4 + 1 + 1, and 2 + 2 + 1 + 1.
We can generalize (1) to an arbitrary integer base b ≥ 2 and consider the number of

representations

n =
∑

j≥0

cjb
j, cj ∈ {0, 1, . . . , λ}, (2)

which we denote by Sλ
b (n). Analogously, Sb(n) denotes the number of unrestricted b-ary

partitions, and we can write Sb(n) = limλ→∞ Sλ
b (n).

It appears that the function Sb(n) was first studied by Mahler [15] who derived an asymp-
totic formula, then later by other authors, including Churchhouse [4], Rödseth [21], and An-
drews [1], who were mainly interested in congruence properties of the function Sb(n). The
restricted b-ary partition function Sλ

b (n) was apparently first studied by Dumont et al. [13,
Section 6].

As in the case b = 2, the function Sb−1
b (n) counts the unique b-adic representation of n,

and is therefore always equal to 1, and Sb
b(n) counts the number of hyper b-ary expansions of

n, also known as base b over-expansions of n. Defant [6] showed that Sb
b(n) = sb(n+1), where

{sb(n)} is the base-b generalized Stern sequence; this is therefore a direct generalization of
Reznick’s result cited after (1). It should also be noted that for b ≥ 3 and 1 ≤ λ < b− 1, we
have Sλ

b (n) = 0 for infinitely many n; see Section 6 for some examples.
In a different direction, the present authors studied the special case λ = b, first for

b = 2, i.e., the case of hyperbinary representations. Results of Bates and Mansour [2] and
of Stanley and Wilf [22], which are refinements of the Stern identity S2

2(n) = s(n+ 1), were
further refined in [9] by the introduction of a two-variable (generalized Stern) polynomial
sequence that characterizes all hyperbinary representations of n counted by S2

2(n). This was
subsequently extended in [10] to hyper b-ary expansions, i.e., those expansions of the type
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(1) that are counted by Sb
b(n) for an arbitrary integer base b ≥ 2. Further properties of these

b-variable polynomials were then derived in [11].
It is the purpose of the present paper to use the methods developed in [9]–[11] to define

and investigate polynomial analogues of the restricted b-ary partition function Sλ
b (n) for any

integer b ≥ 2 and primarily for λ ≥ b− 1. In the process we investigate a more generalized
restricted b-ary partition function and its polynomial analogue.

There is no established notation in the literature for binary and b-ary restricted or un-
restricted partition functions. We chose the notation Sλ

b (n), resp. Sb(n), in order to avoid
clashes with notations of other objects. It should also be noted that many authors used the
letter m to denote a general integer base, while we are using b and “b-ary”.

This paper is structured as follows. In Section 2 we define our principal objects of study,
namely the polynomial analogues to the restricted b-ary partition function, and state the
main representation theorem. In Section 3 we prove recurrence relations for the polynomials
in question and consider a number of special cases. The proof of our main theorem is then
given in Section 4, and in Section 5 we derive explicit formulas for our polynomials. We
conclude this paper with some further remarks in Section 6.

2 Generating functions and main theorem

It is a well-known fact that partitions, including binary and b-ary partitions, are closely
related to generating functions which are usually expressed in the form of infinite products.
Indeed, it follows from (2) and the definition of Sλ

b (n) that

∞∑

n=0

Sλ
b (n)ζ

n =
∞∏

j=0

(
1 + ζb

j

+ ζ2·b
j

+ · · ·+ ζλ·b
j
)
. (3)

This can be seen by expanding the right-hand side of (3) and equating coefficients of ζn; see
also [13, p. 381], or [20, p. 454] for b = 2. A special case of (3) is the case λ = b, where Sb

b(n)
counts the number of hyper b-ary expansions; see [5]. Since Sb

b(n) = sb(n + 1), as noted in
the Introduction, the generating function (3) immediately gives

∞∑

n=0

sb(n)ζ
n = ζ

∞∏

j=0

(
1 + ζb

j

+ ζ2·b
j

+ · · ·+ ζb·b
j
)
, (4)

where sb(n) is the b-ary Stern sequence; see also [6]. More recently the current authors
introduced a b-variable polynomial analogue of the sequence sb(n) in [10] and showed that it
characterizes all sb(n + 1) hyper b-ary representations of n. These polynomials can be seen
as b-ary generalized Stern polynomials; they were defined by way of recurrence relations
generalizing those in [5] and [6], and the corresponding generating function was obtained in
the subsequent paper [11]. These polynomials, written here in the slightly different notation
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ωb,T (n, Z), have integer parameters T = (t1, . . . , tb) and variables Z = (z1, . . . , zb), and satisfy

∞∑

n=1

ωb,T (n;Z)ζ
n = ζ

∞∏

j=0

(
1 + z

tj
1

1 ζ
bj + z

tj
2

2 ζ
2·bj + · · ·+ z

tj
b

b ζ
b·bj

)
. (5)

When we compare (4) and (5), it is clear that ωb,T (n; 1, . . . , 1) = sb(n), independent of the
b-tuple T .

We now use (5) as the basis for the definitions of the main objects of study in this paper.

Definition 1. Let b ≥ 2 and λ ≥ 1 be integers, T = (t1, . . . , tλ) be a λ-tuple of positive
integer parameters, and Z = (z1, . . . , zλ) a λ-tuple of variables. Then we define the sequence
of λ-variable polynomials ωλ

b,T (n;Z) by the generating function

∞∑

n=1

ωλ
b,T (n;Z)ζ

n = ζ

∞∏

j=0

(
1 + z

tj
1

1 ζ
bj + z

tj
2

2 ζ
2·bj + · · ·+ z

tj
λ

λ ζλ·b
j
)
. (6)

We immediately see that for λ = b this last identity reduces to (5), and for Z = (1, . . . , 1)
it reduces to (4). Therefore we have for any b ≥ 2, λ ≥ 1 and for any T and indices n ≥ 0
that

ωb
b,T (n;Z) = ωb,T (n;Z), (7)

ωλ
b,T (n; 1, . . . , 1) = Sλ

b (n− 1). (8)

By expanding the right-hand side of (6) for a given b ≥ 2 and λ ≥ 1, one can easily write
down the first few polynomials ωλ

b,T (n;Z). For instance, those for b = 3 and λ = 4 are shown
in Table 1, where for greater ease of writing we have set Z = (w, x, y, z) and T = (q, r, s, t).

We recall that the partition function Sλ
b (n) counts the number of b-ary partitions with

each power of b occurring at most λ times, and we will see that ωλ
b,T (n;Z) characterizes all

these partitions. It turns out that without too much additional effort we can do the same
with b-ary partitions whose powers of b, if they occur, can only have multiplicities v from an
ordered set of λ integers, V = (v1, v2, . . . , vλ), where λ ≥ 1 and 1 ≤ v1 < v2 < · · · < vλ. As
a consequence we can give a more general definition.
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n ω4
3,T (n;w, x, y, z) n ω4

3,T (n;w, x, y, z)

0 0 10 wq2 + xry + ys

1 1 11 w1+q2 + wys + xrz

2 w 12 wq2x+ xys

3 x 13 wq+q2 + wq2y + y1+s + zt

4 wq + y 14 w1+q+q2 + wq2z + ysz + wzt

5 w1+q + z 15 wq+q2x+ xzt

6 wqx 16 wq2xr + wq+q2y + yzt

7 xr + wqy 17 w1+q2xr + wq+q2z + z1+t

8 wxr + wqz 18 wq2x1+r

9 x1+r 19 xr2 + wq2xry + wq2ys

Table 1: ω4
3,T (n;w, x, y, z), T = (q, r, s, t), 0 ≤ n ≤ 19.

Definition 2. Let b, λ, T and Z be as in Definition 1, and let V = (v1, . . . , vλ) be a strictly
increasing finite sequence of positive integers. Then we define the sequence of λ-variable
polynomials ωV

b,T (n;Z) by the generating function

∞∑

n=1

ωV
b,T (n;Z)ζ

n = ζ

∞∏

j=0

(
1 + z

tj
1

1 ζ
v1bj + z

tj
2

2 ζ
v2bj + · · ·+ z

tj
λ

λ ζvλb
j
)
. (9)

Obviously, when V = (1, 2, . . . , λ), then ωV
b,T (n;Z) = ωλ

b,T (n;Z). Also, in analogy to

Sλ
b (m), we define SV

b (m) below. As before, let V = (v1, v2, . . . , vλ) be an ordered set of
integers with 1 ≤ v1 < · · · < vλ, and define

H
V
b (m) :=

{
m =

∑

j≥0

cjb
j |cj ∈ {0, v1, . . . , vλ} = {0} ∪ V

}
, (10)

i.e., the set of restricted b-ary partitions of m, where a power of b either does not occur, or
occurs v1 times, or v2 times, . . ., or vλ times. If we then define its cardinality as

SV
b (m) := #H

V
b (m), (11)

then we have, in analogy to (8),

ωV
b,T (n; 1, . . . , 1) = SV

b (n− 1), n = 1, 2, . . . (12)

We illustrate the objects defined in (9) and (10) with an example.

Example 3. Let b = 2, V = (1, 3, 4), and n = 10. Then the representations ofm = n−1 = 9
given by (10) are

8 + 1, 4 + 2 + 1 + 1 + 1, 2 + 2 + 2 + 1 + 1 + 1, 2 + 2 + 2 + 2 + 1. (13)
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Meanwhile, expansion of the right-hand side of (9) gives, with T = (r, s, t) and Z = (x, y, z),
the λ = 3 variable polynomial

ωV
2,T (10;Z) = x1+r3 + xr+r2y + y1+s + xzt. (14)

We juxtapose the SV
2 (9) = 4 representations in (13) and the four monomials in (14) as

follows:

x1+r3 ←→ 1 · 20 + 1 · 23,

xr+r2y ←→ 1 · 21 + 1 · 22 + 3 · 20,
y1+s ←→ 3 · 20 + 3 · 21,
xzt ←→ 1 · 20 + 4 · 21.

This one-to-one correspondence is a special case of the following theorem, which is the main
result of this paper.

Theorem 4. Let b ≥ 2 and λ ≥ 1 be integers, T = (t1, . . . , tλ) a λ-tuple of positive integer

parameters, and V = (v1, . . . , vλ) an ordered set of strictly increasing positive integers. Then

for any integer m ≥ 1 we have

ωV
b,T (m+ 1; z1, . . . , zλ) =

∑

h∈HV
b
(m)

z
ph,1(t1)
1 · · · z

ph,λ(tλ)

λ , (15)

where, for each h ∈ H
V
b (m), the exponents ph,1(t1), . . . , ph,λ(tλ) are polynomials with only 0

and 1 as coefficients. Furthermore, if for 1 ≤ i ≤ λ we write

ph,i(ti) = t
τi(1)
i + t

τi(2)
i + · · ·+ t

τi(µi)
i , 0 ≤ τi(1) < · · · < τi(µi), µi ≥ 0, (16)

then the powers that are used exactly vi times in the b-ary partition h are

bτi(1), bτi(2), . . . , bτi(µi). (17)

If µi = 0 in (16), we set ph,i(ti) = 0 by convention, and accordingly (17) is the empty set.

In the special case λ = b and V = (1, 2, . . . , b), Theorem 4 reduces to Theorem 11 in
[10], which characterizes all hyper b-ary representations of m. In the case b = 2, λ = 3, and
V = (1, 3, 4), Theorem 4 explains the correspondence given at the end of Example 3.

For the proof of Theorem 4 we need recurrence relations for the polynomials ωV
b,T (n;Z),

which are established in the next section.

3 Recurrence relations

As we saw in Section 2, the restricted b-ary partition functions Sλ
b (n − 1) and SV

b (n − 1)
can be seen as generalizations of the b-ary Stern sequence sb(n) in (4), and the polynomials
ωλ
b,T (n;Z) and ωV

b,T (n;Z) can be seen as further generalizations of the b-ary generalized Stern
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polynomials ωb,T (n;Z). In order to put the results in this section into perspective, we quote
the recurrence relation sb(0) = 0, sb(1) = 1, and for n ≥ 1,

sb(bn− j) = sb(n) (j = 0, 1, . . . , b− 2), (18)

sb(bn+ 1) = sb(n) + sb(n+ 1); (19)

see [10] (or [5], where the sequence is shifted by 1). The case b = 2 in (18), (19) gives the
recurrence for the well-known Stern (diatomic) sequence.

The polynomials ωb,T (n;Z), where T = (t1, . . . , tb) and Z = (z1, . . . , zb), were shown in
[10] to satisfy the recurrence relations ωb,T (0;Z) = 0, ωb,T (1;Z) = 1, and for n ≥ 1,

ωb,T (b(n− 1) + j + 1; z1, . . . , zb) = zj ωb,T (n; z
t1
1 , . . . , z

tb
b ) (1 ≤ j ≤ b− 1), (20)

ωb,T (bn+ 1; z1, . . . , zb) = zb ωb,T (n; z
t1
1 , . . . , z

tb
b ) + ωb,T (n+ 1; zt11 , . . . , z

tb
b ). (21)

For z1 = · · · = zb = 1, the identities (20), (21) obviously reduce to (18) and (19).
In the case of general λ, especially when λ > b, the right-hand sides of (20) and (21)

usually have more than just one or two terms. To state and prove the next result in a concise
way, we use the following notation. If

Z = (z1, . . . , zλ), T = (t1, . . . , tλ) (22)

are λ-tuples of variables, resp. positive integers, then we denote

ZT := (zt11 , z
t2
2 , . . . , z

tλ
λ ). (23)

We can now state and prove the main result of this section.

Theorem 5. Let b ≥ 2 and λ ≥ 1 be integers, denote ℓ := ⌊λ/b⌋, and let Z and T be given

by (22). Then we have the recurrence relation ωλ
b,T (0;Z) = 0, ωλ

b,T (1;Z) = 1, and for each

integer n ≥ 0,

ωλ
b,T (bn+ j + 1;Z) =

ℓ∑

k=0

zkb+jω
λ
b,T (n− k + 1;ZT ) (j = 0, 1, . . . , b− 1), (24)

with the conventions that z0 = 1, zµ = 0 for µ > λ, and ωλ
b,T (m;Z) = 0 if m ≤ 0.

Proof. For ease of notation we write ω(n;Z) for ωλ
b,T (n;Z). Dividing both sides of (6) by ζ

and then manipulating the infinite product, we get

∞∑

m=0

ω(m+ 1;Z)ζm =
∞∏

j=0

(
1 + z

tj
1

1 ζ
bj + z

tj
2

2 ζ
2·bj + · · ·+ z

tj
λ

λ ζλ·b
j
)

= (1 + z1ζ + · · ·+ zλζ
λ)

∞∏

j=0

(
1 + z

tj+1

1

1 ζb
j+1

+ · · ·+ z
tj+1

λ

λ ζλ·b
j+1

)

= (1 + z1ζ + · · ·+ zλζ
λ)

∞∏

j=0

(
1 + (zt11 )

tj
1(ζb)b

j

+ · · ·+ (ztλλ )t
j

λ(ζb)λ·b
j
)
.

7



Using the notation (23) and again the generating function (6), we then obtain

∞∑

m=0

ω(m+ 1;Z)ζm = (1 + z1ζ + · · ·+ zλζ
λ)

∞∑

ν=0

ω(ν + 1;ZT )ζνb. (25)

With the conventions z0 = 1 and zµ = 0 for µ > λ, and with λ = ℓb + r, 0 ≤ r ≤ b− 1, we
get

(1 + z1ζ + · · ·+ zλζ
λ) =

ℓ∑

k=0

b−1∑

j=0

zkb+jζ
kb+j =

ℓ∑

k=0

ζkb
b−1∑

j=0

zkb+jζ
j . (26)

Next we write m = bn + j, 0 ≤ j ≤ b − 1, in (25) and substitute (26) into (25). Then (25)
becomes

∞∑

n=0

b−1∑

j=0

ω(bn+ j + 1;Z)ζbn+j (27)

=

( ℓ∑

k=0

ζkb
b−1∑

j=0

zbk+jζ
j

)
·

∞∑

ν=0

ω(ν + 1;ZT )ζνb

=
∞∑

n=0

b−1∑

j=0

( ℓ∑

k=0

zbk+jω(n− k + 1;ZT )

)
ζnb+j,

where we have used a Cauchy product, with k + ν = n. Finally, by equating coefficients of
ζnb+j in the first and the third line of (27), we immediately get (24).

Before considering other consequences and special cases of Theorem 5, we illustrate this
result with n = 0 and n = 1.

Corollary 6. Let b ≥ 2 and λ ≥ 2b be integers, and Z and T as in (22). Then

ωλ
b,T (j;Z) = zj−1 (j = 2, 3, . . . , b), (28)

ωλ
b,T (b+ 1;Z) = zt11 + zb, (29)

ωλ
b,T (b+ j;Z) = zt11 zj−1 + zb+j−1 (j = 2, 3, . . . , b). (30)

Proof. As in the proof of Theorem 5 we suppress the subscripts and superscript of ω. The
identity (24) with n = 0 gives, for j = 0, 1, . . . , b− 1,

ω(j + 1;Z) = zjω(1;Z
T ) = zj.

For j = 0 this is consistent with the convention z0 = 1, while the cases j = 1, 2, . . . , b − 1
give (28) when shifted by 1. Next we take (24) with n = 1, and again for j = 0, 1, . . . , b− 1
we obtain

ω(b+ j + 1;Z) = zjω(2;Z
T ) + zb+jω(1;Z

T ) = zjz
t1
1 + zb+j, (31)

where we have used (23) and (28) for j = 2. Now (24) with j = 0 gives (29), and for
j = 1, 2, . . . , b− 1 we get (30) when j is again shifted by 1.
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As a specific (partial) example of Corollary 6 we consider the case b = 3 and λ = 4 in
Table 1. Then (28) and (29) correspond to the entries for n = 2, 3, 4. The identity (30)
corresponds only to n = 5 since we don’t have λ ≥ 2b. However, we see that Corollary 6
could easily be extended to give further explicit partial sequences of polynomials when λ is
large enough compared with b.

We now consider several special cases of Theorem 5. As a first such case, we let λ = b
and use the identity (7). Then ℓ = 1, and (24) reduces to

ωb,T (bn+ j + 1;Z) = zjωb,T (n+ 1;ZT ) + zb+jωb,T (n;Z
T ) (32)

for j = 0, 1, . . . , b − 1. But we have z0 = 1 and zb+j = 0 for j ≥ 1, which leads to the
following result.

Corollary 7. Let b ≥ 2, Z = (z1, . . . , zb), and T = (t1, . . . , tb). Then we have ωb,T (0;Z) = 0,
ωb,T (1;Z) = 1, and for n ≥ 0,

ωb,T (bn+ 1;Z) = ωb,T (n+ 1;ZT ) + zbωb,T (n;Z
T ),

ωb,T (bn+ j + 1;Z) = zjωb,T (n+ 1;ZT ) (j = 1, 2, . . . , b− 1).

We have thus recovered (20) and (21). As our next special case we consider b = 2, with
general λ ≥ 1. We separate the two cases j = 0 and j = b − 1 = 1 in (24) and note again
that z0 = 1. Then we get the following corollary.

Corollary 8. Let λ ≥ 1 and Z = (z1, . . . , zλ), T = (t1, . . . , tλ). Then we have ωλ
2,T (0;Z) = 0,

ωλ
2,T (1;Z) = 1, and for n ≥ 0,

ωλ
2,T (2n+ 1;Z) = ωλ

2,T (n+ 1;ZT ) +

⌊λ/2⌋∑

k=1

z2kω
λ
2,T (n− k + 1;ZT ), (33)

ωλ
2,T (2n+ 2;Z) =

⌊λ/2⌋∑

k=0

z2k+1ω
λ
2,T (n− k + 1;ZT ), (34)

where zλ+1 = 0 and ωλ
2,T (m;Z) = 0 when m ≤ 0.

When Z = (1, . . . , 1), then T is irrelevant and by (8) we have ωλ
2,T (n+1;Z) = Sλ

2 (n), the
restricted binary partition function defined by (1). Since zλ+1 = 0, the identity (34) needs
to be split into two cases according to the parity of λ, as indicated in the following corollary.

Corollary 9. Let λ ≥ 1 be an integer. Then we have the recurrence relation Sλ
2 (0) = 1, and
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for n ≥ 0,

Sλ
2 (2n) =

⌊λ/2⌋∑

k=0

Sλ
2 (n− k), (35)

Sλ
2 (2n+ 1) =

λ/2−1∑

k=0

Sλ
2 (n− k) (λ even), (36)

Sλ
2 (2n+ 1) =

(λ−1)/2∑

k=0

Sλ
2 (n− k) (λ odd), (37)

where Sλ
2 (m) = 0 when m < 0.

The three identities in Corollary 9 can be found in Theorem 2.4 of [20], with different
notation.

More generally, we can consider arbitrary bases b ≥ 2, while still setting Z = (1, 1, . . . , 1)
and using (8), namely ωλ

b,T (n+ 1;Z) = Sλ
b (n). Since zµ = 0 for µ > λ, we also have to split

(24) into two cases.

Corollary 10. Let b ≥ 2 and λ ≥ 1 be integers with λ = ℓb + r, 0 ≤ r ≤ b − 1. Then we

have the recurrence relation Sλ
b (0) = 1, and for n ≥ 0,

Sλ
b (bn+ j) =

ℓ∑

k=0

Sλ
b (n− k) (0 ≤ j ≤ r), (38)

Sλ
b (bn+ j) =

ℓ−1∑

k=0

Sλ
b (n− k) (r + 1 ≤ j ≤ b− 1), (39)

where Sλ
b (m) = 0 for m < 0.

The identities (38) and (39) were previously obtained by Dumont et al. as Equation (6.2)
in [13].

The last corollary of Theorem 5 in this section is a special case that is somewhat similar
to Corollary 7 and is related to the unique b-ary representation of a positive integer. If we
take λ = b− 1 for any b ≥ 2, then we have ℓ = 0, and with (24) and the fact that z0 = 1 we
get the following recurrence relation.

Corollary 11. Let b ≥ 2 be an integer, and Z = (z1, . . . , zb−1), T = (t1, . . . , tb−1) be ordered

sets of variables, resp. positive integers. Then we have ωb−1
b,T (0;Z) = 0, ωb−1

b,T (1;Z) = 1, and
for n ≥ 0,

ωb−1
b,T (bn+ 1;Z) = ωb−1

b,T (n+ 1;ZT ), (40)

ωb−1
b,T (bn+ j + 1;Z) = zjω

b−1
b,T (n+ 1;ZT ) (1 ≤ j ≤ b− 1). (41)
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Example 12. We use Corollary 11 with b = 3, Z = (y, z), and T = (s, t). Then (40) and
(41) can be written as

ω2
3,T (3n+ 1;Z) = ω2

3,T (n+ 1; ys, zt),

ω2
3,T (3n+ 2;Z) = y · ω2

3,T (n+ 1; ys, zt),

ω2
3,T (3n+ 3;Z) = z · ω2

3,T (n+ 1; ys, zt).

The first 14 nontrivial polynomials, evaluated using these recurrences, are listed in Table 2.
They are obviously all monomials.

m ternary ω2
3,T (m+ 1;Z) m ternary ω2

3,T (m+ 1;Z)

1 (1) y 8 (22) z1+t

2 (2) z 9 (100) ys
2

3 (10) ys 10 (101) y1+s2

4 (11) y1+s 11 (102) ys
2

z

5 (12) ysz 12 (110) ys+s2

6 (20) zt 13 (111) y1+s+s2

7 (21) yzt 14 (112) ys+s2z

Table 2: ω2
3,T (m+ 1; y, z), T = (s, t), 1 ≤ m ≤ 14.

Table 2 can also be seen as another illustration of Theorem 4 for V = (1, 2). Consider,
for example, the last entry in Table 2. The polynomial ys+s2z indicates that the ternary
representation of m = 14 is unique, and the powers 31 and 32 each occur once, while 30

occurs twice. This is consistent with 14 = (112) in ternary representation.

To conclude this section, we state and prove a recurrence relation for the more general
polynomials ωV

b,T (n;Z) that were introduced in Definition 2.

Theorem 13. Let b ≥ 2 and λ ≥ 1 be integers, and V = (v1, . . . , vλ) a strictly increasing

sequence of positive integers. Furthermore, let Z and T be as specified in (22), and define

the vλ-tuple Z̃ = (z̃1, z̃2, . . . , z̃vλ) by

z̃j =

{
zk, when j = vk, k = 1, 2, . . . , λ;

0, when j 6∈ V.
(42)

Then we have the recurrence relation ωV
b,T (0;Z) = 0, ωV

b,T (1;Z) = 1, and for each integer

n ≥ 0,

ωV
b,T (bn+ j + 1;Z) =

⌊vλ/b⌋∑

k=0

z̃kb+jω
V
b,T (n− k + 1;ZT ) (j = 0, 1, . . . , b− 1), (43)

with the conventions that z̃0 = 1, z̃µ = 0 for µ > λ, and ωV
b,T (m;Z) = 0 when m ≤ 0.
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Proof. In analogy to (42) we set

t̃j =

{
tk, when j = vk, k = 1, 2, . . . , λ;

1, when j 6∈ V.

Then with this definition and with (42) we see that we can write

ωV
b,T (n;Z) = ωvλ

b,T̃
(n; Z̃), (44)

where the right-hand side of (44) is a polynomial of the type in Definition 1, with vλ used in
place of λ. We can therefore apply Theorem 5, which immediately gives Theorem 13, with
⌊vλ/b⌋ in place of ℓ.

Example 14. Let b = 2 and V = (1, 3, 4). Then ⌊vλ/b⌋ = 2, Z = (x, y, z), T = (r, s, t), and

Z̃ = (x, 0, y, z). Therefore

z̃0 = 1, z̃1 = x, z̃2 = 0, z̃3 = y, z̃4 = z, z̃5 = 0,

and thus (43), written separately for j = 0 and j = 1, gives

ωV
2,T (2n+ 1; x, y, z) = ωV

2,T (n+ 1; xr, ys, zt) + z · ωV
2,T (n− 1; xr, ys, zt),

ωV
2,T (2n+ 2; x, y, z) = x · ωV

2,T (n+ 1; xr, ys, zt) + y · ωV
2,T (n; x

r, ys, zt).

These last two identities, together with the initial conditions ωV
2,T (0;Z) = 0 and ωV

2,T (1;Z) =
1, can be used to easily compute the polynomials in question; see Table 3. We note that the
entry for m = 10 agrees with (14) in Example 3.

m ωV
2,T (m; x, y, z) m ωV

2,T (m; x, y, z)

1 1 6 x1+r2 + xry

2 x 7 xr+r2 + ys + xrz

3 xr 8 x1+r+r2 + xys + xr2y

4 x1+r + y 9 xr3 + zt + xr2z

5 xr2 + z 10 x1+r3 + xzt + xr+r2y + y1+s

Table 3: ωV
2,T (m; x, y, z), T = (r, s, t), V = (1, 3, 4), 1 ≤ m ≤ 10.

4 Proof of Theorem 4

In this relatively brief section we use the general recurrence relation, Theorem 13, to prove
our main representation theorem, namely Theorem 4. In what follows, in order to simplify

12



terminology, we refer to a restricted b-ary partition of m in the sense of (10) simply as a
“representation of m”.

We fix the integers b ≥ 2, λ ≥ 1, and the λ-tuples T , V , and Z as in Theorems 4 and 13.
As we did in earlier proofs, we suppress the subscripts and superscript of ω. We now proceed
by induction on m.

1. For the induction beginning we consider (43) with n = 0. Since ω(0;Z) = 0 and
ω(1;Z) = 1, we find for j = 0, 1, . . . , b− 1 that

ω(j + 1;Z) = z̃j =





zk, when j = vk, k = 1, 2, . . . , λ;

0, when j 6∈ V, j ≥ 1;

1, when j = 0.

(45)

Here we have used (42) and the convention z̃0 = 1.
On the other hand, the only representation of j = 1, 2, . . . , b−1 is vk = vkb

0 when j = vk,
while j has no representation when j 6∈ V . This is consistent with (15) and (16), namely

ω(j + 1;Z) = z1k, ph,k(tk) = 1 = t0k,

as the power b0 is used exactly vk times in the representation of j. Hence Theorem 4 holds
for m = j, 1 ≤ j ≤ b− 1. This concludes the induction beginning.

2. Now we assume that Theorem 4 is true for all m ≤ nb− 1, for some n ≥ 1. We wish
to show that it is then also true for m = nb+ j, for all j = 0, 1, . . . , b− 1. To do so, we fix j,
0 ≤ j ≤ b− 1, and consider all representations of nb + j. They can be obtained recursively
as follows. We fix an integer k ≥ 0 and

(a) take all representations of n− k and multiply them by b,
(b) add to each such representation kb+ j times the part b0,
(c) ignore (a) and (b) when kb+ j 6∈ V ,
(d) do (a) and (b) for all k ≥ 0 that satisfy kb+ j ≤ vλ.

This procedure gives all representations of nb + j since (n − k)b + (kb + j) = nb + j. Also
note that the maximal k given by (d) is ⌊vλ/b⌋.

3. Using the induction hypothesis and (15), we have

ω(n− k + 1;Z) =
∑

h∈HV
b
(n−k)

z
ph,1(t1)
1 · · · z

ph,λ(tλ)

λ , (46)

with exponents ph,1(t1), . . . , ph,λ(tλ) as in (16). In order to lift the representations of n−k to
those of (n− k)b, which corresponds to step (a), all powers of ti, 1 ≤ i ≤ λ, are augmented
by 1. In addition, for each k with 0 ≤ k ≤ ⌊vλ/b⌋ and satisfying kb+ j ∈ V (say kb+ j = vr,
1 ≤ r ≤ λ) we add t0r, corresponding to b0 being used exactly vr times; this, in turn,
corresponds to step (b). If kb + j 6∈ V , there is no contribution to the representations of
nb+ j, which corresponds to step (c).
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Altogether, then, carrying out the procedure of the previous paragraph for each k for
0 ≤ k ≤ ⌊vλ/b⌋ (step (d)), we get the polynomials

Pk :=
∑

h′∈HV
b
(nb+j)

z
ph′,1(t1)

1 · · · z
ph′,λ(tλ)

λ , (47)

where h′ ranges over all those representations of nb+ j that have exactly vr = kb+ j times
the part b0, and

ph′,r(tr) = 1 + trph,r(tr), ph′,i(ti) = tiph,i(ti) (1 ≤ i ≤ λ, i 6= r). (48)

Now with (46) and (48), the sum in (47) becomes

Pk = zr
∑

h∈HV
b
(n−k)

(zt11 )
ph,1(t1) · · · (ztλλ )ph,λ(tλ) (49)

= zrω(n− k + 1;ZT ),

where we have used the notation (23).
Finally we sum (49) over all k, 0 ≤ k ≤ ⌊vλ/b⌋, and use the fact that by (42) we have

z̃kb+j = zr when kb+ j ∈ V , and z̃kb+j = 0 otherwise. Then the representations of nb+ j are
characterized by

⌊vλ/b⌋∑

k=0

z̃kb+jω(n− k + 1;ZT ) = ω(bn+ j + 1;Z), (50)

where the right-hand side of (50) comes from (43). Therefore all the representations of nb+j
are characterized by ω(bn+ j+1;Z); and since this holds for any j, 0 ≤ j ≤ b− 1, the proof
by induction of the main statement of Theorem 4 is now complete.

It only remains to show that for each h ∈ H
V
b (m) the polynomials ph,i(ti), i = 1, . . . , λ,

have only 0 and 1 as coefficients. But this follows from (48), again by induction.

5 Explicit Formulas

In [3] Carlitz proved, in a different notation, that the number of odd binomial coefficients(
n−k
k

)
is given by s(n+1), where {s(n)} is the Stern sequence mentioned in the Introduction.

If we set
(
n
k

)∗
=

(
n
k

)
(mod 2) with

(
n
k

)∗
∈ {0, 1}, then Carlitz’s result can be written as

s(n+ 1) =

⌊n
2
⌋∑

k=0

(
n− k

k

)∗

(n ≥ 0). (51)

In [9] we extended the identity (51) to 2-variable Stern polynomials, again in base b = 2. To
state this and further results, we need the following definition from [9].
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For an integer k ≥ 0, let k =
∑

j≥0 cj2
j, cj ∈ {0, 1}, be the binary expansion of k. Then

for an integer base t ≥ 1 we define

dt(k) :=
∑

j≥0

cjt
j. (52)

Various small values of dt(k) can be found in Table 2 of [8], with references to the OEIS [19].
With the definition (52) and notation from (6), the polynomial extension of (51) in [9]

can be stated as

ω2
2,T (n+ 1; y, z) =

⌊n
2
⌋∑

k=0

(
n− k

k

)∗

yds(n−2k)zdt(k), (53)

where T = (s, t). As indicated in [18], the identity (51) can be rewritten as

⌊n
2
⌋∑

k=0

(
n− k

k

)∗

=
∑

j+2k=n

(
j + k

k

)∗

, (54)

and similarly, we can rewrite (53) as

ω2
2,T (n+ 1; y, z) =

∑

k1+2k2=n

(
k1 + k2

k2

)∗

yds(k1)zdt(k2). (55)

This last identity may serve as motivation for the following main result of this section. In
analogy to

(
n
k

)∗
we define

(
k1+···+kλ
k1,...,kλ

)∗
to be the least nonnegative residue of the multinomial

coefficient
(
k1+···+kλ
k1,...,kλ

)
modulo 2.

Theorem 15. Let λ ≥ 1 be an integer, V = (v1, . . . , vλ) a strictly increasing sequence of

positive integers, and Z and T as in (22). Then for n ≥ 0 we have

ωV
2,T (n+ 1;Z) =

∑

v1k1+v2k2+···+vλkλ=n

(
k1 + · · ·+ kλ
k1, . . . , kλ

)∗

z
dt1 (k1)
1 · · · z

dtλ (kλ)

λ . (56)

Example 16. With λ = 3, V = (1, 3, 4), Z = (x, y, z), and T = (r, s, t), the identity (56)
becomes

ωV
2,T (n+ 1;Z) =

∑

k1+3k2+4k3=n

(
k1 + k2 + k3
k1, k2, k3

)∗

xdr(k1)yds(k2)zdt(k3). (57)

For n = 9, the conditions k1 + 3k2 + 4k3 = n and
(
k1+k2+k3
k1,k2,k3

)∗
= 1 are satisfied by the triples

(k1, k2, k3) = (9, 0, 0), (6, 1, 0), (0, 3, 0), (1, 0, 2), so that (57) becomes

ωV
2,T (10;Z) = xdr(9) + xdr(6)yds(1) + yds(3) + xdr(1)zdt(2)

= x1+r3 + xr+r2y + y1+s + xzt.

This is consistent with (14) in Example 3; see also Table 3.
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We note that the sum in (56) is taken over all partitions of n with parts in V . In the
special case V = (1, 2, . . . , λ), we get the following immediate consequence of Theorem 15.

Corollary 17. Let λ ≥ 1 be an integer, and Z and T as in (22). Then for n ≥ 0 we have

ωλ
2,T (n+ 1;Z) =

∑

k1+2k2+···+λkλ=n

(
k1 + · · ·+ kλ
k1, . . . , kλ

)∗

z
dt1 (k1)
1 · · · z

dtλ (kλ)

λ . (58)

We now see that the identity (55) is the case λ = 2 of Corollary 17. If we set Z = (1, . . . , 1)
in (56) and use (12), we get the following extension of (51) and (54).

Corollary 18. Let λ ≥ 1 be an integer and V = (v1, . . . , vλ) a strictly increasing sequence

of positive integers. Then for n ≥ 0 we have

SV
2 (n) =

∑

v1k1+v2k2+···+vλkλ=n

(
k1 + · · ·+ kλ
k1, . . . , kλ

)∗

, (59)

where SV
2 (n) is the number of restricted binary partitions of n, as defined in (11).

Theorem 15 is a special case of a more general result, which in turn is a consequence of
the following lemma.

Lemma 19. Let b ≥ 2 and λ ≥ 1 be integers, V = (v1, . . . , vλ) a strictly increasing sequence

of positive integers, and Z and T as in (22). Then for n ≥ 0 we have

ωV
b,T (n+ 1;Z) =

∑∏

j≥0

(zij)
tjij , (60)

where the sum is taken over all representations vi0+vi1b+vi2b
2+ · · · = n in H

V
b (n) as defined

in (10), and where we set z0 = 1 and v0 = 0 by convention.

Example 20. Let b = 3, V = {1, 2, 3, 4, 5}, Z = (v, w, x, y, z), and T = (p, q, r, s, t). The
representations of n = 15 and the corresponding monomials, according to Lemma 19, are
then given as follows:

2 · 3 + 1 · 32 ←→ zt22 z
t2
1

1 = wqvp
2

,

3 · 1 + 1 · 3 + 1 · 32 ←→ z
t0
3

3 z
t1
1 z

t2
1

1 = xvp+p2 ,
5 · 3 ←→ zt55 = zt,

3 · 1 + 4 · 3 ←→ z
t0
3

3 z
t4
4 = xys.

In accordance with (60) these monomials are the terms of the polynomial

ω5
3,T (16;Z) = wqvp

2

+ xvp+p2 + zt + xys.
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Proof of Lemma 19. If we divide both sides of (9) by ζ, we see that the infinite product on
the right-hand side of (9) is the generating function of the polynomial sequence ωV

b,T (n+1;Z)
for n ≥ 0.

On the other hand, for a fixed n the product in (9) shows that all powers of ζn are of the
form

ζn =
∏

j≥0

ζvij b
j

,

or, in terms of the exponents,

n =
∑

j≥0

vijb
j, 0 ≤ ij ≤ λ, v0 = 0, vi ∈ V (1 ≤ i ≤ λ). (61)

The structure of the factors on the right-hand side of (9) also shows that the monomial
z1, . . . , zλ corresponding to the exponent n in (61) is

∏

j≥0

(zij)
tjij . (62)

Summing over all representations of n as in (61), we obtain the identity (60).

In order to state and prove our next result, we need some additional definitions with
corresponding notations. For the remainder of this section, let b ≥ 2 be a fixed integer.

First we define the set

Mb :=

{
∑

j≥0

cjb
j | cj ∈ {0, 1}

}
, (63)

i.e., the set of all nonnegative integers whose b-ary digits are only 0 or 1. Clearly we have
M2 = N ∪ {0}.

Next we extend (52) as follows. Let k ∈ Mb with k =
∑

j≥0 cjb
j, cj ∈ {0, 1}. Then for

an integer base t ≥ 1 we define

dbt(k) :=
∑

j≥0

cjt
j. (64)

It is clear that d2t (k) = dt(k) and dbb(k) = k for all integers b ≥ 2 and k ∈Mb.
Finally, we extend the multinomial coefficient modulo 2, as used in Theorem 15. If

k1, . . . , kλ ∈Mb, we set

(
k1 + · · ·+ kλ
k1, . . . , kλ

)∗

b

:=

(
db2(k1) + · · ·+ db2(kλ)

db2(k1), . . . , d
b
2(kλ)

)∗

, (65)

with the right-hand side of (65) as defined earlier, just before Theorem 15. We are now
ready to state a result that generalizes Theorem 15.
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Theorem 21. Let b ≥ 2 and λ ≥ 1 be integers, V = (v1, . . . , vλ) a strictly increasing

sequence of positive integers, and Z and T as in (22). Then for n ≥ 0 we have

ωV
b,T (n+ 1;Z) =

∑

v1k1+v2k2+···+vλkλ=n
k1,...,kλ∈Mb

(
k1 + · · ·+ kλ
k1, . . . , kλ

)∗

b

z
dbt1

(k1)

1 · · · z
dbtλ

(kλ)

λ . (66)

Before proving this result, we note that it immediately implies Theorem 15. Indeed, when
b = 2, the multinomial coefficient defined in (65) reduces to the one in (56) since d22(ki) = ki.
Then in the b = 2 case we also have dbti(ki) = dti(ki), and the conditions concerning Mb

become irrelevant.
For the proof of Theorem 21 we require the following result due to Dickson [7], which we

state as a lemma. See also the more recent paper [17].

Lemma 22 (Dickson). Let p be a prime and λ ≥ 2 an integer, and suppose that the positive

integers k1, . . . , kλ and k := k1 + · · ·+ kλ are given in base-p representation as

ki = ai0 + ai1p+ · · ·+ aimp
m, i = 1, . . . , λ,

k = a0 + a1p+ · · ·+ amp
m.

Then we have (
k

k1, . . . , kλ

)
6≡ 0 (mod p), (67)

if and only if

aj = a1j + · · ·+ aλj (68)

holds for all j = 1, . . . ,m.

Proof of Theorem 21. We begin with Lemma 19 and its proof. The representation of n in
(61) can be rewritten as

n = v1k1 + v2k2 + · · ·+ vλkλ, (69)

where for each r = 1, 2, . . . , λ we have

kr :=
∑

ij=r

bj,

for integers ij with 0 ≤ ij ≤ λ. This means that each power b0, b1, b2, . . . occurs in the base-b
representation of at most one of the integers k1, k2, . . . , kλ, which in turn implies that

(i) ki ∈Mb for all i = 1, 2, . . . , λ, and

(ii) the powers b0, b1, b2, . . . do not “overlap” in the sum k1 + · · ·+ kλ.
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Furthermore, as n is rewritten in the form (69), the corresponding monomial in (62) can be
rewritten as

λ∏

i=1

z
dbti

(ki)

i , (70)

where we have used the definition (64).
We are now going to characterize condition (ii), noting that condition (i) is taken care of

by the summation in (66). If for each i = 1, 2, . . . , λ we replace

ki = ci0 + ci1b+ · · ·+ cjib
ji ∈Mb

by
db2(ki) = ci0 + ci12 + · · ·+ cji2

ji ,

then condition (ii) means that there is no “carry” as we take the sum S := db2(k1)+· · ·+db2(kλ).
This, in turn, means that for each power of 2, say 2ν , the sum of the coefficients of 2ν in
db2(k1), . . . , d

b
2(kλ), namely 0 or 1, is exactly the coefficient of 2ν in S. Hence the condition

(68) in Lemma 22 with p = 2 is satisfied, and by (67) and (65) the modified multinomial
coefficient in (66) is 1. Therefore the product (70) is included, as required.

On the other hand, if condition (ii) is not satisfied, then there is a carry in the sum S.
This means that there is at least one index ν ≥ 0 such that

c1ν + c2ν + · · ·+ cλν ≥ 2,

while the coefficient of 2ν in S is only 0 or 1. Therefore the condition (68) in Lemma 22
(again with p = 2) is not satisfied, and by (67) and (65) the modified multinomial coefficient
in (66) is 0. This completes the proof of Theorem 21.

Example 23. As in Example 20, we choose again b = 3, V = {1, 2, 3, 4, 5}, and n = 15.
Of the 84 partitions of n = 15 with parts in V , 25 satisfy the second summation condition
in (66), namely ki ∈ M3 = {0, 1, 3, 4, 9, 10, 12, 27, . . .}, 1 ≤ i ≤ 5. For only four of these
partitions the modified multinomial coefficient in (66) is 1, namely for

(k1, . . . , k5) = (9, 3, 0, 0, 0), (12, 0, 1, 0, 0), (0, 0, 1, 3, 0), (0, 0, 0, 0, 3). (71)

Hence (66) with Z = (v, w, x, y, z) and T = (p, q, r, s, t) gives

ω5
3,T (16;Z) = vd

3
p(9)wd3q(3) + vd

3
p(12)xd3r(1) + xd3r(1)yd

3
s(3) + zd

3
t (3)

= vp
2

wq + vp+p2x+ xys + zt,

which is consistent with the result of Example 20.

Remark. A necessary condition for the product (70) to be included in (66) is k1+ · · ·+kλ ∈
Mb, since otherwise condition (ii) in the proof of Theorem 21 is obviously not satisfied.
However, this condition is not sufficient, as the following example shows.
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On the other hand, we conjecture that a necessary and sufficient condition for the product
(70) to be included in (66) is that all possible partial sums of elements of {k1, . . . , kλ} be
in Mb. A further analysis would go beyond the scope of this paper; we leave this to the
interested reader.

Example 24. Continuing with Example 23, we note that of the 25 partitions that satisfy
ki ∈M3, 1 ≤ i ≤ 5, there are 19 such that k1 + · · ·+ k5 6∈M3. The remaining six partitions
obviously include the four in (71), while (k1, . . . , k5) = (10, 1, 1, 0, 0) and (4, 4, 1, 0, 0) are
excluded by way of the modified multinomial coefficients as in (66), or by the fact that, for
instance, 1 + 1 6∈M3 and 4 + 1 6∈M3.

6 Further Remarks

We recall that Definition 1 and most of the results that follow are valid for all λ ≥ 1,
regardless of the base b ≥ 2. While in most of this paper we were interested in the case
λ ≥ b− 1 (or even λ ≥ b), we are now going to consider the case λ ≤ b− 2 when b ≥ 3. We
begin with a consequence of Theorem 5.

Corollary 25. Let b ≥ 3 and 1 ≤ λ ≤ b− 2 be integers, and let Z and T be given by (22).
Then we have ωλ

b,T (0;Z) = 0, ωλ
b,T (1;Z) = 1, and for each n ≥ 0 we have

ωλ
b,T (bn+ j;Z) =





ωλ
b,T (n+ 1;ZT ), when λ = 1;

zjω
λ
b,T (n+ 1;ZT ), when 2 ≤ j ≤ λ;

0, when λ+ 1 ≤ j ≤ b− 1.

(72)

This follows immediately from Theorem 5 since ℓ = ⌊λ/b⌋ = 0, z0 = 1, and zλ+1 = · · · =
zb−1 = 0. Corollary 25 can also be seen as an extension of Corollary 11.

By iterating (72), we immediately get the following result which characterizes the cases
in which the polynomials are zero when λ ≤ b− 2.

Corollary 26. Let b ≥ 3 and 1 ≤ λ ≤ b − 2 be integers, and Z and T as in (22). If the

integer m ≥ 0 has the base-b representation m =
∑r

i=0 cib
i, 0 ≤ ci ≤ b − 1 for 0 ≤ i ≤ r,

then

ωλ
b,T (m+ 1;Z) = 0 if and only if λ ≤ ci ≤ b− 2

for at least one index i, 0 ≤ i ≤ r.

Example 27. Let b = 4 and λ = 2, with Z = (y, z) and T = (s, t). Then Corollary 25 leads
to the entries of Table 4, which also illustrates Corollary 26.
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m ω(m+ 1;Z) m ω(m+ 1;Z) m ω(m+ 1;Z) m ω(m+ 1;Z)
0 1 5 y1+s 10 z1+t 15 0

1 y 6 ysz 11 0 16 ys
2

2 z 7 0 12 0 17 y1+s2

3 0 8 zt 13 0 18 ys
2

z
4 ys 9 yzt 14 0 19 0

Table 4: ω(m+ 1;Z) = ω2
4,T (m+ 1;Z), T = (s, t), Z = (y, z), 0 ≤ m ≤ 19.

Using (8), we get the following result for the integers Sλ
b (m) defined by (2).

Corollary 28. Let b ≥ 3 and 1 ≤ λ ≤ b − 2 be integers, and suppose that m ≥ 0 has the

base-b representation m =
∑r

i=0 cib
i, 0 ≤ ci ≤ b− 1 for 0 ≤ i ≤ r. Then

Sλ
b (m) =

{
1, when 0 ≤ ci ≤ λ− 1 for all 0 ≤ i ≤ r;

0, otherwise.

This last result is not difficult to obtain directly. The special case where b is a prime
in Corollary 28 was mentioned in [12] in connection with a study of products of cyclotomic
polynomials.

As a second remark, we note that Mansour and Shattuck [16] defined the following
concept.

Fix m ≥ 2 and 0 ≤ c ≤ m − 1. By a c-hyper m-expansion of a positive integer n, we
mean a partition of n into powers of m in which a given power can appear exactly j times,

where j ∈ {0, 1, . . . ,m− 1,m+ c}. See [16, Def. 1.1].
If we compare this definition with (10), we see that the set of c-hyper m-expansions is,

in our notation,
H

V
m(n), where V = (1, 2, . . . ,m− 1,m+ c).

Furthermore, again for m ≥ 2 and 0 ≤ c ≤ m − 1, Mansour and Shattuck define the
sequence of polynomials fm,c(d; q) for d ≥ 0 by

fm,c(mn+ j; q) = fm,c(n; q), 0 ≤ j ≤ m− 1, j 6= c, (73)

fm,c(mn+ c; q) = fm,c(n; q) + q fm,c(n− 1; q), (74)

with fm,c(0; q) = 1 and fm,c(d; q) = 0 for d < 0. See [16, Def. 1.2].
If we compare (73), (74) with Theorem 13, where b = λ = m and V = (1, 2, . . . ,m −

1,m+ c), then we find
fm,c(d; q) = ωV

m,T (d+ 1, Z), (75)

with the m-tuples T = (1, . . . , 1) and Z = (1, . . . , 1, q). Also, a special case of our Theorem 4
for the polynomials in (75) was obtained in [16]. Apart from these connections, however, the
paper [16] has a different emphasis from ours and deals mainly with generalizations of the
well-known Calkin-Wilf tree.
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