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Abstract

Let S be one of {aba, cbc} and {aba, aca}, and let w be an infinite squarefree word
over Σ = {a, b, c} with no factor in S. Suppose that f : Σ → T ∗ is a non-erasing
morphism. We prove that the word f(w) is squarefree if and only if f is squarefree on
factors of w of length 8 or less.

1 Introduction

The papers of Thue on squarefree words [12, 13] are foundational to the area of combinatorics
on words. A word w is squarefree if we cannot write w = xyyz, where y is a non-empty
word. The longest squarefree words over the 2-letter alphabet {a, b} are aba and bab, each
of length 3, but Thue showed that arbitrarily long squarefree words exist over the 3-letter
alphabet {a, b, c}. Infinite squarefree words over finite alphabets are routinely encountered
in combinatorics on words, and are frequently used as building blocks in constructions. (See,
for example, [9, 10].)

Let w be an infinite squarefree word over Σ = {a, b, c}. Thue showed that w must contain
every squarefree word of length 2 over Σ . However, he showed that the same is not true
for squarefree words of length 3 over Σ. For each of S1 = {aba, cbc}, S2 = {aba, aca}, and
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S3 = {aba, bab}, Thue constructed an infinite squarefree word over Σ with no factor in Si.
Constructions giving squarefree words equivalent to Thue’s word with no factors in S1 were
independently discovered by Braunholtz [4] and Istrail [8]; Berstel [1] shows this equivalence.
Their word is called vtm (for ‘variation of Thue-Morse’) by Blanchet-Sadri et al. [3], and
has been used as the basis for various constructions [3, 6, 7]. These constructions require
showing that f(vtm) is squarefree for particular morphisms f . In this paper, we give a
testable characterization of morphisms f such that f(vtm) is squarefree; we do the same in
the case where vtm is replaced by an infinite squarefree word over Σ with no factors in S2.
We leave as an open problem whether there is a characterization when we replace vtm by a
word over Σ with no factor in S3.

Theorem 1. Let w be an infinite squarefree word over Σ such that either w has no factor

in S1, or w has no factor in S2. Suppose that f : Σ → T ∗ is a non-erasing morphism. The

word f(w) is squarefree if and only if f is squarefree on factors of w of length 8 or less.

Our theorem says that to establish squarefreeness of f(w), the morphism f need only be
checked for squarefreeness on a finite test set. Crochemore [5] proved a variety of similar
theorems; in particular, a morphism f defined on Σ∗ preserves squarefreeness exactly when
f preserves squarefreeness on words of Σ∗ of length at most 5. Note that while Crochemore’s
theorem requires testing the squarefreeness of f(v) for every squarefree word v ∈ Σ∗ up to a
certain length, we only test words v that are factors of w. Thus, while aba is squarefree, we
do not require f(aba) to be squarefree, for example. Finite test sets for morphisms preserving
overlap-freeness have also been well-studied [11].

2 Preliminaries

Let S = S1 or S = S2. For the remainder of this paper, let w be an infinite squarefree word
over Σ with no factor in S. Write w = a0a1a2a3 · · · with ai ∈ Σ. For the remainder of this
section suppose that f : Σ → T ∗ is a non-erasing morphism that is squarefree on factors of
w of length 8 or less.

Lemma 2. Suppose f(ξ) is a factor of f(x), where x ∈ Σ and ξ is a factor of w. Then

|ξ| ≤ 3.

Proof. If x is a letter of ξ, but f(ξ) is a factor of f(x), we have

|f(x)| ≤ |f(ξ)|

≤ |f(x)|.

Since f is non-erasing, this forces x = ξ, giving |ξ| = 1.
If x is not a letter of ξ, then ξ is a squarefree word over a two-letter alphabet, so that

|ξ| ≤ 3.

Lemma 3. Suppose that f(x) is a prefix or a suffix of f(y) where x, y ∈ Σ. Then x = y.
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Proof. We give the proof where f(x) is a prefix of f(y). (The other case is similar.) Suppose
x 6= y. Then xy must be a factor of w, and xy is squarefree. However, f(xy) begins with
the square f(x)f(x), contradicting the squarefreeness of f on factors of w of length at most
8.

Lemma 4. There is no solution (α, β, γ, ξ, p, s, t, x, y, z) to

αξxyzβ is a factor of w;

α, β, γ, x, y, z ∈ Σ, ξ ∈ Σ∗;

t is a suffix of f(γ);

s is a suffix of f(α);

p is a non-empty prefix of f(β);

t = sf(ξxyz)p.

Proof. Suppose, for the sake of getting a contradiction, that (α, β, γ, ξ, p, s, t, x, y, z) is a
solution.

Here p is a prefix of f(β), but also a suffix of t, that is a suffix of f(γ). Thus we see
that f(γβ) contains square pp, so that γβ is not a factor of w. This forces γ = β. On the
other hand, since zβ is a factor of w, we conclude that z 6= γ. Again, f(z)p is a prefix of
f(zβ), but also a suffix of f(γ), so that f(γzβ) contains a square. Since yzβ is a factor of
w, it follows that y 6= γ. Similarly, f(γyzβ) contains a square, but xyzβ is a factor of w, so
that that x 6= γ. Finally, we see that f(γxyzβ) contains a square. Let δ be the last letter of
αξ. We conclude that δ 6= γ. However, now δxyz is a squarefree word of length 4 over the
two-letter alphabet Σ− {γ}. This is impossible.

The symmetrical lemma is proved analogously:

Lemma 5. There is no solution (α, β, γ, ξ, p, s, t, x, y, z) to

αξxyzβ is a factor of w;

α, β, γ, x, y, z ∈ Σ, ξ ∈ Σ∗;

t is a suffix of f(γ);

s is a non-empty suffix of f(α);

p is a non-empty of f(β);

t = sf(xyzξ)p.

Suppose that f(w) contains a non-empty square xx, with |x| as short as possible. Write
f(w) = uxxv, such that

u = A0A1 · · ·A
′

i

ux = A0A1 · · ·A
′

j

uxx = A0A1 · · ·A
′

k,
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where i ≤ j ≤ k are non-negative integers, and for each non-negative integer ℓ, Aℓ = f(aℓ),
and A′

ℓ is a prefix of Aℓ, but A
′

ℓ 6= Aℓ. This notation is not intended to exclude the possibilities
that i = 0, i = j and/or j = k.

Remark 6. Since f is squarefree on factors of w of length at most 8, but f(ai · · · ak) contains
the square xx, we must have k − i ≥ 8.

Remark 7. We cannot have i = j; otherwise suffix x of ux is a factor of Aj = Ai, and
Ai+1 · · ·Ak−1 is a factor of suffix x of uxx. Then, f(ai+1ai+2 · · · ak−1) is a factor of f(ai),
forcing (k− 1)− (i+1)+ 1 ≤ 3 by Lemma 2, so that k− i ≤ 4, a contradiction. Reasoning,
in the same way, we show that i < j < k.

For ℓ ∈ {i, j, k}, let A′′

ℓ be the suffix of Aℓ such that Aℓ = A′

ℓA
′′

ℓ . By our choice of A′

ℓ,
A′′

ℓ 6= ǫ. Then
x = A′′

iAi+1 · · ·Aj−1A
′

j = A′′

jAj+1 · · ·Ak−1A
′

k. (1)

Remark 8. Since k − i ≥ 8, we must have k − j − 1 ≥ 3 and/or j − i− 1 ≥ 3.

Lemma 9. We must have |A′′

i |+ |A′

k| ≤ |x| and |A′′

j |+ |A′

j| ≤ |x|.

Proof. We give the proof that |A′′

j |+ |A′

j| ≤ |x|. (The proof of the other assertion is similar.)
Suppose for the sake of getting a contradiction that |A′′

j |+|A′

j| > |x|. Then |A′′

j | > |x|−|A′

j| =
|A′′

iAi+1 · · ·Aj−1|. It follows that A
′′

j = A′′

iAi+1 · · ·Aj−1A
′′′

j for some non-empty prefix A′′′

j of
Aj. Similarly, one shows that A′

j = A′′′′

j Aj+1 · · ·Ak−1A
′

k for some non-empty suffix A′′′′

j of Aj.
Now |ai+1 · · · aj−1| = (j−1)−(i+1)+1 = j−i−1, and |aj+1 · · · ak−1| = (k−1)−(j+1)+1 =
k − j − 1. However, either j − i − 1 ≥ 3, or k − j − 1 ≥ 3. If j − i − 1 ≥ 3, then
A′′

j = A′′

iAi+1 · · ·Aj−1A
′′′

j for some non-empty prefix A′′′

j of Aj contradicts Lemma 4, letting
s = A′′

i , α = ai, ξ = ai+1 · · · aj−4, xyz = aj−3aj−2aj−1, p = A′′′

j , β = aj.
In the case where k− j − 1 ≥ 3, we get the analogous contradiction using Lemma 5.

Lemma 10. We have j− i = k− j, A′′

i = A′′

j , A
′

j = A′

k, and Ai+ℓ = Aj+ℓ, 1 ≤ ℓ ≤ j− i− 1.

Proof. To begin with we show that A′

j = A′

k. Since both words are suffixes of x, it suffices
to show that |A′

j| = |A′

k|. Suppose not. Suppose that |A′

k| < |A′

j|.
By the previous lemma, |A′

j| ≤ |Aj+1 · · ·Ak−2Ak−1A
′

k|. Let m be greatest such that
|Am · · ·Ak−1A

′

k| ≥ |A′

j|. Thus j + 1 ≤ m ≤ k − 1, and

|Am+1 · · ·Ak−1A
′

k| < |A′

j| ≤ |AmAm+1 · · ·Ak−1A
′

k|.

If A′

j = AmAm+1 · · ·Ak−1A
′

k, then Am is a non-empty prefix of A′

j, forcing am = aj so that
Am = A′

j = Aj, by Lemma 3. This is contrary to our choice of A′

j.
Similarly, suppose |A′

k| < |A′

j|. Suppose that |A′

k| < |A′

j|.
Again by the previous lemma, |A′

k| ≤ |Ai+1 · · ·Aj−2Aj−1A
′

j|. Let m be greatest such that
|Am · · ·Aj−1A

′

j| ≥ |A′

k|. Thus i+ 1 ≤ m ≤ j − 1, and

|Am+1 · · ·Aj−1A
′

j| < |A′

k| ≤ |AmAm+1 · · ·Aj−1A
′

j|.
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If A′

k = AmAm+1 · · ·Aj−1A
′

j, then Am is a non-empty prefix of A′

k, forcing am = ak so that
Am = A′

k = Ak, by Lemma 3, contrary to our choice of A′

k.
We thus conclude that A′

j = A′

k, as desired.
Next, we show that j − 1 = k − j and Ai+ℓ = Aj+ℓ, 1 ≤ ℓ ≤ j − i − 1. Suppose that

j − i ≤ k − j. (The other case is similar.) Suppose now that we have shown that for some
ℓ, 0 ≤ ℓ < j − i− 1 that

Aj−ℓ · · ·Aj−1A
′

j = Ak−ℓ · · ·Ak−1A
′

k. (2)

This is true when ℓ = 0; i.e., A′

j = A′

k.
From (1), one of Aj−ℓ−1Aj−ℓ · · ·Aj−1A

′

j and Ak−ℓ−1Ak−ℓ · · ·Ak−1A
′

k is a suffix of the other.
Together with (2), this implies that one of Aj−ℓ−1 and Ak−ℓ−1 is a suffix of the other. By
Lemma 3, this implies that aj−ℓ−1 = ak−ℓ−1, and by combining this with (2),

Aj−ℓ−1 · · ·Aj−1A
′

j = Ak−ℓ−1 · · ·Ak−1A
′

k. (3)

By induction we conclude that

Aj−ℓ · · ·Aj−1A
′

j = Ak−ℓ · · ·Ak−1A
′

k, 0 ≤ ℓ ≤ j − i− 1,

which implies Aj−ℓ = Ak−ℓ, 1 ≤ ℓ ≤ j − i− 1. In particular, we note that

Ai+1 · · ·Aj−1 = Ak−j+i+1 · · ·Ak−1. (4)

If we now have k − j > j − i, then k − j + i > j, and (1) and (4) imply that A′′

i =
A′′

jAj+1 · · ·Ak−j+i. Then Ak−j+i is a suffix of A′′

i and Lemma 3 forces Ak−j+i = Ai. Then (1)
and (4) force Ai = A′

i, contrary to our choice of A′

i. We conclude that k − j = j − i. From
(1) and (4) we conclude that A′′

i = A′′

j , as desired.

Corollary 11. The word w contains a factor αzβzγ, α, β, γ ∈ Σ, α, γ 6= β, |z| ≥ 3, such
that αβγ is not a factor of w.

Proof. By Lemma 10, w contains a factor αzβzγ, where α = ai, β = aj, γ = ak, z =
ai+1 · · · aj−1 = aj+1 · · · ak−1. This gives |z| = j − i− 1 = k − j − 1 ≥ 3.

Since w is squarefree, we cannot have ai = aj; otherwise w contains the square (a0z)
2;

similarly, aj 6= ak. To see that αβγ is not a factor of w, we note that f is squarefree on
factors of w of length at most 8, but f(αβγ) = AiAjAk contains the square (A′′

iA
′

j)(A
′′

jA
′

k);
this is a square since A′′

i = A′′

j and A′

j = A′

k. Since |AiAjAk| = 3 ≤ 8, we conclude that
AiAjAk is not a factor of w.

3 Results

Lemma 12. If S = {aba, cbc}, the only squarefree words of length 3 that are not factors of

w are aba and cbc. In addition, w contains no factor of the form azbza or czbzc.
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Proof. Thue [13] showed that a squarefree word over Σ not containing aba or cbc as a factor
contains every other length 3 squarefree word as a factor.

Suppose w contains a factor azbza. Since aba is not a factor of w, z 6= ǫ. Since az and
bz are factors of w, and hence squarefree, the first letter of z cannot be a or b, and must
be c. Similarly, the last letter of z must be c. But w contains zbz, and thus cbc. This is a
contradiction. Therefore w contains no factor azbza.

Replacing a by c and vice versa in the preceding argument shows that w contains no
factor czbzc.

Combining the last two lemmas gives this corollary:

Corollary 13. If S = {aba, cbc} and f : Σ∗ → T ∗ is squarefree on factors of w of length at

most 8, then f(w) is squarefree.

Lemma 14. If S = {aba, aca}, the only squarefree words of length 3 that are not factors of

w are aba and aca. In addition, w contains no factor of the form azbza or azcza, |z| ≥ 3.

Proof. Thue [13] showed that a squarefree word over Σ not containing aba or aca as a factor
contains every other length 3 squarefree word as a factor.

Suppose w contains a factor azbza, |z| ≥ 3. Since aba is not a factor of w, z 6= ǫ. Since
az and bz are factors of w, and hence squarefree, the first letter of z cannot be a or b, and
must be c. Similarly, the last letter of z must be c. However, since az is a factor of w,
but aca is not, the second letter of z cannot be a and must be b. Write z = cbz′c. Then
azbza = acbz′cbcbz′ca contains the square cbcb, that is impossible. We conclude that w

contains no factor azbza, |z| ≥ 3.
Replacing c by b and vice versa in the preceding argument shows that w contains no

factor azcza, |z| ≥ 3.

Corollary 15. If S = {aba, aca} and f : Σ∗ → T ∗ is squarefree on factors of w of length at

most 8, then f(w) is squarefree.

Lemma 16. The squarefree word azbza where z = cabcbacabcacbacabcbac has no factors aba

or bab. It follows that any analogous theorem for S3, with an analogous proof, would require

us to replace 8 by a value of at least |azbza| = 45.

Proof. This is established by a finite check.

4 Acknowledgments

The author’s research was supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC), [funding reference number 2017-03901]. The author thanks
the careful referee and editor for their comments.

6



References

[1] J. Berstel, Sur la construction de mots sans carré, Sém. Théor. Nombres Bordeaux (1978–
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