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Abstract

We define and characterize the γ-matrix associated with Pascal-like matrices that

are defined by ordinary and exponential Riordan arrays. We also define and charac-

terize the γ-matrix of the reversions of these triangles, in the case of ordinary Riordan

arrays. We are led to the γ-matrices of a one-parameter family of generalized Narayana

triangles. Thus these matrices generalize the matrix of γ-vectors of the associahedron.

The principal tools used are the bivariate generating functions of the triangles and

Jacobi continued fractions.

1 Introduction

A polynomial Pn(x) =
∑n

k=0 an,kx
k of degree n is said to be reciprocal if

Pn(x) = xnPn(1/x).

Thus we have
[xk]Pn(x) = an,k = [xk]xnPn(1/x).

Now

[xk]xnPn(1/x) = [xk−n]
∑

i=0

an,i
1

xi

= [xk−n]
∑

i=0

an,ix
−i

= an,n−k.
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Thus Pn(x) =
∑n

k=0 an,kx
k defines a family of reciprocal polynomials if and only if an,k =

an,n−k. We shall call a lower-triangular matrix (an,k) Pascal-like if

1. an,k = an,n−k

2. an,0 = an,n = 1.

Such a matrix will then be the coefficient array of a family of monic reciprocal polynomials.
We have the following well-known result [7]

Proposition 1. Let Pn(x) be a reciprocal polynomial of degree n. Then there exists a unique
polynomial γn of degree ⌊n

2
⌋ with the property

Pn(x) = (1 + x)nγn

(

x

(1 + x)2

)

.

If Pn(x) has integer coefficients then so does γn(x).

By this means, we can associate with every Pascal-like matrix (an,k) a matrix (γn,k) so
that for all n, we have

Pn(x) =
n
∑

k=0

an,kx
k =

⌊n

2
⌋

∑

k=0

γn,kx
k(1 + x)n−2k.

We shall call this matrix the γ-matrix associated with the coefficient array (an,k) of the
family of polynomials Pn(x).

We can characterize the matrix (an,k) in terms of the γ-matrix (γn,k) as follows. Before
we do this, we shall change our notation somewhat. In algebraic topology, it is customary
to use the notation h(x) for palindromic (reciprocal) polynomials [9, 15]. Thus we shall set
hn(x) =

∑n
k=0 hn,kx

k, where (hn,k) now denotes a Pascal-like matrix. We shall denote by
h(x, y) the bivariate generating function of this matrix.

Proposition 2. For a Pascal-like matrix (hn,k) we have

hn,k =

⌊n

2
⌋

∑

i=0

(

n− 2i

k − i

)

γn,i.
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Proof. We have

hn,k = [xk]
n
∑

i=0

hn,ix
i

= [xk]

⌊n

2
⌋

∑

i=0

γn,ix
i(1 + x)n−2i

=

⌊n

2
⌋

∑

i=0

γn,i[x
k]xi(1 + x)n−2i

=

⌊n

2
⌋

∑

i=0

γn,i[x
k−i]

n−2i
∑

j=0

(

n− 2i

j

)

xj

=

⌊n

2
⌋

∑

i=0

γn,i

(

n− 2i

k − i

)

.

Example 3. The identity
(

n

k

)

=

⌊n

2
⌋

∑

i=0

(

n− 2i

k − i

)

δi,0

shows that the matrix that begins





















1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0





















is the γ-matrix for the binomial matrixB = (
(

n
k

)

) A007318. Here, we have used the Annnnnn
number of the On-Line Encyclopedia of Integer Sequences [13, 14] for the binomial matrix
(Pascal’s triangle).

When (γn,k) is the γ-matrix for (hn,k), we shall say the (γn,k) generates, or is the generator
of, the matrix (hn,k).
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Example 4. The matrix that begins




















1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 0 0 0 0 0 0
1 0 1 0 0 0 0
1 0 0 0 0 0 0
1 0 0 1 0 0 0





















with γn,0 = 1, γn,⌊n

2
⌋ = 1, and 0 otherwise, generates the matrix (hn,k) that begins

















1 0 0 0 0 0
1 1 0 0 0 0
1 3 1 0 0 0
1 3 3 1 0 0
1 4 7 4 1 0
1 5 10 10 5 1

















.

2 Pascal-like matrices defined by Riordan arrays

We now wish to characterize the γ-matrices that are generators for the family of Pascal-like
matrices that are determined by the one-parameter family of Riordan arrays

(

1

1− x
,
x(1 + rx)

1− x

)

.

We shall also determine the (generalized) γ-matrices associated with the reversion of these
triangles. We recall that an ordinary Riordan array (g(x), f(x)) is defined [1, 10, 11] by two
power series

g(x) = 1 + g1x+ g2x
2 + · · · ,

f(x) = x+ f2x
2 + f3x

3 + · · · , ,
where the (n, k)-th element of the resulting lower-triangular matrix is given by

an,k = [xn]g(x)f(x)k.

Such matrices are invertible. When they have integer entries, the inverse again is an integer
matrix (note that we have an,n = 1 in our case because g0 = 1 and f1 = 1). The bivariate
generating function of the Riordan array (g, f) is given by

g(x)

1− yf(x)
.

Matrices defined in a similar manner but with f(x) replaced by φ(x) = x2 + φ3x
3 + . . .

are called “stretched” Riordan arrays [5]. They are not invertible but they do possess left
inverses.

4



Example 5. The stretched Riordan array
(

1
1−x

, x2
)

begins





















1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 1 0 0 0 0 0
1 1 1 0 0 0 0
1 1 1 0 0 0 0
1 1 1 1 0 0 0





















.

It is the γ-matrix for the Pascal-like triangle that begins





















1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 3 1 0 0 0 0
1 4 4 1 0 0 0
1 5 9 5 1 0 0
1 6 14 14 6 1 0
1 7 20 29 20 7 1





















.

Example 6. The matrix
(

n−k
k

)

is the stretched Riordan array
(

1
1−x

, x2

1−x

)

that begins





















1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 2 0 0 0 0 0
1 3 1 0 0 0 0
1 4 3 0 0 0 0
1 5 6 1 0 0 0





















.

It generates the Pascal-like matrix that begins





















1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 3 1 0 0 0 0
1 5 5 1 0 0 0
1 7 13 7 1 0 0
1 9 25 25 9 1 0
1 11 41 63 41 11 1





















.

We shall see that this is the Riordan array
(

1
1−x

, x(1+x)
1−x

)

, which is A008288, the triangle of

Delannoy numbers.
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The bivariate generating function of the stretched Riordan array (g(x), φ(x)) is given by

g(x)

1− yφ(x)
.

We have the following proposition [4].

Proposition 7. The Riordan array
(

1
1−x

, x(1+rx)
1−x

)

is Pascal-like (for any r ∈ Z).

This is clear since in this case we have

hn,k =
k
∑

j=0

(

k

j

)(

n− j

n− k − j

)

rj =
k
∑

j=0

(

k

j

)(

n− k

n− k − j

)

(r + 1)j.

We can now characterize the γ-matrices that generate these Pascal-like matrices.

Proposition 8. The γ-matrices that generate the Pascal-like matrices
(

1
1−x

, x(1+rx)
1−x

)

defined

by ordinary Riordan arrays are given by the stretched Riordan arrays

(

1

1− x
,
rx2

1− x

)

,

with (n, k)-th term

γn,k =

(

n− k

k

)

rk.

Proof. The generating function of the Pascal-like matrix
(

1
1−x

, x(1+rx)
1−x

)

is given by

h(x, y) =
1

1− x

1

1− y x(1+rx)
1−x

=
1

1− (1 + y)x− rx2y
.

Similarly, the generating function of the matrix (
(

n−k
k

)

rk) is given by

γ(x, y) =
1

1− x

1

1− y rx2

1−x

=
1

1− x− rx2y
.

We now have

h(x, y) = γ

(

(1 + y)x,
y

(1 + y)2

)

.
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We recall that for a generating function f(x), its INVERT(α) transform is the generating
function

f(x)

1 + αxf(x)
.

Note that
v

1+αxv

1− αx v
1+αxv

= v,

and thus the inverse of the INVERT(α) transform is the INVERT(−α) transform.

Corollary 9. The generating function h(x, y) of the Pascal-like matrix
(

1
1−x

, x(1+rx)
1−x

)

is the

INVERT(y) transform of the generating function γ(x, y) of the corresponding γ-matrix.

Proof. A direct calculation shows that for γ(x, y) = 1
1−x−rx2y

we have

γ(x, y)

1− yxγ(x, y)
=

1

1− (y + 1)x− rx2y
= h(x, y).

Equivalently, we can say that the generating function of the γ-matrix is the INVERT(−y)
transform of the generating function of the corresponding Pascal-like matrix.

We make the following observation, which will be relevant when we discuss a family of
generalized Narayana triangles. The γ-matrix corresponding to the signed Pascal-like matrix

(

1

1 + x
,
−x(1 + rx)

1 + x

)

has generating function
1

1 + x+ rx2y
.

This is the matrix with general term (−1)n−krk
(

n−k
k

)

. By a signed Pascal-like matrix in this
case we mean that an,k = an,n−k but we now have an,0 = an,n = (−1)n.

We close this section by recalling the formula

γn = (1 + x)nγn

(

x

(1 + x)2

)

.

We now note that the inverse of the Riordan array

(

1,
x

(1 + x)2

)

is given by
(

1, xc(x)2
)

,
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where

c(x) =
1−

√
1− 4x

2x

is the generating function of the Catalan numbers Cn = 1
n+1

(

2n
n

)

A000108. In fact, we have
the following result [9].

Proposition 10. (Zeilberger’s Lemma).

γn,k = [xk]
hn(xc(x)

2)

c(x)n
.

We can use this result to find an explicit formula for γn,k in terms of hn,k. We let αn,k be
the general (n, k)-th element of the Riordan array (1, xc(x)2) [8]. We have

αn,k =

{

1, if n = 0 and k = 0;
(

2n−1
n−k

)

2k
n+k

, otherwise;

or, equivalently,

αn,k =

(

2n− 1

n− k

)

2k + 0n+k

n+ k + 0n+k
=

(

2n− 2

n− k

)

−
(

2n− 2

n− k − 2

)

.

We let βn,k be the general (n, k)-th term of the Riordan array
(

1, x
c(x)

)

. We have βn,n = 1,

and

βn,k =
n−k
∑

j=0

(−1)j

n− k

(

k + j − 1

j

)(

2(n− k)

n− k − j

)

,

otherwise. This is essentially A271875. Then we have the following result.

Corollary 11. We have

γn,k =
k
∑

i=0

(

n
∑

j=0

hn,jαi,j

)

βn+k−i,n.

Proof. We have

[xk][xk]
hn(xc(x)

2)

c(x)n
=

n
∑

i=0

[xi]
n
∑

j=0

hn,j(xc(x
2))j[xk−i]

1

c(x)n

=
k
∑

i=0

(

n
∑

j=0

hn,j[x
i](xc(x)2)j

)

[xk−1+n]
xn

c(x)n

=
k
∑

i=0

(

n
∑

j=0

hn,jαi,j

)

βn+k−i,n.
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This gives us the following formula:

γn,k =
k
∑

i=0

n
∑

j=0

hn,j

(

2i− 1

i− j

)

2j + 0i+j

i+ j + 0i+j
·
{

1, if i = k;
∑k−i

m=0
m(−1)m

k−i

(

n−1+m
m

)(

2(k−i)
k−i−m

)

, otherwise;

which we can also write as

γn,k =
k
∑

i=0

n
∑

j=0

hn,j

(

2i− 1

i− j

)

2j + 0i+j

i+ j + 0i+j
If

[

i = k, 1,
k−i
∑

m=0

m(−1)m

k − i

(

n− 1 +m

m

)(

2(k − i)

k − i−m

)

]

.

Example 12. If we take (hn,k) to be the triangle of Eulerian numbers A008292 that begins





















1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 4 1 0 0 0 0
1 11 11 1 0 0 0
1 26 66 26 1 0 0
1 57 302 302 57 1 0
1 120 1191 2416 1191 120 1





















we find that the γ-matrix (γn,k) is the triangle A101280 that begins





















1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 2 0 0 0 0 0
1 8 0 0 0 0 0
1 22 16 0 0 0 0
1 52 136 0 0 0 0
1 114 720 272 0 0 0





















.

This is the triangle of γ-vectors for the permutahedra (of type A). It also gives the number
of permutations of n objects with k descents such that every descent is a peak [12].

Example 13. We consider the Pascal-like matrix (hn,k) =
(

1
1−x

, x
)

that begins





















1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 1 1 0 0 0 0
1 1 1 1 0 0 0
1 1 1 1 1 0 0
1 1 1 1 1 1 0
1 1 1 1 1 1 1





















.
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We note that the row elements are constant. We have that

γn,k =
k
∑

i=0

n
∑

j=0

(

2i− 1

i− j

)

2j + 0i+j

i+ j + 0i+j
If

[

i = k, 1,
k−i
∑

m=0

m(−1)m

k − i

(

n− 1 +m

m

)(

2(k − i)

k − i−m

)

]

.

We find that the γ-matrix in this case begins





















1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 −1 0 0 0 0 0
1 −2 0 0 0 0 0
1 −3 1 0 0 0 0
1 −4 3 0 0 0 0
1 −5 6 −1 0 0 0





















.

This is the matrix
((

n−k
k

)

(−1)k
)

. Thus

⌊n

2
⌋

∑

i=0

(

n− 2i

k − i

)(

n− i

i

)

(−1)i = If[k ≤ n, 1, 0].

3 Stretched Riordan arrays as γ-matrices

Every stretched Riordan array of the form

(

1

1− x
, x2g(x)

)

,

where
g(x) = 1 + g1x+ g2x

2 + · · ·
can be used to generate a Pascal-like matrix. Thus with each power series g(x) above we
can associate a Pascal-like matrix whose γ-matrix is given by this stretched Riordan array.

In this section, we shall concentrate on the case when g(x) = 1+rx
1−x

.

Example 14. For r = 1, we obtain the γ-matrix that begins





















1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 3 0 0 0 0 0
1 5 1 0 0 0 0
1 7 5 0 0 0 0
1 9 13 1 0 0 0





















.
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The corresponding Pascal-like matrix then begins




















1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 3 1 0 0 0 0
1 6 6 1 0 0 0
1 9 17 9 1 0 0
1 12 36 36 12 1 0
1 15 64 101 64 15 1





















.

The row sums of this matrix, which begin

1, 2, 5, 14, 37, 98, 261, . . .

give A077938, with generating function

1

1− 2x− x2 − 2x3
.

The diagonal sums, which begin

1, 1, 2, 4, 8, 16, 31, . . .

are the Pentanacci numbers A001591 with generating function

1

1− x− x2 − x3 − x4 − x5
.

We have the following proposition.

Proposition 15. The Pascal-like triangle that begins




















1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 3 1 0 0 0 0
1 r + 5 r + 5 1 0 0 0
1 2r + 7 4r + 13 2r + 7 1 0 0
1 3r + 9 11r + 25 11r + 25 3r + 9 1 0
1 4r + 11 r2 + 22r + 41 2r2 + 36r + 63 r2 + 22r + 41 4r + 11 1





















with γ-matrix given by the stretched Riordan array
(

1
1−x

, x
2(1+rx)
1−x

)

, has row sums with gen-

erating function
1

1− 2x− x2 − 2rx3
,

and diagonal sums given by the generalized Pentanacci numbers with generating function

1

1− x− x2 − x3 − rx4 − rx5
.

11

https://oeis.org/A077938
https://oeis.org/A001591


4 Reverting triangles

Let h(x, y) be the generating function of the lower-triangular matrix hn,k, with h0,0 = 1. By
the reversion of this triangle, we shall mean the triangle whose generating function h∗(x, y)
is given by

h∗(x, y) =
1

x
Revx(xh(x, y)).

Procedurally, this means that we solve the equation

uh(u, y) = x

and then we divide the solution u(x, y) that satisfies u(0, y) = 0 by x.

Proposition 16. The generating function of the reversion of the Pascal-like matrix defined

by the Riordan array
(

1
1−x

, x(1+rx)
1−x

)

is given by

h∗(x, y) =
1

1 + x(y + 1)
c

( −rx2y

(1 + x(y + 1))2

)

,

where

c(x) =
1−

√
1− 4x

2x

is the generating function of the Catalan numbers Cn = 1
n+1

(

2n
n

)

. (A000108).

Proof. Solving the equation
u

1− u(y + 1)− ru2y
= x

gives us

h∗(x, y) =
−1− x(y + 1) +

√

1 + 2x(y + 1) + x2(1 + 2y(2r + 1) + y2)

2rx2y
.

Thus

h∗(x, y) =
1

1 + x(y + 1)
c

( −rx2y

(1 + x(y + 1))2

)

.

We note that we can now calculate an expression for the terms of the reverted triangle,
since, using the language of Riordan arrays, we have

h∗(x, y) =

(

1

1 + y(x+ 1)
,

−rx2y

(1 + x(y + 1))2

)

· c(x).
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Proposition 17. We have

[xn][yi]h∗(x, y) = h∗
n,i =

⌊n

2
⌋

∑

k=0

(−1)n(−r)k
(

n

2k

)

Ck

(

n− 2k

i− k

)

.

The γ-matrix of the reverted triangle (h∗
n,k) is given by

γ∗
n,k = (−1)n(−r)k

(

n

2k

)

Ck.

The γ-matrix (γ∗
n,k) of the reverted triangle (h∗

n,k) is the reversion of the triangle γn,k.

Proof. The expression for h∗
n,k results from a direct calculation. Reverting the expression

γ(x, y) = 1
1−x−rx2y

in the sense above gives us

γ∗(x, y) =
1

1 + x
c

( −rx2y

(1 + x)2

)

,

from which we deduce the other statements.

Example 18. For r = −1, 0, 1, the triangles (hn,k) begin, respectively,




















1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 1 1 0 0 0 0
1 1 1 1 0 0 0
1 1 1 1 1 0 0
1 1 1 1 1 1 0
1 1 1 1 1 1 1





















,





















1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 2 1 0 0 0 0
1 3 3 1 0 0 0
1 4 6 4 1 0 0
1 5 10 10 5 1 0
1 6 15 20 15 6 1





















,

and




















1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 3 1 0 0 0 0
1 5 5 1 0 0 0
1 7 13 7 1 0 0
1 9 25 25 9 1 0
1 11 41 63 41 11 1





















.

The corresponding reverted triangles (h∗
n,k), are, respectively,





















1 0 0 0 0 0 0
−1 −1 0 0 0 0 0
1 3 1 0 0 0 0
−1 −6 −6 −1 0 0 0
1 10 20 10 1 0 0
−1 −15 −50 −50 −15 −1 0
1 21 105 175 105 21 1





















,





















1 0 0 0 0 0 0
−1 −1 0 0 0 0 0
1 2 1 0 0 0 0
−1 −3 −3 −1 0 0 0
1 4 6 4 1 0 0
−1 −5 −10 −10 −5 −1 0
1 6 15 20 15 6 1





















,
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and




















1 0 0 0 0 0 0
−1 −1 0 0 0 0 0
1 1 1 0 0 0 0
−1 0 0 −1 0 0 0
1 −2 −4 −2 1 0 0
−1 5 10 10 5 −1 0
1 −9 −15 −15 −15 −9 1





















.

Note that for r = −1, the reverted triangle is (−1)n times the Narayana triangle A001263.
The corresponding γ-matrices (γn,k) are given by, respectively,





















1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 −1 0 0 0 0 0
1 −2 0 0 0 0 0
1 −3 1 0 0 0 0
1 −4 3 0 0 0 0
1 −5 6 −1 0 0 0





















,





















1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0





















,

and




















1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 2 0 0 0 0 0
1 3 1 0 0 0 0
1 4 3 0 0 0 0
1 5 6 1 0 0 0





















.

The corresponding reverted γ-matrices (γ∗
n,k) are then, respectively,





















1 0 0 0 0 0 0
−1 0 0 0 0 0 0
1 1 0 0 0 0 0
−1 −3 0 0 0 0 0
1 6 2 0 0 0 0
−1 −10 −10 0 0 0 0
1 15 30 5 0 0 0





















,





















1 0 0 0 0 0 0
−1 0 0 0 0 0 0
1 0 0 0 0 0 0
−1 0 0 0 0 0 0
1 0 0 0 0 0 0
−1 0 0 0 0 0 0
1 0 0 0 0 0 0





















,

and




















1 0 0 0 0 0 0
−1 0 0 0 0 0 0
1 −1 0 0 0 0 0
−1 3 0 0 0 0 0
1 −6 2 0 0 0 0
−1 10 −10 0 0 0 0
1 −15 30 −5 0 0 0





















.
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It is interesting to represent the generating functions of the (γ∗
n,k) and the (h∗

n,k) triangles
as Jacobi continued fractions. We have

Proposition 19. The generating function h∗(x, y) can be expressed as the Jacobi continued
fraction

J (−(y + 1),−(y + 1),−(y + 1), . . . ;−ry,−ry,−ry, . . .).

The generating function γ∗(x, y) can be expressed as the Jacobi continued fraction

J (−1,−1,−1, . . . ;−ry,−ry,−ry, . . .).

Proof. We solve the continued fraction equation

u =
1

1 + (y + 1)x+ rx2u

to retrieve the generating function h∗(x, y). Similarly, we solve the continued fraction equa-
tion

u =
1

1 + x+ rx2u

to retrieve the generating function γ∗(x, y).

Note that we have used the notation J (a, b, c, . . . ; r, s, t, . . .) to denote the Jacobi con-
tinued fraction [2, 16]

1

1− ax−
rx2

1− bx−
sx2

1− cx−
tx2

1− · · ·

.

We can now express the relationship between the generating functions h∗(x, y) and γ∗(x, y)
in terms of repeated binomial transforms.

Corollary 20. The generating function h∗(x, y) is the (−y)-th binomial transform of the γ
generating function γ∗(x, y):

h∗(x, y) =
1

1 + xy
γ∗

(

x

1 + xy
, y

)

.

Equivalently, the γ generating function γ∗(x, y) is the y-th binomial transform of the gener-
ating function h∗(x, y):

γ∗(x, y) =
1

1− xy
h∗

(

x

1− xy
, y

)

.

This reflects the general assertion that the reversion of an INVERT transform is a bino-
mial transform.
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5 The γ-vectors of generalized Narayana numbers

The Riordan array
(

1
1+x

, −x(1+rx)
1+x

)

, with bivariate generating function

1

1 + x(y + 1) + rx2y
,

has a γ-matrix with generating function

1

1 + x+ rx2y
.

We shall call elements of the reversions of the Riordan array
(

1
1+x

, −x(1+rx)
1+x

)

r-Narayana

numbers. The Narayana numbers Nn,k = 1
k+1

(

n+1
k

)(

n
k

)

are then the 1-Narayana numbers.
The bivariate generating function for the r-Narayana numbers is given by

1

1− x(y + 1)
c

(

rx2y

(1− x(y + 1))2

)

.

The bivariate generating function for the γ-matrix of the r-Narayana numbers is then ob-
tained by reverting the generating function 1

1+x+rx2y
. We thus obtain the following result.

Proposition 21. The γ-matrix for the r-Narayana numbers has generating function

1

1− x
c

(

rx2y

(1− x)2

)

.

This is the matrix that begins




















1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 r 0 0 0 0 0
1 3r 0 0 0 0 0
1 6r 2r2 0 0 0 0
1 10r 10r2 0 0 0 0
1 15r 30r2 5r3 0 0 0





















,

with general term
(

n

2k

)

rkCk.

For r = −1, 0, 1, the matrices
(

1
1+x

, −x(1+rx)
1+x

)

begin, respectively,




















1 0 0 0 0 0 0
−1 −1 0 0 0 0 0
1 3 1 0 0 0 0
−1 −5 −5 −1 0 0 0
1 7 13 7 1 0 0
−1 −9 −25 −25 −9 −1 0
1 11 41 63 41 11 1





















,





















1 0 0 0 0 0 0
−1 −1 0 0 0 0 0
1 2 1 0 0 0 0
−1 −3 −3 −1 0 0 0
1 4 6 4 1 0 0
−1 −5 −10 −10 −5 −1 0
1 6 15 20 15 6 1





















,
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and




















1 0 0 0 0 0 0
−1 −1 0 0 0 0 0
1 1 1 0 0 0 0
−1 −1 −1 −1 0 0 0
1 1 1 1 1 0 0
−1 −1 −1 −1 −1 −1 0
1 1 1 1 1 1 1





















.

The corresponding matrices of r-Narayana numbers are, respectively,




















1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 1 1 0 0 0 0
1 0 0 1 0 0 0
1 −2 −4 −2 1 0 0
1 −5 −10 −10 −5 1 0
1 −9 −15 −15 −15 −9 1





















,





















1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 2 1 0 0 0 0
1 3 3 1 0 0 0
1 4 6 4 1 0 0
1 5 10 10 5 1 0
1 6 15 20 15 6 1





















,

and




















1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 3 1 0 0 0 0
1 6 6 1 0 0 0
1 10 20 10 1 0 0
1 15 50 50 15 1 0
1 21 105 175 105 21 1





















.

This last matrix, as expected, is the Narayana triangle A001263. The corresponding γ-
matrices for these r-Narayana triangles are, respectively,





















1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 −1 0 0 0 0 0
1 −3 0 0 0 0 0
1 −6 2 0 0 0 0
1 −10 10 0 0 0 0
1 −15 30 −5 0 0 0





















,





















1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0





















,

and




















1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 3 0 0 0 0 0
1 6 2 0 0 0 0
1 10 10 0 0 0 0
1 15 30 5 0 0 0





















.
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This last matrix is A055151. The rows of this triangle are the γ-vectors of the n-dimensional
(type A) associahedra [9]. We have seen that its elements are given by

γn,k =
k
∑

i=0

n
∑

j=0

Nn,j

(

2i− 1

i− j

)

2j + 0i+j

i+ j + 0i+j
If

(

k = i, 1,
k−i
∑

m=0

m(−1)m

k − i

(

n− 1 +m

m

)(

2(k − i)

k − i−m

)

)

,

where Nn,k denotes the (n, k)-th Narayana number A001263.
The relationship between the γ-matrix and the r-Narayana numbers can be further clar-

ified as follows.

Proposition 22. The generating function of the r-Narayana numbers can be expressed as
the Jacobi continued fraction

J ((y + 1), (y + 1), (y + 1), . . . ; ry, ry, ry, . . .).

The generating function of the corresponding γ-matrix can be expressed as the Jacobi con-
tinued fraction

J (1, 1, 1, . . . ; ry, ry, ry, . . .).

Corollary 23. The generating function of the r-Narayana numbers is the y-th binomial
transform of the generating function of the corresponding γ-matrix.

h∗(x, y) =
1

1− xy
γ∗

(

x

1− xy
, y

)

.

Equivalently, the γ generating function γ∗(x, y) is the (−y)-th binomial transform of the
generating function h∗(x, y):

γ∗(x, y) =
1

1 + xy
h∗

(

x

1 + xy
, y

)

.

6 Pascal-like triangles defined by exponential Riordan

arrays

We recall that an exponential Riordan array [g(x), f(x)] [1, 6] is defined by two exponential
generating functions

g(x) = 1 + g1
x

1!
+ g2

x

2!
+ · · · ,

and

f(x) =
x

1!
+ f2

x2

2!
+ · · · ,

with its (n, k)-th term an,k given by

an,k =
n!

k!
[xn]g(x)f(x)k.
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In the context of Pascal-like matrices, we have that the exponential Riordan array

[ex, x(1 + rx/2)] ,

with general term

hn,k =
n!

k!

k
∑

j=0

rj

(n− k − j)!2j
,

is a Pascal-like matrix [3]. This matrix begins





















1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 r + 2 1 0 0 0 0
1 3r + 3 3r + 3 1 0 0 0
1 6r + 4 3r2 + 12r + 6 6r + 4 1 0 0
1 10r + 5 15r2 + 30r + 10 15r2 + 30r + 10 10r + 5 1 0
1 15r + 6 45r2 + 60r + 15 15r3 + 90r2 + 90r + 20 45r2 + 60r + 15 15r + 6 1





















.

We have the following result.

Proposition 24. The γ-matrix of the Pascal-like exponential Riordan array [ex, x(1 + rx/2)]
is the matrix with general term

(

n

2k

)

rk(2k − 1)!!

In fact, the generating function of the exponential Riordan array [ex, x(1 + rx/2)] is given
by

J (y + 1, y + 1, y + 1, . . . ; ry, 2ry, 3ry, . . .)

while that of its γ-matrix is given by

J (1, 1, 1, . . . ; ry, 2ry, 3ry, . . .).

Proposition 25. The generating function of the γ-matrix of the Pascal-like exponential
Riordan array [ex, x(1 + rx/2)] has generating function

ex(1+rxy/2).

Proof. By the theory of exponential Riordan arrays, the generating function of the Riordan
array [ex, x(1 + rx/2)] is given by

exexy(1+rx/2).

Taking the (−y)-th binomial transform of this, we obtain

ex(1+rxy/2).
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Example 26. For r = 1, we get the γ-matrix that begins




















1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 3 0 0 0 0 0
1 6 3 0 0 0 0
1 10 15 0 0 0 0
1 15 45 15 0 0 0





















.

This is A100861, the triangle of Bessel numbers that count the number of k-matchings of
the complete graph K(n). The corresponding Pascal-like matrix begins





















1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 3 1 0 0 0 0
1 6 6 1 0 0 0
1 10 21 10 1 0 0
1 15 55 55 15 1 0
1 21 120 215 120 21 1





















.

This is A100862, which counts the number of k-matchings of the coronaK ′(n) of the complete
graph K(n) and the complete graph K(1).

Example 27. For r = 2, we obtain the γ-matrix that begins




















1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 2 0 0 0 0 0
1 6 0 0 0 0 0
1 12 12 0 0 0 0
1 20 60 0 0 0 0
1 30 180 120 0 0 0





















.

This is A059344, where row n consists of the nonzero coefficients of the expansion of 2nxn

in terms of Hermite polynomials with decreasing subscripts. The corresponding Pascal-like
matrix begins





















1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 4 1 0 0 0 0
1 9 9 1 0 0 0
1 16 42 16 1 0 0
1 25 130 130 25 1 0
1 36 315 680 315 36 1





















.

The row sums of this matrix are given by A000898, the number of symmetric involutions of
[2n] (Deutsch).
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7 Conclusion

It is the case that the set of Pascal-like matrices defined by Riordan arrays is a restricted
one. Nevertheless, we hope that this note indicates that they have interesting properties,
including in particular their generating γ-matrices. In the case of Pascal-like matrices defined
by ordinary Riordan arrays, we have seen that be reverting them, we find additional (signed)
Pascal-like triangles, including triangles of Narayana type. The γ-matrices of these new
triangles are again the reversions of the original triangles’ γ-matrices.

We have also shown that stretched Riordan arrays play a useful role, and in particular
can lead to further (non-Riordan) Pascal-like matrices. We have also found it useful to use
Riordan array techniques to find an explicit closed form formula for the elements γn,k of the
γ-matrix in terms of hn,k.
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