The γ-Vectors of Pascal-like Triangles Defined by Riordan Arrays

Paul Barry
School of Science
Waterford Institute of Technology
Ireland
pbarry@wit.ie

Abstract

We define and characterize the γ-matrix associated with Pascal-like matrices that are defined by ordinary and exponential Riordan arrays. We also define and characterize the γ-matrix of the reversions of these triangles, in the case of ordinary Riordan arrays. We are led to the γ-matrices of a one-parameter family of generalized Narayana triangles. Thus these matrices generalize the matrix of γ-vectors of the associahedron. The principal tools used are the bivariate generating functions of the triangles and Jacobi continued fractions.

1 Introduction

A polynomial $P_{n}(x)=\sum_{k=0}^{n} a_{n, k} x^{k}$ of degree n is said to be reciprocal if

$$
P_{n}(x)=x^{n} P_{n}(1 / x) .
$$

Thus we have

$$
\left[x^{k}\right] P_{n}(x)=a_{n, k}=\left[x^{k}\right] x^{n} P_{n}(1 / x) .
$$

Now

$$
\begin{aligned}
{\left[x^{k}\right] x^{n} P_{n}(1 / x) } & =\left[x^{k-n}\right] \sum_{i=0} a_{n, i} \frac{1}{x^{i}} \\
& =\left[x^{k-n}\right] \sum_{i=0} a_{n, i} x^{-i} \\
& =a_{n, n-k} .
\end{aligned}
$$

Thus $P_{n}(x)=\sum_{k=0}^{n} a_{n, k} x^{k}$ defines a family of reciprocal polynomials if and only if $a_{n, k}=$ $a_{n, n-k}$. We shall call a lower-triangular matrix $\left(a_{n, k}\right)$ Pascal-like if

1. $a_{n, k}=a_{n, n-k}$
2. $a_{n, 0}=a_{n, n}=1$.

Such a matrix will then be the coefficient array of a family of monic reciprocal polynomials.
We have the following well-known result [7]
Proposition 1. Let $P_{n}(x)$ be a reciprocal polynomial of degree n. Then there exists a unique polynomial γ_{n} of degree $\left\lfloor\frac{n}{2}\right\rfloor$ with the property

$$
P_{n}(x)=(1+x)^{n} \gamma_{n}\left(\frac{x}{(1+x)^{2}}\right) .
$$

If $P_{n}(x)$ has integer coefficients then so does $\gamma_{n}(x)$.
By this means, we can associate with every Pascal-like matrix $\left(a_{n, k}\right)$ a matrix $\left(\gamma_{n, k}\right)$ so that for all n, we have

$$
P_{n}(x)=\sum_{k=0}^{n} a_{n, k} x^{k}=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \gamma_{n, k} x^{k}(1+x)^{n-2 k} .
$$

We shall call this matrix the γ-matrix associated with the coefficient array $\left(a_{n, k}\right)$ of the family of polynomials $P_{n}(x)$.

We can characterize the matrix $\left(a_{n, k}\right)$ in terms of the γ-matrix $\left(\gamma_{n, k}\right)$ as follows. Before we do this, we shall change our notation somewhat. In algebraic topology, it is customary to use the notation $h(x)$ for palindromic (reciprocal) polynomials [9, 15]. Thus we shall set $h_{n}(x)=\sum_{k=0}^{n} h_{n, k} x^{k}$, where $\left(h_{n, k}\right)$ now denotes a Pascal-like matrix. We shall denote by $h(x, y)$ the bivariate generating function of this matrix.

Proposition 2. For a Pascal-like matrix $\left(h_{n, k}\right)$ we have

$$
h_{n, k}=\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n-2 i}{k-i} \gamma_{n, i} .
$$

Proof. We have

$$
\begin{aligned}
h_{n, k} & =\left[x^{k}\right] \sum_{i=0}^{n} h_{n, i} x^{i} \\
& =\left[x^{k}\right] \sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \gamma_{n, i} x^{i}(1+x)^{n-2 i} \\
& =\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \gamma_{n, i}\left[x^{k}\right] x^{i}(1+x)^{n-2 i} \\
& =\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \gamma_{n, i}\left[x^{k-i}\right] \sum_{j=0}^{n-2 i}\binom{n-2 i}{j} x^{j} \\
& =\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \gamma_{n, i}\binom{n-2 i}{k-i} .
\end{aligned}
$$

Example 3. The identity

$$
\binom{n}{k}=\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n-2 i}{k-i} \delta_{i, 0}
$$

shows that the matrix that begins

$$
\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

is the γ-matrix for the binomial matrix $\left.\mathbf{B}=\binom{n}{k}\right) \underline{\text { A007318 }}$. Here, we have used the Annnnnn number of the On-Line Encyclopedia of Integer Sequences [13, 14] for the binomial matrix (Pascal's triangle).

When $\left(\gamma_{n, k}\right)$ is the γ-matrix for $\left(h_{n, k}\right)$, we shall say the $\left(\gamma_{n, k}\right)$ generates, or $i s$ the generator of, the matrix $\left(h_{n, k}\right)$.

Example 4. The matrix that begins

$$
\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right)
$$

with $\gamma_{n, 0}=1, \gamma_{n,\left\lfloor\frac{n}{2}\right\rfloor}=1$, and 0 otherwise, generates the matrix $\left(h_{n, k}\right)$ that begins

$$
\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 3 & 1 & 0 & 0 & 0 \\
1 & 3 & 3 & 1 & 0 & 0 \\
1 & 4 & 7 & 4 & 1 & 0 \\
1 & 5 & 10 & 10 & 5 & 1
\end{array}\right) .
$$

2 Pascal-like matrices defined by Riordan arrays

We now wish to characterize the γ-matrices that are generators for the family of Pascal-like matrices that are determined by the one-parameter family of Riordan arrays

$$
\left(\frac{1}{1-x}, \frac{x(1+r x)}{1-x}\right) .
$$

We shall also determine the (generalized) γ-matrices associated with the reversion of these triangles. We recall that an ordinary Riordan array $(g(x), f(x))$ is defined $[1,10,11]$ by two power series

$$
\begin{gathered}
g(x)=1+g_{1} x+g_{2} x^{2}+\cdots \\
f(x)=x+f_{2} x^{2}+f_{3} x^{3}+\cdots,
\end{gathered}
$$

where the (n, k)-th element of the resulting lower-triangular matrix is given by

$$
a_{n, k}=\left[x^{n}\right] g(x) f(x)^{k} .
$$

Such matrices are invertible. When they have integer entries, the inverse again is an integer matrix (note that we have $a_{n, n}=1$ in our case because $g_{0}=1$ and $f_{1}=1$). The bivariate generating function of the Riordan array (g, f) is given by

$$
\frac{g(x)}{1-y f(x)}
$$

Matrices defined in a similar manner but with $f(x)$ replaced by $\phi(x)=x^{2}+\phi_{3} x^{3}+\ldots$ are called "stretched" Riordan arrays [5]. They are not invertible but they do possess left inverses.

Example 5. The stretched Riordan array $\left(\frac{1}{1-x}, x^{2}\right)$ begins

$$
\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0
\end{array}\right) .
$$

It is the γ-matrix for the Pascal-like triangle that begins

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 3 & 1 & 0 & 0 & 0 & 0 \\
1 & 4 & 4 & 1 & 0 & 0 & 0 \\
1 & 5 & 9 & 5 & 1 & 0 & 0 \\
1 & 6 & 14 & 14 & 6 & 1 & 0 \\
1 & 7 & 20 & 29 & 20 & 7 & 1
\end{array}\right) .
$$

Example 6. The matrix $\binom{n-k}{k}$ is the stretched Riordan array $\left(\frac{1}{1-x}, \frac{x^{2}}{1-x}\right)$ that begins

$$
\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 0 & 0 & 0 & 0 & 0 \\
1 & 3 & 1 & 0 & 0 & 0 & 0 \\
1 & 4 & 3 & 0 & 0 & 0 & 0 \\
1 & 5 & 6 & 1 & 0 & 0 & 0
\end{array}\right)
$$

It generates the Pascal-like matrix that begins

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 3 & 1 & 0 & 0 & 0 & 0 \\
1 & 5 & 5 & 1 & 0 & 0 & 0 \\
1 & 7 & 13 & 7 & 1 & 0 & 0 \\
1 & 9 & 25 & 25 & 9 & 1 & 0 \\
1 & 11 & 41 & 63 & 41 & 11 & 1
\end{array}\right)
$$

We shall see that this is the Riordan array $\left(\frac{1}{1-x}, \frac{x(1+x)}{1-x}\right)$, which is $\underline{\text { A } 008288}$, the triangle of Delannoy numbers.

The bivariate generating function of the stretched Riordan array $(g(x), \phi(x))$ is given by

$$
\frac{g(x)}{1-y \phi(x)} .
$$

We have the following proposition [4].
Proposition 7. The Riordan array $\left(\frac{1}{1-x}, \frac{x(1+r x)}{1-x}\right)$ is Pascal-like (for any $r \in \mathbb{Z}$).
This is clear since in this case we have

$$
h_{n, k}=\sum_{j=0}^{k}\binom{k}{j}\binom{n-j}{n-k-j} r^{j}=\sum_{j=0}^{k}\binom{k}{j}\binom{n-k}{n-k-j}(r+1)^{j} .
$$

We can now characterize the γ-matrices that generate these Pascal-like matrices.
Proposition 8. The γ-matrices that generate the Pascal-like matrices $\left(\frac{1}{1-x}, \frac{x(1+r x)}{1-x}\right)$ defined by ordinary Riordan arrays are given by the stretched Riordan arrays

$$
\left(\frac{1}{1-x}, \frac{r x^{2}}{1-x}\right)
$$

with (n, k)-th term

$$
\gamma_{n, k}=\binom{n-k}{k} r^{k}
$$

Proof. The generating function of the Pascal-like matrix $\left(\frac{1}{1-x}, \frac{x(1+r x)}{1-x}\right)$ is given by

$$
h(x, y)=\frac{1}{1-x} \frac{1}{1-y \frac{x(1+r x)}{1-x}}=\frac{1}{1-(1+y) x-r x^{2} y} .
$$

Similarly, the generating function of the matrix $\left.\binom{n-k}{k} r^{k}\right)$ is given by

$$
\gamma(x, y)=\frac{1}{1-x} \frac{1}{1-y \frac{r x^{2}}{1-x}}=\frac{1}{1-x-r x^{2} y}
$$

We now have

$$
h(x, y)=\gamma\left((1+y) x, \frac{y}{(1+y)^{2}}\right) .
$$

We recall that for a generating function $f(x)$, its $\operatorname{INVERT}(\alpha)$ transform is the generating function

$$
\frac{f(x)}{1+\alpha x f(x)}
$$

Note that

$$
\frac{\frac{v}{1+\alpha x v}}{1-\alpha x \frac{v}{1+\alpha x v}}=v
$$

and thus the inverse of the $\operatorname{INVERT}(\alpha)$ transform is the $\operatorname{INVERT}(-\alpha)$ transform.
Corollary 9. The generating function $h(x, y)$ of the Pascal-like matrix $\left(\frac{1}{1-x}, \frac{x(1+r x)}{1-x}\right)$ is the INVERT(y) transform of the generating function $\gamma(x, y)$ of the corresponding γ-matrix.

Proof. A direct calculation shows that for $\gamma(x, y)=\frac{1}{1-x-r x^{2} y}$ we have

$$
\frac{\gamma(x, y)}{1-y x \gamma(x, y)}=\frac{1}{1-(y+1) x-r x^{2} y}=h(x, y)
$$

Equivalently, we can say that the generating function of the γ-matrix is the $\operatorname{INVERT}(-y)$ transform of the generating function of the corresponding Pascal-like matrix.

We make the following observation, which will be relevant when we discuss a family of generalized Narayana triangles. The γ-matrix corresponding to the signed Pascal-like matrix

$$
\left(\frac{1}{1+x}, \frac{-x(1+r x)}{1+x}\right)
$$

has generating function

$$
\frac{1}{1+x+r x^{2} y}
$$

This is the matrix with general term $(-1)^{n-k} r^{k}\binom{n-k}{k}$. By a signed Pascal-like matrix in this case we mean that $a_{n, k}=a_{n, n-k}$ but we now have $a_{n, 0}=a_{n, n}=(-1)^{n}$.

We close this section by recalling the formula

$$
\gamma_{n}=(1+x)^{n} \gamma_{n}\left(\frac{x}{(1+x)^{2}}\right)
$$

We now note that the inverse of the Riordan array

$$
\left(1, \frac{x}{(1+x)^{2}}\right)
$$

is given by

$$
\left(1, x c(x)^{2}\right),
$$

where

$$
c(x)=\frac{1-\sqrt{1-4 x}}{2 x}
$$

is the generating function of the Catalan numbers $C_{n}=\frac{1}{n+1}\binom{2 n}{n} \underline{\text { A000108 }}$. In fact, we have the following result [9].
Proposition 10. (Zeilberger's Lemma).

$$
\gamma_{n, k}=\left[x^{k}\right] \frac{h_{n}\left(x c(x)^{2}\right)}{c(x)^{n}} .
$$

We can use this result to find an explicit formula for $\gamma_{n, k}$ in terms of $h_{n, k}$. We let $\alpha_{n, k}$ be the general (n, k)-th element of the Riordan array $\left(1, x c(x)^{2}\right)$ [8]. We have

$$
\alpha_{n, k}= \begin{cases}1, & \text { if } n=0 \text { and } k=0 ; \\ \binom{2 n-1}{n-k} \frac{2 k}{n+k}, & \text { otherwise } ;\end{cases}
$$

or, equivalently,

$$
\alpha_{n, k}=\binom{2 n-1}{n-k} \frac{2 k+0^{n+k}}{n+k+0^{n+k}}=\binom{2 n-2}{n-k}-\binom{2 n-2}{n-k-2} .
$$

We let $\beta_{n, k}$ be the general (n, k)-th term of the Riordan array $\left(1, \frac{x}{c(x)}\right)$. We have $\beta_{n, n}=1$, and

$$
\beta_{n, k}=\sum_{j=0}^{n-k} \frac{(-1)^{j}}{n-k}\binom{k+j-1}{j}\binom{2(n-k)}{n-k-j}
$$

otherwise. This is essentially A271875. Then we have the following result.
Corollary 11. We have

$$
\gamma_{n, k}=\sum_{i=0}^{k}\left(\sum_{j=0}^{n} h_{n, j} \alpha_{i, j}\right) \beta_{n+k-i, n} .
$$

Proof. We have

$$
\begin{aligned}
{\left[x^{k}\right]\left[x^{k}\right] \frac{h_{n}\left(x c(x)^{2}\right)}{c(x)^{n}} } & =\sum_{i=0}^{n}\left[x^{i}\right] \sum_{j=0}^{n} h_{n, j}\left(x c\left(x^{2}\right)\right)^{j}\left[x^{k-i}\right] \frac{1}{c(x)^{n}} \\
& =\sum_{i=0}^{k}\left(\sum_{j=0}^{n} h_{n, j}\left[x^{i}\right]\left(x c(x)^{2}\right)^{j}\right)\left[x^{k-1+n}\right] \frac{x^{n}}{c(x)^{n}} \\
& =\sum_{i=0}^{k}\left(\sum_{j=0}^{n} h_{n, j} \alpha_{i, j}\right) \beta_{n+k-i, n} .
\end{aligned}
$$

This gives us the following formula:

$$
\gamma_{n, k}=\sum_{i=0}^{k} \sum_{j=0}^{n} h_{n, j}\binom{2 i-1}{i-j} \frac{2 j+0^{i+j}}{i+j+0^{i+j}} \cdot \begin{cases}1, & \text { if } i=k \\ \sum_{m=0}^{k-i} \frac{m(-1)^{m}}{k-i}\binom{n-1+m}{m}\binom{2(k-i)}{k-i-m}, & \text { otherwise }\end{cases}
$$

which we can also write as
$\gamma_{n, k}=\sum_{i=0}^{k} \sum_{j=0}^{n} h_{n, j}\binom{2 i-1}{i-j} \frac{2 j+0^{i+j}}{i+j+0^{i+j}}$ If $\left[i=k, 1, \sum_{m=0}^{k-i} \frac{m(-1)^{m}}{k-i}\binom{n-1+m}{m}\binom{2(k-i)}{k-i-m}\right]$.
Example 12. If we take $\left(h_{n, k}\right)$ to be the triangle of Eulerian numbers A008292 that begins

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 4 & 1 & 0 & 0 & 0 & 0 \\
1 & 11 & 11 & 1 & 0 & 0 & 0 \\
1 & 26 & 66 & 26 & 1 & 0 & 0 \\
1 & 57 & 302 & 302 & 57 & 1 & 0 \\
1 & 120 & 1191 & 2416 & 1191 & 120 & 1
\end{array}\right)
$$

we find that the γ-matrix $\left(\gamma_{n, k}\right)$ is the triangle A101280 that begins

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 0 & 0 & 0 & 0 & 0 \\
1 & 8 & 0 & 0 & 0 & 0 & 0 \\
1 & 22 & 16 & 0 & 0 & 0 & 0 \\
1 & 52 & 136 & 0 & 0 & 0 & 0 \\
1 & 114 & 720 & 272 & 0 & 0 & 0
\end{array}\right) .
$$

This is the triangle of γ-vectors for the permutahedra (of type A). It also gives the number of permutations of n objects with k descents such that every descent is a peak [12].

Example 13. We consider the Pascal-like matrix $\left(h_{n, k}\right)=\left(\frac{1}{1-x}, x\right)$ that begins

$$
\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right) .
$$

We note that the row elements are constant. We have that

$$
\gamma_{n, k}=\sum_{i=0}^{k} \sum_{j=0}^{n}\binom{2 i-1}{i-j} \frac{2 j+0^{i+j}}{i+j+0^{i+j}} \text { If }\left[i=k, 1, \sum_{m=0}^{k-i} \frac{m(-1)^{m}}{k-i}\binom{n-1+m}{m}\binom{2(k-i)}{k-i-m}\right] .
$$

We find that the γ-matrix in this case begins

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 & 0 & 0 & 0 \\
1 & -2 & 0 & 0 & 0 & 0 & 0 \\
1 & -3 & 1 & 0 & 0 & 0 & 0 \\
1 & -4 & 3 & 0 & 0 & 0 & 0 \\
1 & -5 & 6 & -1 & 0 & 0 & 0
\end{array}\right) .
$$

This is the matrix $\left.\binom{n-k}{k}(-1)^{k}\right)$. Thus

$$
\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n-2 i}{k-i}\binom{n-i}{i}(-1)^{i}=\operatorname{If}[k \leq n, 1,0]
$$

3 Stretched Riordan arrays as γ-matrices

Every stretched Riordan array of the form

$$
\left(\frac{1}{1-x}, x^{2} g(x)\right)
$$

where

$$
g(x)=1+g_{1} x+g_{2} x^{2}+\cdots
$$

can be used to generate a Pascal-like matrix. Thus with each power series $g(x)$ above we can associate a Pascal-like matrix whose γ-matrix is given by this stretched Riordan array.

In this section, we shall concentrate on the case when $g(x)=\frac{1+r x}{1-x}$.
Example 14. For $r=1$, we obtain the γ-matrix that begins

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 3 & 0 & 0 & 0 & 0 & 0 \\
1 & 5 & 1 & 0 & 0 & 0 & 0 \\
1 & 7 & 5 & 0 & 0 & 0 & 0 \\
1 & 9 & 13 & 1 & 0 & 0 & 0
\end{array}\right) .
$$

The corresponding Pascal-like matrix then begins

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 3 & 1 & 0 & 0 & 0 & 0 \\
1 & 6 & 6 & 1 & 0 & 0 & 0 \\
1 & 9 & 17 & 9 & 1 & 0 & 0 \\
1 & 12 & 36 & 36 & 12 & 1 & 0 \\
1 & 15 & 64 & 101 & 64 & 15 & 1
\end{array}\right) .
$$

The row sums of this matrix, which begin

$$
1,2,5,14,37,98,261, \ldots
$$

give A077938, with generating function

$$
\frac{1}{1-2 x-x^{2}-2 x^{3}} .
$$

The diagonal sums, which begin

$$
1,1,2,4,8,16,31, \ldots
$$

are the Pentanacci numbers $\mathbf{A 0 0 1 5 9 1}$ with generating function

$$
\frac{1}{1-x-x^{2}-x^{3}-x^{4}-x^{5}} .
$$

We have the following proposition.
Proposition 15. The Pascal-like triangle that begins

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 3 & 1 & 0 & 0 & 0 & 0 \\
1 & r+5 & r+5 & 1 & 0 & 0 & 0 \\
1 & 2 r+7 & 4 r+13 & 2 r+7 & 1 & 0 & 0 \\
1 & 3 r+9 & 11 r+25 & 11 r+25 & 3 r+9 & 1 & 0 \\
1 & 4 r+11 & r^{2}+22 r+41 & 2 r^{2}+36 r+63 & r^{2}+22 r+41 & 4 r+11 & 1
\end{array}\right)
$$

with γ-matrix given by the stretched Riordan array $\left(\frac{1}{1-x}, \frac{x^{2}(1+r x)}{1-x}\right)$, has row sums with generating function

$$
\frac{1}{1-2 x-x^{2}-2 r x^{3}}
$$

and diagonal sums given by the generalized Pentanacci numbers with generating function

$$
\frac{1}{1-x-x^{2}-x^{3}-r x^{4}-r x^{5}} .
$$

4 Reverting triangles

Let $h(x, y)$ be the generating function of the lower-triangular matrix $h_{n, k}$, with $h_{0,0}=1$. By the reversion of this triangle, we shall mean the triangle whose generating function $h^{*}(x, y)$ is given by

$$
h^{*}(x, y)=\frac{1}{x} \operatorname{Rev}_{x}(x h(x, y)) .
$$

Procedurally, this means that we solve the equation

$$
u h(u, y)=x
$$

and then we divide the solution $u(x, y)$ that satisfies $u(0, y)=0$ by x.
Proposition 16. The generating function of the reversion of the Pascal-like matrix defined by the Riordan array $\left(\frac{1}{1-x}, \frac{x(1+r x)}{1-x}\right)$ is given by

$$
h^{*}(x, y)=\frac{1}{1+x(y+1)} c\left(\frac{-r x^{2} y}{(1+x(y+1))^{2}}\right)
$$

where

$$
c(x)=\frac{1-\sqrt{1-4 x}}{2 x}
$$

is the generating function of the Catalan numbers $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$. (A000108).
Proof. Solving the equation

$$
\frac{u}{1-u(y+1)-r u^{2} y}=x
$$

gives us

$$
h^{*}(x, y)=\frac{-1-x(y+1)+\sqrt{1+2 x(y+1)+x^{2}\left(1+2 y(2 r+1)+y^{2}\right)}}{2 r x^{2} y} .
$$

Thus

$$
h^{*}(x, y)=\frac{1}{1+x(y+1)} c\left(\frac{-r x^{2} y}{(1+x(y+1))^{2}}\right)
$$

We note that we can now calculate an expression for the terms of the reverted triangle, since, using the language of Riordan arrays, we have

$$
h^{*}(x, y)=\left(\frac{1}{1+y(x+1)}, \frac{-r x^{2} y}{(1+x(y+1))^{2}}\right) \cdot c(x)
$$

Proposition 17. We have

$$
\left[x^{n}\right]\left[y^{i}\right] h^{*}(x, y)=h_{n, i}^{*}=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{n}(-r)^{k}\binom{n}{2 k} C_{k}\binom{n-2 k}{i-k} .
$$

The γ-matrix of the reverted triangle $\left(h_{n, k}^{*}\right)$ is given by

$$
\gamma_{n, k}^{*}=(-1)^{n}(-r)^{k}\binom{n}{2 k} C_{k} .
$$

The γ-matrix $\left(\gamma_{n, k}^{*}\right)$ of the reverted triangle $\left(h_{n, k}^{*}\right)$ is the reversion of the triangle $\gamma_{n, k}$.
Proof. The expression for $h_{n, k}^{*}$ results from a direct calculation. Reverting the expression $\gamma(x, y)=\frac{1}{1-x-r x^{2} y}$ in the sense above gives us

$$
\gamma^{*}(x, y)=\frac{1}{1+x} c\left(\frac{-r x^{2} y}{(1+x)^{2}}\right)
$$

from which we deduce the other statements.
Example 18. For $r=-1,0,1$, the triangles $\left(h_{n, k}\right)$ begin, respectively,

$$
\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right),\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 1 & 0 & 0 & 0 & 0 \\
1 & 3 & 3 & 1 & 0 & 0 & 0 \\
1 & 4 & 6 & 4 & 1 & 0 & 0 \\
1 & 5 & 10 & 10 & 5 & 1 & 0 \\
1 & 6 & 15 & 20 & 15 & 6 & 1
\end{array}\right),
$$

and

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 3 & 1 & 0 & 0 & 0 & 0 \\
1 & 5 & 5 & 1 & 0 & 0 & 0 \\
1 & 7 & 13 & 7 & 1 & 0 & 0 \\
1 & 9 & 25 & 25 & 9 & 1 & 0 \\
1 & 11 & 41 & 63 & 41 & 11 & 1
\end{array}\right) .
$$

The corresponding reverted triangles $\left(h_{n, k}^{*}\right)$, are, respectively,

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & -1 & 0 & 0 & 0 & 0 & 0 \\
1 & 3 & 1 & 0 & 0 & 0 & 0 \\
-1 & -6 & -6 & -1 & 0 & 0 & 0 \\
1 & 10 & 20 & 10 & 1 & 0 & 0 \\
-1 & -15 & -50 & -50 & -15 & -1 & 0 \\
1 & 21 & 105 & 175 & 105 & 21 & 1
\end{array}\right),\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & -1 & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 1 & 0 & 0 & 0 & 0 \\
-1 & -3 & -3 & -1 & 0 & 0 & 0 \\
1 & 4 & 6 & 4 & 1 & 0 & 0 \\
-1 & -5 & -10 & -10 & -5 & -1 & 0 \\
1 & 6 & 15 & 20 & 15 & 6 & 1
\end{array}\right),
$$

and

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & -1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & -1 & 0 & 0 & 0 \\
1 & -2 & -4 & -2 & 1 & 0 & 0 \\
-1 & 5 & 10 & 10 & 5 & -1 & 0 \\
1 & -9 & -15 & -15 & -15 & -9 & 1
\end{array}\right) .
$$

Note that for $r=-1$, the reverted triangle is $(-1)^{n}$ times the Narayana triangle A001263.
The corresponding γ-matrices $\left(\gamma_{n, k}\right)$ are given by, respectively,

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 & 0 & 0 & 0 \\
1 & -2 & 0 & 0 & 0 & 0 & 0 \\
1 & -3 & 1 & 0 & 0 & 0 & 0 \\
1 & -4 & 3 & 0 & 0 & 0 & 0 \\
1 & -5 & 6 & -1 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right),
$$

and

$$
\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 0 & 0 & 0 & 0 & 0 \\
1 & 3 & 1 & 0 & 0 & 0 & 0 \\
1 & 4 & 3 & 0 & 0 & 0 & 0 \\
1 & 5 & 6 & 1 & 0 & 0 & 0
\end{array}\right) .
$$

The corresponding reverted γ-matrices $\left(\gamma_{n, k}^{*}\right)$ are then, respectively,

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
-1 & -3 & 0 & 0 & 0 & 0 & 0 \\
1 & 6 & 2 & 0 & 0 & 0 & 0 \\
-1 & -10 & -10 & 0 & 0 & 0 & 0 \\
1 & 15 & 30 & 5 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right),
$$

and

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 3 & 0 & 0 & 0 & 0 & 0 \\
1 & -6 & 2 & 0 & 0 & 0 & 0 \\
-1 & 10 & -10 & 0 & 0 & 0 & 0 \\
1 & -15 & 30 & -5 & 0 & 0 & 0
\end{array}\right) .
$$

It is interesting to represent the generating functions of the $\left(\gamma_{n, k}^{*}\right)$ and the $\left(h_{n, k}^{*}\right)$ triangles as Jacobi continued fractions. We have

Proposition 19. The generating function $h^{*}(x, y)$ can be expressed as the Jacobi continued fraction

$$
\mathcal{J}(-(y+1),-(y+1),-(y+1), \ldots ;-r y,-r y,-r y, \ldots) .
$$

The generating function $\gamma^{*}(x, y)$ can be expressed as the Jacobi continued fraction

$$
\mathcal{J}(-1,-1,-1, \ldots ;-r y,-r y,-r y, \ldots) .
$$

Proof. We solve the continued fraction equation

$$
u=\frac{1}{1+(y+1) x+r x^{2} u}
$$

to retrieve the generating function $h^{*}(x, y)$. Similarly, we solve the continued fraction equation

$$
u=\frac{1}{1+x+r x^{2} u}
$$

to retrieve the generating function $\gamma^{*}(x, y)$.
Note that we have used the notation $\mathcal{J}(a, b, c, \ldots ; r, s, t, \ldots)$ to denote the Jacobi continued fraction $[2,16]$

$$
\frac{1}{1-a x-\frac{r x^{2}}{1-b x-\frac{s x^{2}}{1-c x-\frac{t x^{2}}{1-\cdots}}}} .
$$

We can now express the relationship between the generating functions $h^{*}(x, y)$ and $\gamma^{*}(x, y)$ in terms of repeated binomial transforms.

Corollary 20. The generating function $h^{*}(x, y)$ is the $(-y)$-th binomial transform of the γ generating function $\gamma^{*}(x, y)$:

$$
h^{*}(x, y)=\frac{1}{1+x y} \gamma^{*}\left(\frac{x}{1+x y}, y\right)
$$

Equivalently, the γ generating function $\gamma^{*}(x, y)$ is the y-th binomial transform of the generating function $h^{*}(x, y)$:

$$
\gamma^{*}(x, y)=\frac{1}{1-x y} h^{*}\left(\frac{x}{1-x y}, y\right) .
$$

This reflects the general assertion that the reversion of an INVERT transform is a binomial transform.

5 The γ-vectors of generalized Narayana numbers

The Riordan array $\left(\frac{1}{1+x}, \frac{-x(1+r x)}{1+x}\right)$, with bivariate generating function

$$
\frac{1}{1+x(y+1)+r x^{2} y},
$$

has a γ-matrix with generating function

$$
\frac{1}{1+x+r x^{2} y} .
$$

We shall call elements of the reversions of the Riordan array $\left(\frac{1}{1+x}, \frac{-x(1+r x)}{1+x}\right) r$-Narayana numbers. The Narayana numbers $N_{n, k}=\frac{1}{k+1}\binom{n+1}{k}\binom{n}{k}$ are then the 1-Narayana numbers. The bivariate generating function for the r-Narayana numbers is given by

$$
\frac{1}{1-x(y+1)} c\left(\frac{r x^{2} y}{(1-x(y+1))^{2}}\right) .
$$

The bivariate generating function for the γ-matrix of the r-Narayana numbers is then obtained by reverting the generating function $\frac{1}{1+x+r x^{2} y}$. We thus obtain the following result.
Proposition 21. The γ-matrix for the r-Narayana numbers has generating function

$$
\frac{1}{1-x} c\left(\frac{r x^{2} y}{(1-x)^{2}}\right) .
$$

This is the matrix that begins

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & r & 0 & 0 & 0 & 0 & 0 \\
1 & 3 r & 0 & 0 & 0 & 0 & 0 \\
1 & 6 r & 2 r^{2} & 0 & 0 & 0 & 0 \\
1 & 10 r & 10 r^{2} & 0 & 0 & 0 & 0 \\
1 & 15 r & 30 r^{2} & 5 r^{3} & 0 & 0 & 0
\end{array}\right),
$$

with general term

$$
\binom{n}{2 k} r^{k} C_{k} .
$$

For $r=-1,0,1$, the matrices $\left(\frac{1}{1+x}, \frac{-x(1+r x)}{1+x}\right)$ begin, respectively,

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & -1 & 0 & 0 & 0 & 0 & 0 \\
1 & 3 & 1 & 0 & 0 & 0 & 0 \\
-1 & -5 & -5 & -1 & 0 & 0 & 0 \\
1 & 7 & 13 & 7 & 1 & 0 & 0 \\
-1 & -9 & -25 & -25 & -9 & -1 & 0 \\
1 & 11 & 41 & 63 & 41 & 11 & 1
\end{array}\right),\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & -1 & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 1 & 0 & 0 & 0 & 0 \\
-1 & -3 & -3 & -1 & 0 & 0 & 0 \\
1 & 4 & 6 & 4 & 1 & 0 & 0 \\
-1 & -5 & -10 & -10 & -5 & -1 & 0 \\
1 & 6 & 15 & 20 & 15 & 6 & 1
\end{array}\right),
$$

and

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & -1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
-1 & -1 & -1 & -1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 \\
-1 & -1 & -1 & -1 & -1 & -1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

The corresponding matrices of r-Narayana numbers are, respectively,

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & -2 & -4 & -2 & 1 & 0 & 0 \\
1 & -5 & -10 & -10 & -5 & 1 & 0 \\
1 & -9 & -15 & -15 & -15 & -9 & 1
\end{array}\right),\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 1 & 0 & 0 & 0 & 0 \\
1 & 3 & 3 & 1 & 0 & 0 & 0 \\
1 & 4 & 6 & 4 & 1 & 0 & 0 \\
1 & 5 & 10 & 10 & 5 & 1 & 0 \\
1 & 6 & 15 & 20 & 15 & 6 & 1
\end{array}\right),
$$

and

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 3 & 1 & 0 & 0 & 0 & 0 \\
1 & 6 & 6 & 1 & 0 & 0 & 0 \\
1 & 10 & 20 & 10 & 1 & 0 & 0 \\
1 & 15 & 50 & 50 & 15 & 1 & 0 \\
1 & 21 & 105 & 175 & 105 & 21 & 1
\end{array}\right) .
$$

This last matrix, as expected, is the Narayana triangle A001263. The corresponding γ matrices for these r-Narayana triangles are, respectively,

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 & 0 & 0 & 0 \\
1 & -3 & 0 & 0 & 0 & 0 & 0 \\
1 & -6 & 2 & 0 & 0 & 0 & 0 \\
1 & -10 & 10 & 0 & 0 & 0 & 0 \\
1 & -15 & 30 & -5 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right),
$$

and

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 3 & 0 & 0 & 0 & 0 & 0 \\
1 & 6 & 2 & 0 & 0 & 0 & 0 \\
1 & 10 & 10 & 0 & 0 & 0 & 0 \\
1 & 15 & 30 & 5 & 0 & 0 & 0
\end{array}\right) .
$$

This last matrix is A055151. The rows of this triangle are the γ-vectors of the n-dimensional (type A) associahedra [9]. We have seen that its elements are given by
$\gamma_{n, k}=\sum_{i=0}^{k} \sum_{j=0}^{n} N_{n, j}\binom{2 i-1}{i-j} \frac{2 j+0^{i+j}}{i+j+0^{i+j}}$ If $\left(k=i, 1, \sum_{m=0}^{k-i} \frac{m(-1)^{m}}{k-i}\binom{n-1+m}{m}\binom{2(k-i)}{k-i-m}\right)$,
where $N_{n, k}$ denotes the (n, k)-th Narayana number A001263.
The relationship between the γ-matrix and the r-Narayana numbers can be further clarified as follows.

Proposition 22. The generating function of the r-Narayana numbers can be expressed as the Jacobi continued fraction

$$
\mathcal{J}((y+1),(y+1),(y+1), \ldots ; r y, r y, r y, \ldots)
$$

The generating function of the corresponding γ-matrix can be expressed as the Jacobi continued fraction

$$
\mathcal{J}(1,1,1, \ldots ; r y, r y, r y, \ldots)
$$

Corollary 23. The generating function of the r-Narayana numbers is the y-th binomial transform of the generating function of the corresponding γ-matrix.

$$
h^{*}(x, y)=\frac{1}{1-x y} \gamma^{*}\left(\frac{x}{1-x y}, y\right)
$$

Equivalently, the γ generating function $\gamma^{*}(x, y)$ is the $(-y)$-th binomial transform of the generating function $h^{*}(x, y)$:

$$
\gamma^{*}(x, y)=\frac{1}{1+x y} h^{*}\left(\frac{x}{1+x y}, y\right) .
$$

6 Pascal-like triangles defined by exponential Riordan arrays

We recall that an exponential Riordan array $[g(x), f(x)][1,6]$ is defined by two exponential generating functions

$$
g(x)=1+g_{1} \frac{x}{1!}+g_{2} \frac{x}{2!}+\cdots
$$

and

$$
f(x)=\frac{x}{1!}+f_{2} \frac{x^{2}}{2!}+\cdots
$$

with its (n, k)-th term $a_{n, k}$ given by

$$
a_{n, k}=\frac{n!}{k!}\left[x^{n}\right] g(x) f(x)^{k} .
$$

In the context of Pascal-like matrices, we have that the exponential Riordan array

$$
\left[e^{x}, x(1+r x / 2)\right],
$$

with general term

$$
h_{n, k}=\frac{n!}{k!} \sum_{j=0}^{k} \frac{r^{j}}{(n-k-j)!2^{j}},
$$

is a Pascal-like matrix [3]. This matrix begins

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & r+2 & 1 & 0 & 0 & 0 & 0 \\
1 & 3 r+3 & 3 r+3 & 1 & 0 & 0 & 0 \\
1 & 6 r+4 & 3 r^{2}+12 r+6 & 6 r+4 & 1 & 0 & 0 \\
1 & 10 r+5 & 15 r^{2}+30 r+10 & 15 r^{2}+30 r+10 & 10 r+5 & 1 & 0 \\
1 & 15 r+6 & 45 r^{2}+60 r+15 & 15 r^{3}+90 r^{2}+90 r+20 & 45 r^{2}+60 r+15 & 15 r+6 & 1
\end{array}\right) .
$$

We have the following result.
Proposition 24. The γ-matrix of the Pascal-like exponential Riordan array $\left[e^{x}, x(1+r x / 2)\right]$ is the matrix with general term

$$
\binom{n}{2 k} r^{k}(2 k-1)!!
$$

In fact, the generating function of the exponential Riordan array $\left[e^{x}, x(1+r x / 2)\right]$ is given by

$$
\mathcal{J}(y+1, y+1, y+1, \ldots ; r y, 2 r y, 3 r y, \ldots)
$$

while that of its γ-matrix is given by

$$
\mathcal{J}(1,1,1, \ldots ; r y, 2 r y, 3 r y, \ldots) .
$$

Proposition 25. The generating function of the γ-matrix of the Pascal-like exponential Riordan array $\left[e^{x}, x(1+r x / 2)\right]$ has generating function

$$
e^{x(1+r x y / 2)}
$$

Proof. By the theory of exponential Riordan arrays, the generating function of the Riordan array $\left[e^{x}, x(1+r x / 2)\right]$ is given by

$$
e^{x} e^{x y(1+r x / 2)}
$$

Taking the $(-y)$-th binomial transform of this, we obtain

$$
e^{x(1+r x y / 2)}
$$

Example 26. For $r=1$, we get the γ-matrix that begins

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 3 & 0 & 0 & 0 & 0 & 0 \\
1 & 6 & 3 & 0 & 0 & 0 & 0 \\
1 & 10 & 15 & 0 & 0 & 0 & 0 \\
1 & 15 & 45 & 15 & 0 & 0 & 0
\end{array}\right) .
$$

This is A100861, the triangle of Bessel numbers that count the number of k-matchings of the complete graph $K(n)$. The corresponding Pascal-like matrix begins

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 3 & 1 & 0 & 0 & 0 & 0 \\
1 & 6 & 6 & 1 & 0 & 0 & 0 \\
1 & 10 & 21 & 10 & 1 & 0 & 0 \\
1 & 15 & 55 & 55 & 15 & 1 & 0 \\
1 & 21 & 120 & 215 & 120 & 21 & 1
\end{array}\right) .
$$

This is A100862, which counts the number of k-matchings of the corona $K^{\prime}(n)$ of the complete graph $K(n)$ and the complete graph $K(1)$.
Example 27. For $r=2$, we obtain the γ-matrix that begins

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 0 & 0 & 0 & 0 & 0 \\
1 & 6 & 0 & 0 & 0 & 0 & 0 \\
1 & 12 & 12 & 0 & 0 & 0 & 0 \\
1 & 20 & 60 & 0 & 0 & 0 & 0 \\
1 & 30 & 180 & 120 & 0 & 0 & 0
\end{array}\right) .
$$

This is A059344, where row n consists of the nonzero coefficients of the expansion of $2^{n} x^{n}$ in terms of Hermite polynomials with decreasing subscripts. The corresponding Pascal-like matrix begins

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 4 & 1 & 0 & 0 & 0 & 0 \\
1 & 9 & 9 & 1 & 0 & 0 & 0 \\
1 & 16 & 42 & 16 & 1 & 0 & 0 \\
1 & 25 & 130 & 130 & 25 & 1 & 0 \\
1 & 36 & 315 & 680 & 315 & 36 & 1
\end{array}\right) .
$$

The row sums of this matrix are given by A000898, the number of symmetric involutions of [2n] (Deutsch).

7 Conclusion

It is the case that the set of Pascal-like matrices defined by Riordan arrays is a restricted one. Nevertheless, we hope that this note indicates that they have interesting properties, including in particular their generating γ-matrices. In the case of Pascal-like matrices defined by ordinary Riordan arrays, we have seen that be reverting them, we find additional (signed) Pascal-like triangles, including triangles of Narayana type. The γ-matrices of these new triangles are again the reversions of the original triangles' γ-matrices.

We have also shown that stretched Riordan arrays play a useful role, and in particular can lead to further (non-Riordan) Pascal-like matrices. We have also found it useful to use Riordan array techniques to find an explicit closed form formula for the elements $\gamma_{n, k}$ of the γ-matrix in terms of $h_{n, k}$.

References

[1] P. Barry, Riordan Arrays: A Primer, Logic Press, 2017.
[2] P. Barry, Continued fractions and transformations of integer sequences, J. Integer Sequences, 12 (2009), Article 09.7.6.
[3] P. Barry, On a family of generalized Pascal triangles defined by exponential Riordan array, J. Integer Sequences, 10 (2007), Article 07.3.5.
[4] P. Barry, On integer-sequence-based constructions of generalized Pascal triangles, J. Integer Sequences, 9 (2006), Article 06.2.4.
[5] C. Corsani, D. Merlini, and R. Sprugnoli, Left-inversion of combinatorial sums, Discrete Math., 180 (1998), 107-122.
[6] E. Deutsch and L. Shapiro, Exponential Riordan arrays, Lecture Notes, Nankai University, 2004, available electronically at http://www.combinatorics.net/ppt2004/Louis \%20W. \%20Shapiro/shapiro.htm.
[7] S. R. Gal, Real root conjecture fails for five and higher dimensional spheres, Discrete Comput. Geom., 34 (2005), 269-284.
[8] Tian-Xiao He and L. W. Shapiro, Fuss-Catalan matrices, their weighted sums, and stabilizer subgroups of the Riordan group, Linear Algebra Appl., 552 (2017), 25-42.
[9] K. Petersen, Eulerian Numbers, Birkhäuser, 2015.
[10] L. Shapiro, A survey of the Riordan group, available electronically at http://www. combinatorics.cn/activities/Riordan\ Group.pdf. Center for Combinatorics, Nankai University, 2018.
[11] L. W. Shapiro, S. Getu, W.-J. Woan, and L. C. Woodson, The Riordan group, Discr. Appl. Math. 34 (1991), 229-239.
[12] L. W. Shapiro, W.-J. Woan, and S. Getu, Runs, slides and moments, SIAM J. Alg. Discrete Methods, 4 (1983), 459-466.
[13] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences. Published electronically at https://oeis.org, 2018.
[14] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, Notices Amer. Math. Soc., 50 (2003), 912-915.
[15] R. P. Stanley, f-vectors and h-vectors of simplicial posets, J. Pure Appl. Algebra, 71 (1991), 319-331.
[16] H. S. Wall, Analytic Theory of Continued Fractions, AMS Chelsea Publishing, 2001.

2010 Mathematics Subject Classification: Primary 11B83; Secondary 33C45, 42C-5, 15B36, 15B05, 14N10, 11C20.
Keywords: Gamma vector, Pascal-like triangle, Riordan array, Narayana number, Eulerian number, associahedron, permutahedron.
(Concerned with sequences A000108, A000898, A001263, A001591, A007318, A008288, A008292, $\underline{\mathrm{A} 055151}, \underline{\mathrm{~A} 059344}, \underline{\mathrm{~A} 077938}, \underline{\mathrm{~A} 100861}, \underline{\mathrm{~A} 100862}, \underline{\mathrm{~A} 101280}$, and $\underline{\text { A271875.) }}$

Received April 13 2018; revised version received December 19 2018. Published in Journal of Integer Sequences, December 192018.

Return to Journal of Integer Sequences home page.

