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Abstract

We derive alternative proofs of two recent results due to Gürtas, and a new re-

cursion related to the minimal polynomials of algebraic cosine values. We determine

the minimal polynomials of algebraic values of the sine function evaluated at rational

multiples of π. We also correct a formula from our earlier work.
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1 Introduction

In 1933, Lehmer proved the following result [3]: let n ∈ N, n > 2, k ∈ {1, 2, . . . , n} with
gcd(k, n) = 1. Then the value 2 cos(2kπ/n) is an algebraic integer of degree ϕ(n)/2 (sequence
A023022 in the OEIS [7]) whose minimal polynomial is ψn(x) ∈ Z[x], where

ψn(x+ x−1) = x−ϕ(n)/2Φn(x), (1)

where Φn is the nth cyclotomic polynomial and ϕ denotes Euler’s totient function (sequence
A000010 in the OEIS).

The first and the third authors [8] derived some reduction formulae, based on the work
of Surowski and McCombs, [6], that can be used to completely determine explicit forms of
the polynomials ψn(x). Almost simultaneously, Gürtas [2] considered the same problem, but
used a different approach based on Ramanujan’s trigonometric sum and its connection with
the power sum function to derive a recursive relation among the coefficients of ψn, as well
as certain other properties. The present work has three objectives.

1. To amend the formula in part IV of Theorem 5 of our earlier work [8].

2. To give alternative proofs of the last two results (Theorems 3.4 and 3.8) in [2] based
on the results and ideas in [8].

3. To derive more useful recursive relations among the coefficients of ψn and to determine
minimal polynomials of the sine values at rational multiples of π.

Since there is no universal agreement regarding the notation used in most of the works
in this area, especially those appearing in [8] and [2], throughout this work we stick to the
one employed in [8]. Throughout, let

X = x+ x−1, Xs = xs + x−s (s ∈ N).

2 A correction

The formula stated in part IV of Theorem 5 in [8] is not correct as it was derived from the
erroneous usage of (1) at n = 2. We now establish its correct version.

Proposition 1. For e ∈ N, e ≥ 2, the minimal polynomial of 2 cos(2kπ/2e), where k ∈
{1, 2, . . . , 2e}, gcd(k, 2) = 1, is

ψ2e(x) =

⌊2e−3⌋
∑

k=0

(−1)k
((

2e−2 − k

k

)

+

(

2e−2 − k − 1

k − 1

))

x2
e−2−2k.
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Proof. Following the approach in the proof of Theorem 5 part IV in [8], using (1) and the
well-known relation (see e.g. [8, Lemma 3 B])

Φmqe(x) = Φmq(x
qe−1

),

we have
ψ2e(X) = ψ2e

(

x+ x−1
)

= x−ϕ(2e)/2Φ2e(x) = x−2e−2

Φ2(x
2e−1

).

Substituting Φ2(T ) = 1 + T [4, Example 2.46, p. 65], we get

ψ2e(X) = x−2e−2

(

1 + x2
e−1

)

= x−2e−2

+ x2
e−2

= X2e−2

=

⌊2e−2/2⌋
∑

k=0

(−1)k
((

2e−2 − k

k

)

+

(

2e−2 − k − 1

k − 1

))

X2e−2−2k,

where the last equality comes from [8, Lemma 4]. Since the polynomial

ψ2e(X)−

⌊2e−2/2⌋
∑

k=0

(−1)k
((

2e−2 − k

k

)

+

(

2e−2 − k − 1

k − 1

))

X2e−2−2k

vanishes for infinitely many real (or complex) values of X = x + 1/x, it is identically zero,
i.e., all its coefficients are zero, and the result follows.

3 Alternative proofs of three results

In this section, based upon our work in [8], we give new proofs of the following two results
due to Gürtas [2].

Theorem 2. ([2, Theorem 3.4]) Let q ∈ N be odd ≥ 3, and let d = ϕ(q)/2 = ϕ(2q)/2. If

ψq(2x) = 2d
d
∑

i=0

(−1)ieix
d−i

and

ψ2q(2x) = 2d
d
∑

i=0

(−1)ie′ix
d−i,

then ei = (−1)ie′i (i = 0, 1, . . . , d).

Theorem 3. ([2, Theorem 3.8]) Let n > 4. If n is divisible by 4, then ψn(2x) is a polynomial
consisting of even powers of x only.

To prove Theorem 2, we need a lemma.
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Lemma 4. Let q ∈ N be odd ≥ 3, and let d = ϕ(q)/2. Then

ψ2q(x) = (−1)d ψq(−x).

Proof. Using (1) and [4, Problem 2.57 (d)], we have

ψ2q(X) = ψ2q

(

x+ x−1
)

= x−dΦ2q(x) = x−dΦq(−x)

= x−d(−x)dψq

(

−x− x−1
)

= (−1)dψq(−X).

Since the polynomial (in X) expression ψ2q(X)− (−1)d ψq(−X) vanishes for infinitely many
real (or complex) values of X = x + 1/x, it must vanish identically, i.e., all its coefficients
are identically zero, yielding ψ2q(x) = (−1)d ψq(−x).

Proof of Theorem 2. Using Lemma 4, we get

2d
d
∑

i=0

(−1)ie′i(2x)
d−i = ψ2q(2x) = (−1)d ψq(−2x) = 2d

d
∑

i=0

(−1)iei(−2x)d−i,

and the result follows at once from equating coefficients. �

To prove Theorem 3, we need another lemma.

Lemma 5. Let e ∈ N, let p be a prime, and let q ∈ N, q > 1 with gcd(q, p) = 1. Then

ψpeq(X) =
ψq(Xpe)

ψq(Xpe−1)
.

Proof. Using (1) and the well-known relation (see e.g. [8, Lemma 3 B]) Φmqe(x) = Φmq(x
qe−1

),
we get

ψpeq(X) = ψpeq

(

x+ x−1
)

= x−ϕ(peq)/2Φpeq(x) = x−ϕ(peq)/2Φpq(x
pe−1)

= x−ϕ(peq)/2
Φq

(

(xp
e−1

)p
)

Φq (xp
e−1)

= x−ϕ(peq)/2 (xp
e

)ϕ(q)/2ψq(x
pe + x−pe)

(xpe−1)ϕ(q)/2ψq(xp
e−1 + x−pe−1)

=
ψq (Xpe)

ψq(Xpe−1)
.

Proof of Theorem 3. Let n = 2eq, where e ≥ 2 and q is an odd positive integer chosen
such that n = 2eq > 4. From Lemma 5, and [8, Lemma 4], i.e.,

Xs =

⌊s/2⌋
∑

k=0

(−1)k
((

s− k

k

)

+

(

s− k − 1

k − 1

))

Xs−2k,
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with the convention that
(

n
r

)

= 0 for negative r, we have

ψn(2X) = ψ2eq(2X) =
ψq

(

∑2e/2
k=0 (−1)k

((

2e−k
k

)

+
(

2e−k−1
k−1

))

(2X)2
e−2k

)

ψq

(

∑2e−1/2
k=0 (−1)k

(

(

2e−1−k
k

)

+
(

2e−1−k−1
k−1

)

)

(2X)2e−1−2k
) .

Since the polynomial (in X)

ψ2eq(2X)ψq





2e−1/2
∑

k=0

(−1)k
((

2e−1 − k

k

)

+

(

2e−1 − k − 1

k − 1

))

(2X)2
e−1−2k





−ψq





2e/2
∑

k=0

(−1)k
((

2e − k

k

)

+

(

2e − k − 1

k − 1

))

(2X)2
e−2k





vanishes for infinitely many real values of X = x+1/x, it must vanish identically, and since
ψs(X) is a monic polynomial, we identically have

ψn(2x)ψq





2e−1/2
∑

k=0

(−1)k
((

2e−1 − k

k

)

+

(

2e−1 − k − 1

k − 1

))

(2x)2
e−1−2k





= ψq





2e/2
∑

k=0

(−1)k
((

2e − k

k

)

+

(

2e − k − 1

k − 1

))

(2x)2
e−2k



 . (2)

Observe next that from e ≥ 2, the arguments of ψq in the second factor on the left and in
the right-hand expression, namely,

2e/2
∑

k=0

(−1)k
((

2e − k

k

)

+

(

2e − k − 1

k − 1

))

(2x)2
e−2k and

2e−1/2
∑

k=0

(−1)k
((

2e−1 − k

k

)

+

(

2e−1 − k − 1

k − 1

))

(2x)2
e−1−2k

are polynomials with even exponents. Thus, in (2) the right-hand expression and the second
polynomial factor on the left contain only even powers of x. This forces the polynomial
ψn(2x) to contain only even powers of x. �

We end this section by presenting another derivation of ψp [6, Theorem 2.1] based on the
following binomial identity which is identity (1.60) in [1, p. 8].

⌊n/2⌋
∑

k=0

(−1)k
(

n− k

k

)

(xy)k (x+ y)n−2k =
xn+1 − yn+1

x− y
. (3)
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Theorem 6. Let p = 2s+ 1 be an odd prime. The minimal polynomial of 2 cos(2π/p) is

ψp(x) =

⌊s/2⌋
∑

j=0

(−1)j
(

s− j

j

)

xs−2j −

⌊(s+1)/2⌋
∑

j=1

(−1)j
(

s− j

j − 1

)

xs−(2j−1).

Proof. Putting y = 1/x in (3), we get

⌊n/2⌋
∑

k=0

(−1)k
(

n− k

k

)(

x+
1

x

)n−2k

=
xn+1 − 1/xn+1

x− 1/x
. (4)

Adopting the convention that
(

m
j

)

= 0 if j < 0, and using (4), we get

⌊n/2⌋
∑

k=0

(−1)k
(

n− k − 1

k − 1

)(

x+
1

x

)n−2k

=

⌊n/2⌋−1
∑

ℓ=0

(−1)ℓ+1

(

n− ℓ− 2

ℓ

)(

x+
1

x

)n−2ℓ−2

= −
xn−1 − 1/xn−1

x− 1/x
. (5)

Adding (4) and (5), we get

⌊n/2⌋
∑

k=0

(−1)k
(

n− k

k

)(

x+
1

x

)n−2k

+

⌊n/2⌋
∑

k=0

(−1)k
(

n− k − 1

k − 1

)(

x+
1

x

)n−2k

=
(x2 − 1)(xn−1 + 1/xn+1)

x− 1/x
= xn + 1/xn = Xn. (6)

We claim that the sum of the Xn’s with odd and even indices are given, respectively, by

X1 +X3 + · · ·+X2t+1 =
t
∑

j=0

(−1)j
(

2t+ 1− j

j

)

X2t+1−2j (7)

X2 +X4 + · · ·+X2t =
t−1
∑

j=0

(−1)j
(

2t− j

j

)

X2t−2j − 2δt, (8)

where δt = 0 for even t, and δt = 1 for odd t. We begin with (7), which holds trivially for
t = 0. Assume that it holds up to t− 1, i.e., assume

X1 +X3 + · · ·+X2t−1 =
t−1
∑

j=0

(−1)j
(

2t− 1− j

j

)

X2t−1−2j =
t
∑

k=1

(−1)k−1

(

2t− k

k − 1

)

X2t+1−2k.

(9)
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From (6), with n = 2t+ 1, we get

X2t+1 =
t
∑

k=0

(−1)k
((

2t+ 1− k

k

)

+

(

2t− k

k − 1

))

X2t+1−2k

= X2t+1 +
t
∑

k=1

(−1)k
((

2t+ 1− k

k

)

+

(

2t− k

k − 1

))

X2t+1−2k. (10)

The identity (7) follows from induction by adding (9) and (10). We proceed now to verify
(8). When t = 1, the right-hand expression is equal to

X2 − 2 =

(

x+
1

x

)2

− 2 = x2 +
1

x2
= X2,

and we are done in this case. Assume that it holds up to t− 1, i.e., assume that

X2 +X4 + · · ·+X2t−2 =
t−2
∑

j=0

(−1)j
(

2t− 2− j

j

)

X2t−2−2j − 2δt−1

=
t−1
∑

k=1

(−1)k−1

(

2t− 1− k

k − 1

)

X2t−2k − 2δt−1 (11)

From (6), with n = 2t, we get

X2t =
t
∑

k=0

(−1)k
((

2t− k

k

)

+

(

2t− k − 1

k − 1

))

X2t−2k

= X2t +
t
∑

k=1

(−1)k
((

2t− k

k

)

+

(

2t− k − 1

k − 1

))

X2t−2k. (12)

Adding (11) and (12), we get

X2 + · · ·+X2t−2 +X2t = X2t +
t−1
∑

k=1

(−1)k
(

2t− k

k

)

X2t−2k + (−1)t2− 2δt−1,

and using the definition of δt, the identity (8) follows by induction.
From (1) and the shape of the pth cyclotomic polynomial [4, Chapter 2], we get

ψp(X) = ψp

(

x+ x−1
)

= x−sΦp(x) = 1 + (x+ x−1) + · · ·+ (xs + x−s) = 1 +X1 + · · ·+Xs.
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For odd s = 2t+ 1, using (7) and (8) we have

ψp(X) = (1 +X2 +X4 + · · ·+X2t) + (X1 +X3 + · · ·+X2t+1)

=

(

1 +
t−1
∑

j=0

(−1)j
(

2t− j

j

)

X2t−2j − 2δt

)

+

(

t
∑

j=0

(−1)j
(

2t+ 1− j

j

)

X2t+1−2j

)

=
t
∑

j=0

(−1)j
(

2t− j

j

)

X2t−2j +
t
∑

j=0

(−1)j
(

2t+ 1− j

j

)

X2t+1−2j

=
t+1
∑

k=1

(−1)k−1

(

2t− k + 1

k − 1

)

X2t+2−2k +
t
∑

j=0

(−1)j
(

2t+ 1− j

j

)

X2t+1−2j .

For even s = 2t, using (7) and (8) we have

ψp(X) = (1 +X2 +X4 + · · ·+X2t) + (X1 +X3 + · · ·+X2t−1)

=

(

1 +
t−1
∑

j=0

(−1)j
(

2t− j

j

)

X2t−2j − 2δt

)

+

(

t−1
∑

j=0

(−1)j
(

2t− 1− j

j

)

X2t−1−2j

)

=
t
∑

j=0

(−1)j
(

2t− j

j

)

X2t−2j +
t
∑

k=1

(−1)k−1

(

2t− k

k − 1

)

X2t+1−2k,

and the assertion of the theorem holds for ψp(X). As argued before, this relation holds for
infinitely many values of X = x + 1/x yielding it to be an identity, and the desired result
follows.

4 More properties

Lemmas 4 and 5 enable us to deduce the next interesting result.

Theorem 7. Let q ∈ N be odd ≥ 3, d := ϕ(q)/2.

(a) We have ψq(−X)ψq(X) = (−1)dψq(X
2 − 2);

(b) If ψq(x) :=
∑d

i=0 aix
i, then for ℓ ∈ {0, 1, . . . , d} we have

∑

0≤i,j≤d
i+j=2ℓ

(−1)iaiaj = (−1)d
d
∑

k=ℓ

(

k

ℓ

)

ak(−2)k−ℓ

∑

0≤i,j≤d
i+j is odd

(−1)iaiaj = 0.
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Proof. (a) Taking p = 2, e = 1 in Lemma 5 and equating with the expression in Lemma 4,
we get

ψq(X2)

ψq(X)
= ψ2q(X) = (−1)dψq(−X).

The result follows at once from X2 = x2 + x−2 = (x+ x−1)2 − 2 = X2 − 2.
(b) From part (a), arguing as before we see that the polynomial

ψq(−X)ψq(X)− (−1)dψq(X
2 − 2)

vanishes identically, and since each polynomial ψq is monic, we get ψq(−x)ψq(x) = (−1)dψq(x
2−

2), i.e.,
d
∑

i=0

ai(−x)
i

d
∑

j=0

ajx
j = (−1)d

d
∑

k=0

ak(x
2 − 2)k.

The first and second assertions follow from equating the coefficients of the even (respectively,
odd) powers of x on both sides. The second assertion can also be verified by noting that since
i+ j is odd, the integers i and j have different parities. Therefore, (−1)iaiaj +(−1)jajai = 0
for every such pair.

4.1 Minimal polynomials of sine values

Lehmer [3, Theorem 2, p. 166] also proved the result about the values of the sine function
at rational multiples of π. We now use an analysis in [5, Theorem 3.9, pp. 37–39], which
amends inaccuracies in the case n ≡ 4 (mod 8) of [3, Theorem 2, p. 166], to determine the
minimal polynomial of sin(2kπ/n) A178182.

Theorem 8. A. Let n ∈ N, k ∈ {1, 2, . . . , n} with n > 2, n 6= 4 and gcd(k, n) = 1.

(a) If n is odd, then 2 sin(2kπ/n) is an algebraic integer whose minimal polynomial is
ψ4n(x) of degree ϕ(n).

(b) If n ≡ 2 (mod 4), then 2 sin(2kπ/n) is an algebraic integer whose minimal polynomial
is ψ2n(x) of degree ϕ(n).

(c) If n ≡ 0 (mod 8), then 2 sin(2kπ/n) is an algebraic integer whose minimal polynomial
is ψn(x) of degree ϕ(n)/2.

(d) If n ≡ 4 (mod 8), n > 4 and k ≡ n/4 (mod 4), then 2 sin(2kπ/n) is an algebraic
integer whose minimal polynomial is ψn/4(x) of degree ϕ(n)/4.

(e) If n ≡ 4 (mod 8), n > 4 and k 6≡ n/4 (mod 4), then 2 sin(2kπ/n) is an algebraic
integer whose minimal polynomial is ψn/2(x) of degree ϕ(n)/4.
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B. If n = 1 or n = 2, then 2 sin(2π/n) = 0 is an algebraic integer whose minimal polynomial
is x. If n = 4, then 2 sin(2π/n) = 2 is an algebraic integer whose minimal polynomial is x−2,
while 2 sin(2 ·3π/n) = −2 is an algebraic integer whose minimal polynomial is ψ2(x) = x+2.

Proof. A. Note that

2 sin

(

2kπ

n

)

= 2 cos 2π

(

k

n
−

1

4

)

= 2 cos

(

2π(4k − n)

4n

)

.

If n is odd, then the fraction (4k − n)/4n is in reduced form and so 2 sin(2kπ/n) is

an algebraic integer whose minimal polynomial is the same as that of 2 cos
(

2π(4k−n)
4n

)

, i.e.,

ψ4n(x) with degψ4n = ϕ(n).

If n ≡ 2 (mod 4), then 4k−n
4n

= 2k−n/2
2n

, where the last fraction is in reduced form. Thus,

2 sin(2kπ/n) is an algebraic integer whose minimal polynomial is that of 2 cos
(

2π(2k−n/2)
2n

)

,

i.e., ψ2n(x) with degψ2n = ϕ(2n)/2 = ϕ(n).
If n ≡ 0 (mod 4), then there are two subcases.

• If n ≡ 0 (mod 8), then 4k−n
4n

= k−n/4
n

is in reduced form because gcd(k, n) = 1. Thus,

2 sin(2kπ/n) is an algebraic integer whose minimal polynomial is that of 2 cos
(

2π(k−n/4)
n

)

,

i.e., ψn(x) with degψn = ϕ(n)/2.

• If n ≡ 4 (mod 8), then the fraction (4k−n)/4n reduces to one with denominator n/4 in
case k ≡ n/4 (mod 4) and denominator n/2 otherwise. In the former case, 2 sin(2kπ/n)

is an algebraic integer whose minimal polynomial is that of 2 cos
(

2π(k−n/4)/4
n/4

)

, i.e.,

ψn/4(x) with degree ϕ(n/4)/2 = ϕ(n)/4. In the latter case, 2 sin(2kπ/n) is an algebraic

integer whose minimal polynomial is that of 2 cos
(

2π(k−n/4)/2
n/2

)

, i.e., ψn/2(x) with degree

ϕ(n/2)/2 = ϕ(n)/4.

The assertions in part B are easily checked directly.
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