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Abstract

In this paper we combine the knowledge of different structures of a special Appell

multidimensional polynomial sequence with the problem of establishing combinatorial

identities. The elements of this special polynomial sequence have values in a Clifford

algebra, are homogeneous hypercomplex differentiable functions of different degrees and

their coefficients properties can be used to stress interesting matrix and combinatorial

relations.
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1 Motivation

The construction of polynomials with values in a Clifford algebra, based on Appell’s concept
of power-like polynomials, has been considered in a series of articles by authors of this paper
[1, 6, 7, 12, 13, 21]. The consideration of these polynomials was motivated by the fact that
positive integer powers of the usually considered hypercomplex variable are not holomorphic,
except for the complex case, while hypercomplex Appell polynomials are hyperholomorphic
and have the behavior of power-like functions under hypercomplex differentiation. The
study of sets of Appell polynomials became a focus of many authors attention, due to their
theoretical importance and interesting applications [2, 3, 4, 5, 9, 11, 17, 18, 19, 25].

The knowledge of different hypercomplex polynomial bases systems can be combined with
the problem of establishing and proving new combinatorial identities by bijective methods,
linking in this way Clifford analysis and combinatorics. This idea was considered in the
works [8, 10, 14, 23], illustrating that the use of the underlying noncommutative algebra can
lead to generalizations of known results but, at the same time, opens the way for deriving
new useful formulas and combinatorial identities.

In this work we pursued the idea of considering (non-standard) applications of Clifford
algebras in the solution of problems of combinatorial nature, pointing out new combinatorial
aspects of generalized Appell polynomials associated with two different representations. The
paper is organized as follows: in Section 2 we introduce the necessary notation from Clifford
analysis and describe briefly a set of homogeneous polynomials (Pn

k(x)) generalizing the
complex power function zk. Two different representations of the polynomials Pn

k (x) allow to
derive, in Section 3, interesting matrix and combinatorial relations between their coefficients.
In Section 4, a family of Pascal trapezoids closely related to the problem considered in the
previous section is introduced and several patterns in such structure are studied.

2 A multidimensional polynomial sequence

Let {e1, e2, . . . , en}, n ≥ 2, be an orthonormal basis of the Euclidean vector space Rn with a
non-commutative product given according to the multiplication rules

eiej + ejei = −2δij, i, j = 1,2, . . . , n,
where δij is the Kronecker symbol. A basis for the associative 2n-dimensional real Clifford
algebra Cℓ0,n is the set {eA ∶ A ⊆ {1, . . . , n}} with

eA = eh1
eh2
⋯ehr

, 1 ≤ h1 < ⋯ < hr ≤ n, e∅ = e0 = 1.
In general, the vector space Rn+1 is embedded in Cℓ0,n by identifying the element (x0, . . . , xn)
in Rn+1 with the so-called paravector

x = x0 +
n

∑
k=1

ekxk = x0 + x ∈ An ∶= spanR{1, e1, . . . , en} ⊂ Cℓ0,n.
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The conjugate x̄ and the norm ∣x∣ of x are given by x̄ = x0 − x and ∣x∣ = (xx̄)1/2 = (x̄x)1/2 =
(∑n

k=0 x2

k
)1/2.

The generalized Cauchy-Riemann operator in Rn+1 is defined by

∂ ∶= 1

2
(∂0 + ∂x),

with ∂0 ∶= ∂
∂x0

and ∂x ∶= ∑n
k=1 ek ∂

∂xk
. The conjugate generalized Cauchy-Riemann operator,

also called the hypercomplex differential operator, is denoted by

∂ ∶= 1

2
(∂0 − ∂x).

Functions defined in an open subset Ω ⊆ Rn+1 ≅ An with values in the Clifford algebra
Cℓ0,n are of the form f(z) = ∑A fA(z)eA, with fA(z) real valued.

A function f is called left (right) monogenic in Ω if it is a solution of the differential
equation ∂f = 0 (f∂ = 0).

The hypercomplex differentiability as generalization of complex differentiability has to
be understood in the following way: a function f defined in an open domain Ω ⊆ Rn+1 is
hypercomplex differentiable if it has a uniquely defined areolar derivative f ′ in each point of
Ω. Then, f is real differentiable and f ′ = ∂f . Furthermore, f is hypercomplex differentiable
in Ω if and only if f is monogenic. In addition, the monogenicity of f implies that f ′ = ∂0f =
−∂xf (see [16, 20]).

Throughout this paper, a sequence of real numbers is denoted by (ak)k or simply (ak).
A finite k-tuple of numbers can be seen as an infinite sequence by adding zeros to the end.

We consider particular polynomial sequences (Pn
k (x))k whose terms are homogeneous

monogenic polynomials of degree k, taking their values in An, defined by

Pn
k (x) =

k

∑
s=0

T k
s (n)xk−sx̄s, (1)

where

T k
s (n) = (k

s
)(

n+1
2
)
k−s

(n−1
2
)
s(n)k , (2)

and (a)r denotes the Pochhammer symbol, i.e., (a)r ∶= Γ(a+r)
Γ(a) , r ≥ 1, and (a)0 ∶= 1. Such

polynomials were introduced initially [13, 21] as functions of a paravector variable x and
its conjugate x̄ and the coefficients T k

s (n) were calculated in such a way that (Pn
k (x)) is a

generalized Appell sequence of monogenic homogeneous polynomials with respect to ∂, i.e.,

1. Pn
0
(x) = 1,

2. ∂Pn
k (x) = kPn

k−1(x), k = 1,2, . . . .
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In the context of this paper, the representation of the Appell polynomials (1) in the form

Pn
k (x) =

k

∑
s=0
(k
s
) cs(n)xk−s

0 xs, (3)

will play an important role. Such representation has been studied in a series of papers (see,
e.g., [13, 14, 22]), where, in particular, it is proved that the coefficients are given by

cs(n) =
⎧⎪⎪⎨⎪⎪⎩

s!!(n−2)!!
(n+s−1)!! , if s is odd;

cs−1(n), if s is even,
(4)

and satisfy

ck(n) =
k

∑
s=0
(−1)sT k

s (n), k = 0,1, . . . . (5)

In the relation (4), n!! denotes the usual double factorial of n, which (we recall) is defined
as n!! = n(n − 2)!! for n > 1, and 0!! = 1!! = 1.

It is also worth mentioning that the numbers T k
s (n), for each degree k, constitute a

partition of unity, i.e.,

1 = k

∑
s=0

T k
s (n), k = 0,1, . . . , (6)

(cf. [14, Thm. 3.7]).
The family of numbers composed by T k

s (n), can be represented as a triangular table with
lines of height k = 0,1, . . . and ordered from s = 0 up to s = k. Table 1 shows its first lines
followed by the first terms of the sequences (ck(n)). Table 2 contains the first numbers
associated with (T k

s (2)) and (T k
s (3)), while in Table 3 we collect the first elements of the

sequences c2k(n), (for n = 2, . . . ,7). In the latter two tables one can see connections between
(c2k(n)) and (T k

s (n)) with sequences from The On-Line Encyclopedia of Integer Sequences
(OEIS) [26].

In the recent work [8], authors of this paper constructed a sequence (mk) closely related
to (ck(2)). Analyzing the sequence (T k

0
(2)) (cf. Table 2)

1, 3
4
, 5
8
, 35
64
, 63

128
, 231
512

, 429

1024
, 6435

16384
, 12155
32768

, 46189

131072
, 88179

262144
, . . .

one can see that it consists of rational numbers whose denominators are strictly increasing
powers of 2. The sequence (mk) of the corresponding exponents,

0,2,3,6,7,9,10,14,15,17,18, . . .

is called, in [8], the minimal exponent integer sequence with respect to 2, since it represents
the least non-negative integer mk such that 2mkT k

0
∈ N. The general expression of mk reads

as follows:
mk = k + ⌊k+12 ⌋ + ⌊k+122

⌋ +⋯+ ⌊k+1
2m
⌋,
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Table 1: The triangles (T k
s (n)) and the sequences (ck(n))

T k
s (n)
1
n+1
2n

n−1
2n

n+3
4n

n−1
2n

n−1
4n

(n+5)(n+3)
8n(n+2)

3(n+3)(n−1)
8n(n+2)

3(n2−1)
8n(n+2)

(n+3)(n−1)
8n(n+2)

(n+5)(n+7)
16n(n+2)

(n+5)(n−1)
4n(n+2)

3(n2−1)
8n(n+2)

(n2−1)
4n(n+2)

(n+5)(n−1)
16n(n+2)

(n+5)(n+7)(n+9)
32n(n+2)(n+4)

5(n+7)(n+5)(n−1)
32n(n+2)(n+4)

5(n2−1)(n+5)
16n(n+2)(n+4)

5(n2−1)(n+3)
16n(n+2)(n+4)

5(n2−1)(n+5)
32n(n+2)(n+4)

(n+5)(n−1)(n+7)
32n(n+2)

⋮
ck(n) = 1, 1

n
, 1

n
, 3

n2+2n ,
3

n2+2n ,
15

n(n2+6n+8) ,
15

n(n2+6n+8) ,
105

n(n+2)(n+4)(n+6) ,
105

n(n+2)(n+4)(n+6) , . . .

Table 2: First rows of (T k
s (2)) and (T k

s (3)) and the links to OEIS

n = 2 n = 3
1
3

4

1

4

10

16

4

16

2

16

35

64

15

64

9

64

5

64

126

256

56

256

36

256

24

256

14

256

⋮

1
2

3

1

3

3

6

2

6

1

6

4

10

3

10

2

10

1

10

5

15

4

15

3

15

2

15

1

15

⋮

T k
s (2) = A078817(k(k+1)/2+s)

A000302(k) T k
s (3) = A004736(k(k+1)/2+s)

A026741(k+2)
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Table 3: First elements of (c2k(n)), (n = 2, . . . ,7) and the links to OEIS

c2k(2) = 1, 12 , 38 , 5

16
, 35

128
, 63

256
, 231

1024
, . . . =

A001790(k)
A046161(k)

c2k(3) = 1, 13 , 15 , 17 , 19 , 1

11
, 1

13
, . . . = 1

A005408(k)
c2k(4) = 1, 14 , 18 , 5

64
, 7

128
, 21

512
, 33

1024
, . . . =

A098597(k)
A120777(k)

c2k(5) = 3

3
, 3

15
, 3

35
, 3

63
, 3

99
, 3

143
, 3

195
, . . . = 3

A000466(k+1)
c2k(6) = 1, 16 , 1

16
, 1

32
, 7

384
, 3

256
, 33

4096
, . . . =

A099398(k)
A099399(k)

c2k(7) = 5

5
, 5

35
, 5

105
, 5

231
, 5

429
, 5

715
, 5

1105
, . . . = 5

A162540(k)

with m ≤ log2(k + 1), (see [8, Thm. 6] for details). The sequence, now listed in OEIS as
A283208, allows to write

T k
0 (2) = 2c2k+1(2) = A001790(k + 1)

2A283208(k)
.

3 Connection-like identities

Connection-like is here understood as the problem of linking the coefficients T k
s (n) and cs(n)

associated with the two representations (1) and (3) of the same polynomial sequence (Pn
k (x)).

In this section we describe bijections between those coefficients and present corresponding
matrix relations.

We let Tk(n) and Ck(n) denote the (k + 1)-dimensional vectors

Tk(n) = [T k
0
(n) T k

1
(n) ⋯ T k

k−1(n) T k
k (n)]T

and
Ck(n) = [c0(n) c1(n) ⋯ ck−1(n) ck(n)]T .

We start with a technical result relating the numbers (2) in the row k−i with their distant
neighbors in the row k.

Lemma 1. For any fixed value of k ≥ 1, the following relation holds:

T k−i
s (n) =

i

∑
j=0

A(k, i, s, j)T k
s+j(n); i = 1, . . . , k, s = 0, . . . , k − i, (7)

where

A(k, i, s, j) = (i
j
) (k−i−s+1)i−j(s+1)j(k−i+1)i . (8)

6

https://oeis.org/A001790
https://oeis.org/A046161
https://oeis.org/A005408
https://oeis.org/A098597
https://oeis.org/A120777
https://oeis.org/A000466
https://oeis.org/A099398
https://oeis.org/A099399
https://oeis.org/A162540
https://oeis.org/A283208
https://oeis.org/A001790
https://oeis.org/A283208


Proof. The result is true for i = 1, since (7) reads as

T k−1
s (n) = k−s

k
T k
s (n) + s+1

k
T k
s+1(n), s = 0, . . . , k − 1. (9)

This relation between an element in row k − 1 and two adjacent elements in the row k was
already proved in [14, Thm. 3.5].

The repeated use of (9) allows to express an element in row k− i in terms of i+1 adjacent
elements in the row k. In fact, for s = 0, . . . , k − 2 one can write

T k−2
s (n) = k−s−1

k−1 T k−1
s (n) + s+1

k−1T
k−1
s+1 (n)

= k−s−1
k−1 (k−sk T k

s (n) + s+1
k
T k
s+1(n)) + s+1

k−1(k−s−1k
T k
s+1(n) + s+2

k
T k
s+2(n))

= (k−s−1)2(k−1)2 T k
s (n) + 2(k−s−1)(s+1)

(k−1)2 T k
s+1(n) + (s+1)2(k−1)2T

k
s+2(n).

Applying the same reasoning we have

T k−3
s (n) = (k−s−2)3(k−2)3 T k

s (n) + 3(k−s−2)2(s+1)
(k−2)3 T k

s+1(n) + 3(k−s−2)(s+1)2
(k−2)3 T k

s+2(n) + (s+1)3(k−2)3T
k
s+3(n)

⋮
T k−i
s (n) =

i

∑
j=0
(i
j
) (k−s−i+1)i−j(1+s)j(k−i+1)i T k

s+j(n)

and the result is proved.

The next result is a generalization to arbitrary dimensions of Theorem 2 in [21] (see also
[12]).

Theorem 2. The components T k
s (n) and T k−1

s (n) of the vectors Tk(n) and Tk−1(n), respec-
tively, satisfy the (k + 1) × (k + 1) system of algebraic equations represented in matrix form

as

MkTk(n) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

kTk−1(n)

ck(n)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where Mk is given by

Mk ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k 1 0 0 ⋯ 0 0
0 k − 1 2 0 ⋯ 0 0
0 0 k − 2 3 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 ⋯ k − 1 0
0 0 0 0 ⋯ 1 k

1 −1 1 −1 ⋯ (−1)k−1 (−1)k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, k ≥ 1. (10)
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Proof. It is a simple consequence of relation (9) together with the alternating sum formula
(5) for ck(n).
Lemma 3. The matrix Mk (k = 1,2, . . . ) in (10) is nonsingular and

detMk = (−2)kk!.
Proof. Developing the determinant along the last row, we obtain

detMk =(−1)k+2k! − (−1)k+3k k!
1!
+ (−1)k+4k(k − 1)k!

2!
− (−1)k+5k(k − 1)(k − 2)k!

3!

+⋯+ (−1)kk(k − 1)(k − 2)⋯1k!
k!

=(−1)kk! (1 + k
1!
+ k(k−1)

2!
+ k(k−1)(k−2)

3!
+⋯+ k!

k!
)

=(−1)kk! k

∑
j=0
(k
j
) = (−1)kk!2k.

Remark 4. We point out that detMk = (−1)kA000165(k).
As a consequence of the previous results one can derive recursive matrix relations between

the vectors Tk(n) and Ck(n).
Theorem 5. The values of T k

s (n) and cs(n), k = 0,1, . . . , s = 0,1, . . . , k, are related by the

following matrix relation

Tk(n) = NkCk(n), (11)

where Nk is recursively defined by

N0 =1
Nk =M−1

k

⎡⎢⎢⎢⎢⎣
kNk−1 0

0 1

⎤⎥⎥⎥⎥⎦
, k = 1,2, . . . . (12)

Moreover, if we denote by Ñk the matrix N−1k then we have

Ck(n) = ÑkTk(n), (13)

where

Ñ0 =1
Ñk =

⎡⎢⎢⎢⎢⎣
1

k
Ñk−1 0

0 1

⎤⎥⎥⎥⎥⎦
Mk, k = 1,2, . . . . (14)
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Proof. To prove the relations (11)-(12) we use an inductive process on k. Taking into account
Theorem 2 and the fact that T 0

0
(n) = 1 = c0(n), one can write, for k = 1,

T1(n) =M−1
1 [ T0(n)

c1(n) ] =M−1
1 [ 1 0

0 1
] [ c0(n)

c1(n) ] = N1C1(n),

with N1 =M−1
1
[ 1N0 0

0 1
].

Now assume that Tk(n) = NkCk(n) holds for k. For k + 1 one has

Tk+1(n) =M−1
k+1 [ (k + 1)Tk(n)

ck+1(n) ] =M−1
k+1 [ (k + 1)NkCk(n)

ck+1(n) ]
=M−1

k+1 [ (k + 1)Nk 0
0 1

] [ Ck(n)
ck+1(n) ] = Nk+1Ck+1(n),

with Nk+1 =M−1
k+1 [ (k + 1)Nk 0

0 1
].

To prove the relations (13)-(14), observe that Nk is invertible, since

detNk =kk detM−1
k detNk−1 = kk

k!(−2)k detNk−1

=(−k
2
)k 1

k!
(−k−1

2
)k−1 1

(k−1)! detNk−2 = ⋯ =
k

∏
m=1
(−m

2
)m 1

m!
.

The inversion of Nk leads to the desired result.

The next result allows to express each component of the vector Tk(n) as a linear combi-
nation of c0(n), . . . , ck(n).
Theorem 6. The numbers T k

s (n), k = 0,1, . . . , s = 0,1, . . . , k, can be written as

T k
s (n) = 1

2k
(k
s
) k

∑
j=0

σk
s,jcj(n), (15)

where

σ k
s,j =

s

∑
m=0
(−1)m( s

m
)( k − s

j −m). (16)
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Proof. Replacing x0 = x+x̄
2

and x = x−x̄
2

in (3) we obtain successively1

Pn
k (x) = 1

2k

k

∑
j=0
(k
j
) cj(n) (x + x̄)k−j (x − x̄)j

= 1

2k

k

∑
j=0
(k
j
) cj(n)⎛⎝

k−j
∑
t=0
(k − j

t
)xk−j−tx̄t

⎞
⎠
⎛
⎝

j

∑
l=0
(−1)l(j

l
)xj−lx̄l

⎞
⎠

= 1

2k

k

∑
j=0
(k
j
) cj(n) k

∑
s=0

s

∑
m=0
(−1)s−m(k − j

m
)( j

s −m)xk−sx̄s

= 1

2k

k

∑
j=0
(k
j
) cj(n) k

∑
s=0

s

∑
m=0
(−1)m( k − j

s −m)(
j

m
)xk−sx̄s.

By comparing last expression with (1) we obtain

T k
s (n) = 1

2k

k

∑
j=0
(k
j
)cj(n) s

∑
m=0
(−1)m( k − j

s −m)(
j

m
).

The result follows, since (k
j
)( k−j

s−m)( jm) = (ks)( sm)( k−sj−m).
The explicit expression of each cj(n), j = 0, . . . , k, as a linear combination of T k

s (n),
s = 0, . . . , k, reads as follows.
Theorem 7. For any fixed value of k, the coefficients ck−i(n) can be written as

ck−i(n) = 1

(k
i
)

k

∑
s=0
(−1)sσk

s,iT
k
s (n), i = 0,1, . . . , k. (17)

Proof. Using Lemma 1 together with (5) we obtain

ck−i(n) = k−i
∑
s=0
(−1)sT k−i

s (n) = k−i
∑
s=0
(−1)s i

∑
j=0

A(k, i, s, j)T k
s+j

= i

∑
j=0

A(k, i,0, j)T k
j −

i

∑
j=1

A(k, i,1, j − 1)T k
j +⋯+ (−1)k−i k

∑
j=k−i

A(k, i, k − i, j − k + i)T k
j .

Observe that if we allow in the expression (8) of A(k, i, s, j) s and j to be arbitrary integers,
then A(k, i, s, j) vanishes whenever j > i or j < 0 or k ≤ s + i − 1. Therefore we can write

ck−i(n) = k

∑
j=0

A(k, i,0, j)T k
j −

k

∑
j=0

A(k, i,1, j − 1)T k
j +⋯+ (−1)k−i k

∑
j=0

A(k, i, k − i, j − k + i)T k
j

= k

∑
s=0

k−i
∑
m=0
(−1)mA(k, i,m, s −m)T k

s (n)
1For convenience we include binomial coefficients (n

k
) for nonnegative integer n and integer k such that

k < 0 or k > n, which as usually are considered to be zero.
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or, equivalently

ck−i(n) =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

k

∑
s=0
( s

∑
m=0
(−1)mA(k, i,m, s −m) + k−i

∑
m=s+1

(−1)mA(k, i,m, s −m))T k
s (n), if k − i ≥ s;

k

∑
s=0
( s

∑
m=0
(−1)mA(k, i,m, s −m) − s

∑
m=k−i+1

(−1)mA(k, i,m, s −m))T k
s (n), if k − i < s.

Since A(k, i,m, s −m) = 0, for m > s, the sum ∑k−i
m=s+1(−1)mA(k, i,m, s −m) is zero. On

the other hand, we also have A(k, i,m, s −m) = 0 in ∑s
m=k−i+1(−1)mA(k, i,m, s −m), since

k ≤m + i − 1. We have proved that

ck−i(n) = k

∑
s=0

ϑk
i,sT

k
s (n), i = 0, . . . , k,

where

ϑk
i,s =

s

∑
m=0
(−1)mA(k, i,m, s −m), i = 0, . . . , k.

The use of (8) allows to write

ϑk
i,s =

s

∑
m=0
(−1)m i!

(i−s+m)!(s−m)!
(k−i−m+1)...(k−s)(m+1)...s

(k−i+1)...k

= s

∑
m=0
(−1)m i!(k−i)!

k!

(k−s)!
(i−s+m)!(k−i−m)!

s!
(s−m)!m!

= (−1)s(k
i
) σk

s,i

(cf. (16)) and the result follows.

Remark 8. Since σk
s,k = (−1)s, Theorem 7 contains as a particular case (i = k) the already

known property (6).

Theorem 5 can be used together with Theorems 6 and 7 to obtain the main result of this
section: the explicit form of the matrix that relates vectors Tk(n) and Ck(n).
Theorem 9. Consider the coefficients σk

s,j introduced in (16). Then the following relations

are true:

i) Tk(n) = NkCk(n), where Nk is the (k + 1) × (k + 1) matrix whose elements nk
ij are

nk
ij = 1

2k
( k

i − 1)σk
i−1,j−1, i, j = 1, . . . , k + 1.

ii) Ck(n) = ÑkTk(n), where Ñk is the (k + 1) × (k + 1) matrix whose elements ñk
ij are

ñk
ij = (−1)j−1( k

k−i+1
) σ

k
j−1,k−i+1, i, j = 1, . . . , k + 1.

11



Proof. Observe that Theorem 6 can be expressed in matrix form as

Tk(n) = 1

2k
SkCk(n),

where Sk is the (k + 1) × (k + 1) matrix whose elements sij are such that

sij = ( k

i − 1)σk
i−1,j−1, i, j = 1, . . . , k + 1.

Result i) follows at once from (11), while result ii) is a simple consequence of Theorem 7.

The last theorem points out that the connection between Tk(n) and Ck(n) is provided
by the matrices Nk and Ñk. However, a deeper observation permits to recognize that such
connection is actually done by the coefficients σk

s,j, since they are the common factors in

the coefficients of linear combinations (15)-(17). Examples of matrices Nk, Ñk, and vectors
Tk(n),Ck(n), k = 1, . . . ,4, are given in Table 4.

4 A family of Pascal trapezoids

In addition to providing the link between T k
s (n) and cs(n), the coefficients σk

i,j (cf. (16)) in
the identities (15) and (17) have several other interesting properties. In fact, considering
i, j, k arbitrary nonnegative integers such that j ≤ k, the numbers σk

i,j can be represented,
for each fixed i, as a triangle with rows k (k = 0,1, . . . ) and ordered from j = 0 to j = k,
as illustrated in Table 5. This section is dedicated to the study of various patterns in such
structure and to the discussion of properties and combinatorial identities.

We observe that

1. for i = 0, we obtain the Pascal triangle, since σk
0,j = (kj), (see first triangle in Table 5);

2. for i = 1, σk
1,j = (k−1j ) − (k−1j−1) = k−2j

k
(k
j
), which corresponds to the Catalan triangle

numbers Ck,j = k−2j
k
(k
j
) mentioned by Miana et al. [24].

In general, for each fixed value of i, σk
i,j can be obtained recursively, as stated in the following

result.

Theorem 10 (Pascal recurrence). For each fixed value of i, the numbers σk
i,j satisfy the

following linear recurrence relation

σ
(k+1)
i,j+1 = σk

i,j + σk
i,j+1, (0 ≤ j ≤ k − 1, k ≥ i) (18)

12



Table 4: The matrices Nk, Ñk = N−1k , and the vectors Tk(n), Ck(n), (k = 1, . . . ,4)
k Nk Ñk Tk Ck

1 1

2

⎡
⎢
⎢
⎢
⎢
⎣

1 1

1 −1

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

1 1

1 −1

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

n+1
2n

n−1
2n

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

1

1

n

⎤
⎥
⎥
⎥
⎥
⎦

2 1

22

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 2 1

2 0 −2

1 −2 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1

1 0 −1

1 −1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

n+3
4n

n−1
4n

n−1
2n

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1

n

1

n

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

3 1

23

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 3 3 1

3 3 −3 −3

3 −3 −3 3

1 −3 3 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1

1 1

3
−
1

3
−1

1 −
1

3
−
1

3
1

1 −1 1 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(3+n)(5+n))
8n(2+n)

3(−1+n)(3+n)
8n(2+n)

3(−1+n)(1+n)
8n(2+n)

(−1+n)(3+n)
8n(2+n)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

1

n

1

n

3

n(n+2)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

1

24

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 4 6 4 1

4 8 0 −8 −4

6 0 −12 0 6

4 −8 0 8 −4

1 −4 6 −4 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1

1 1

2
0 −

1

2
−1

1 0 −
1

3
0 1

1 −
1

2
0 1

2
−1

1 −1 1 −1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(n+5)(n+7)
16n(n+2)
(n−1)(n+5)
4n(n+2)

3(n−1)(n+1)
8n(n+2)
(n−1)(n+1)
4n(n+2)
(n−1)(n+5)
16n(n+2)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1

n

1

n

3

n(n+2)
3

n(n+2)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

with boundary conditions

σk
i,0 = 1, σk

i,k = (−1)i, (k ≥ i) (19)

and initial values

σ
(i)
i,j = (ij)(−1)j, j = 1, . . . , i − 1. (20)

Proof. When k ≥ i and 0 ≤ j ≤ k − 1 we immediately obtain from the definition of σk
i,j that

(cf. (16))

σk
i,j + σk

i,j+1 =
i

∑
m=0
(−1)i−m( i

m
) (( k−i

j−m) + ( k−i
j+1−m)) =

i

∑
m=0
(−1)i−m( i

m
)( k−i+1

j+1−m) = σ(k+1)i,j+1 .

When j = 0 the sum in the right-hand side of (16) reduces to the case m = 0 whereas when
j = k the corresponding sum reduces to the case m = i. Therefore

σk
i,0 = 1 and σk

i,k = (−1)i.
13



Table 5: Triangles associated with σk
i,j , (i = 0, . . . ,3)

✄

✂

�

✁
1

✄

✂

�

✁
1

✄

✂

�

✁
1

✄

✂

�

✁
1 2

✄

✂

�

✁
1

✄

✂

�

✁
1 3 3

✄

✂

�

✁
1

✄

✂

�

✁
1 4 6 4

✄

✂

�

✁
1

✄

✂

�

✁
1 5 10 10 5

✄

✂

�

✁
1

✄

✂

�

✁
1 6 15 20 15 6

✄

✂

�

✁
1

✄

✂

�

✁
1 7 21 35 35 21 7

✄

✂

�

✁
1

⋰ ⋰ ⋰ ⋰ ⋱ ⋱ ⋱ ⋱

i=0

0

✄

✂

�

✁
1

✄

✂

�

✁
-1

✄

✂

�

✁
1 0

✄

✂

�

✁
-1

✄

✂

�

✁
1 1 −1 ✄

✂

�

✁
-1

✄

✂

�

✁
1 2 0 −2 ✄

✂

�

✁
-1

✄

✂

�

✁
1 3 2 −2 −3 ✄

✂

�

✁
-1

✄

✂

�

✁
1 4 5 0 −5 −4 ✄

✂

�

✁
-1

✄

✂

�

✁
1 5 9 5 −5 −9 −5 ✄

✂

�

✁
-1

⋰ ⋰ ⋰ ⋰ ⋱ ⋱ ⋱ ⋱

i=1

2

−2 −2
✄

✂

�

✁
1

✄

✂

�

✁
-2

✄

✂

�

✁
1

✄

✂

�

✁
1 −1 −1 ✄

✂

�

✁
1

✄

✂

�

✁
1 0 −2 0

✄

✂

�

✁
1

✄

✂

�

✁
1 1 −2 −2 1

✄

✂

�

✁
1

✄

✂

�

✁
1 2 −1 −4 −1 2

✄

✂

�

✁
1

✄

✂

�

✁
1 3 1 −5 −5 1 3

✄

✂

�

✁
1

⋰ ⋰ ⋰ ⋰ ⋱ ⋱ ⋱ ⋱

i=2

0

6 −6
−6 6 −6

✄

✂

�

✁
1

✄

✂

�

✁
-3

✄

✂

�

✁
3

✄

✂

�

✁
-1

✄

✂

�

✁
1 −2 0 2

✄

✂

�

✁
-1

✄

✂

�

✁
1 −1 −2 2 1

✄

✂

�

✁
-1

✄

✂

�

✁
1 0 −3 0 3 0

✄

✂

�

✁
-1

✄

✂

�

✁
1 1 −3 −3 3 3 −1 ✄

✂

�

✁
-1

⋰ ⋰ ⋰ ⋰ ⋱ ⋱ ⋱ ⋱

i=3

On the other hand, if k = i the same sum only has the term corresponding to m = j. Hence
σ
(i)
i,j = (ij)(−1)j, j = 0, . . . , i.

Theorem 10 supports the idea that the above recurrence relation together with the bound-
ary conditions (19) and initial conditions (20) lead, for each i, to a Pascal trapezoid which
can be seen as a substructure of the triangle array σk

i,j. In Table 5, we can observe the trape-
zoids corresponding to the particular cases of i = 1, i = 2, and i = 3 as well as the boundary
and initial conditions. These trapezoids are related to the sequences A037012, A182533, and
A230206.
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In the context of this paper, we use the designation of Pascal trapezoid of order i = 1,2, . . .
to refer to the trapezoidal array whose entries are σk

i,j , k ≥ i,0 ≤ j ≤ k. The following
properties can easily be derived.

Property 11.

(i) Pascal trapezoids of even order are symmetric, i.e., σk
2i,j = σk

2i,k−j ;

(ii) Pascal trapezoids of odd order are anti-symmetric, i.e., σk
2i+1,j = −σk

2i+1,k−j ;

(iii) The Hockey-stick identity is valid, i.e., ∑k
r=j σr

i,j = σk+1
i,j+1.

Proof. From (16) we have

σk
i,k−j =

i

∑
m=0
(−1)m( i

m
)( k−i

k−j−m) =
i

∑
m=0
(−1)m( i

m
)( k−i

j+m−i) =
i

∑
m=0
(−1)i−m( i

m
)( k−i

j−m) = (−1)iσk
i,j

and (i) and (ii) are proved. According to (18)-(19),

k

∑
r=j

σr
i,j = σ(j)i,j +

k

∑
r=j+1

σr
i,j = (−1)i + k

∑
r=j+1
(σ(r+1)i,j+1 − σr

i,j+1)
= k

∑
r=j+1

σ
(r+1)
i,j+1 −

k−1
∑

r=j+1
σ
(r+1)
i,j+1 = σk+1

i,j+1,

and the proof of (iii) is complete.

Property 12. The central coefficients of the Pascal trapezoid of order i are linked to the
central binomial coefficients in the following way:

σ2k
i,k =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if i is odd;

(−1)r (kr)(2k
2r
)(

2k

k
), if i = 2r is even.

Proof. Observe that

σ2k
i,k =

i

∑
m=0
(−1)m( i

m
)(2k − i

k −m) =
(2k
k
)

(2k
i
)

i

∑
m=0
(−1)m( k

m
)( k

i −m)
and the result follows by using the identity [15, Formula (1.19)]

i

∑
m=0
(−1)m( k

m
)( k

i −m) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if i is odd;

(−1) i
2(ki

2

), if i is even.

It is worth noting that the odd case also follows from Theorem 6.

15



Observe that σk
i,j can also be written as (cf. (16))

σ k
i,j =

j

∑
m=0
(−1)m( i

m
)( k − i

j −m),
since ( k−i

j−m) = 0, for m > j, whereas ( i
m
) = 0, for m > i. This leads to the conclusion that

the entries of the Pascal trapezoid of order i are nothing else than the coefficients in the
expansion of (1 − x)i(1 + x)k−i, i.e.,

(1 − x)i(1 + x)k−i = k

∑
j=0

σ k
i,jx

j (21)

which means that the family of Pascal trapezoids also contains as particular cases the se-
quences A230207 up to A230212. Moreover, one can deduce the following properties.

Property 13.

(i) Sum of the rows: ∑k
j=0 σk

i,j = 0, for k ≥ i > 0;
(ii) Alternating sum of the rows: ∑k

j=0(−1)jσk
i,j = 0, for k > i;

(iii) Chu-Vandermonde identity: ∑j
m=0 σ

k1
i,mσ

k2
i,j−m = σk1+k2

2i,j ;

(iv) Sum of the squares of the rows: ∑k
j=0(σk

i,j)2 = (−1)iσ2k
2i,k.

Proof. The first two properties follow at once by considering x = 1 and x = −1 in (21). The
Chu-Vandermonde formula follows by noting that

((1 − x)i(1 + x)k1−i)((1 − x)i(1 + x)k2−i) = (1 − x)2i(1 + x)k1+k2−2i
and equating the coefficients in

( k1

∑
j=0

σ k1
i,j x

j)( k2

∑
j=0

σ k2
i,j x

j) = k1+k2
∑
j=0

σk1+k2
2i,j xj.

Property (iv) follows from (iii) and using Property 11 (i) or (ii).
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