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Abstract

Let D2(Q) denote the downset-lattice of the downset-lattice of the finite poset Q

and let d2(Q) denote the cardinality of D2(Q). We investigate relations between the
numbers d2(Am + Q) and their powers, where Am is the antichain with m elements
and Am + Q the direct sum of Am and Q. In particular, we prove the inequality
d2(Q)3 < d2(A1+Q)2 based on the construction of a one-to-one mapping between sets
of homomorphisms. Furthermore, we derive equations and inequalities between the
numbers d2(Am +Q) and exponential sums of downset sizes and interval sizes related
to D2(Am + Q). We apply these results in a comparison of the computational times
of algorithms for the calculation of the Dedekind numbers d2(Am), including a new
algorithm.

1 Introduction

In 1897, Richard Dedekind constructed the free distributive lattice with k generators [10].
The cardinality of this universal algebraic object is called “the kth Dedekind number”. Al-
ready Dedekind realized that these numbers grow heavily with k [10], and due to the extreme
computational complexity of their calculation, their values are known only for 0 ≤ k ≤ 8
(Table 1).

Dedekind knew the numbers for k = 3 and k = 4 [10] (I do not differentiate between
the free distributive lattice and its lattice-theoretical completion here). The calculation of
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k kth Dedekind number

0 2
1 3
2 6
3 20
4 168
5 7581
6 7828354
7 2414682040998
8 56130437228687557907788

Table 1: Known Dedekind numbers.

the 5th Dedekind number in 1940 is due to Church [6]. Ward [27] computed the 6th one in
1946 and confirmed Church’s result. The calculation of the 7th Dedekind number in 1965
was done again by Church [7], and later on repeated by Berman and Köhler in 1976 [3], and
by Markowsky in 1989 [21]. Finally, Wiedemann computed the 8th one in 1991 [28], and
his result was confirmed by Fidytek et al. in 2001 [11]. Also the work of Lunnon in 1971
has to be mentioned [20], even if he did not succeed in calculating the correct value of the
7th Dedekind number. In 1988, Kisielewicz presented a formula in closed form [16], but it
is far too complicated to be evaluated even for small values of k. The sequence number of
Dedekind numbers in the OEIS [26] is A000372.

The Dedekind numbers are also the number of monotone Boolean functions with k vari-
ables and the number of antichains (and downsets) of the power set of a k-element set
[3, 4, 20, 21]. The problem of calculating Dedekind numbers can therefore also be tackled
by counting antichains, and this task is in a natural way broken down into the sub-tasks of
counting antichains with exactly ℓ elements. In 1968, Riviere developed formulas for ℓ ≤ 3
[22]. The step to ℓ = 4 was done by Cvetković in 1972 [8], and Arocha solved the cases
ℓ = 5, 6 in 1982 [1]. Kilibarda and Jovović developed the method further and presented
explicit formulas for 1 ≤ ℓ ≤ 10 in 2003 [15]. Based on the work of Pippenger in 1999 [23]
and Kahn in 2002 [14], Carroll et al. extended the enumeration of antichains to more general
structures in 2009 [5]. The approach for counting monotone Boolean functions presented by
Bakoev in 2012 [2] is still under development.

Because Dedekind numbers are so difficult to calculate, estimates and asymptotic esti-
mates have found their interest, too. The first ones are due to Gilbert in 1954 [12]. Based
on the pioneering work of Hansel [13] in 1966, Kleitman [17] and Kleitman and Markowsky
[18] developed in 1969 and 1975 better and better estimates by refining the demanding con-
struction of monotone functions on certain collections of chains step by step. Their estimates
were improved by Korshunov in 1981 [19], followed by the work of Sapozhenko in 1989 [24].

Historically, the focus was on the calculation of Dedekind numbers and on estimates for
them. The present paper deals with relations between powers of a slight generalization of
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Dedekind numbers and exponential sums related to them. Let D2(Q) denote the downset-
lattice of the downset-lattice of the finite poset Q and let d2(Q) denote the cardinality of
D2(Q). With Am being the antichain with m elements, the subject of the present paper is
the numbers d2(Am +Q), where Am +Q is the direct sum of Am and Q.

Section 2 contains the notational apparatus and the required facts about downsets and
downset-lattices. In Section 3.1, we construct in Theorem 5 a one-to-one mapping between
sets of homomorphisms, and this mapping is used to prove the relation d2(Q)3 < d2(A1+Q)

2

and other inequalities. In Section 3.2, we investigate the relations between the numbers
d2(Am+Q) and the exponential sums

∑

A∈D2(Am+Q) δ(A)
k and

∑

A∈D2(Am+Q)

∑

B∈↓A ι[B,A]
k,

where δ(A) is the cardinality of the downset created by A ∈ D2(Am + Q), and ι[B,A] is
the cardinality of the interval [B,A] ⊆ D2(Am + Q). The results are used in Section 4 to
compare the computational times of algorithms for the calculation of the Dedekind numbers
d2(Am), including a new algorithm.

2 Preliminaries

2.1 Notation

We are working with finite posets, that is, ordered pairs P = (X,≤) consisting of a finite
set X and a partial order ≤ on X, i.e., a reflexive, antisymmetric, and transitive subset of
X × X. We call X the carrier of P and say that P is a poset on X. Due to reflexivity,
the diagonal ∆X ≡ {(x, x) | x ∈ X } is always a subset of ≤. As usual, I write x ≤ y for
(x, y) ∈≤. The symbols <,≥, and > are used in their conventional meaning, and x ‖ y
means “(x, y) /∈≤ and (y, x) /∈≤”.

Two elementary posets can be defined on any set X: The antichain (X,∆X) and the
chain, of which the latter is characterized by x ≤ y or y ≤ x for all x, y ∈ X. For a finite set
X of cardinality k ∈ N0, I write Ak for the antichain on X, and Ck for the chain on X.

For any poset P = (X,≤), the dual P ∂ = (X,≤∂) is defined by x ≤∂ y ⇔ y ≤ x for all
x, y ∈ X.

Given posets P and Q, I use H(P,Q) as symbol for the set of homomorphisms from P to
Q, and I write h(P,Q) ≡ #H(P,Q) for the cardinality of this set. We equip H(P,Q) with
the usual point-wise partial order. Isomorphism between posets is symbolized by “≃” and
we write P ≃∂ Q iff P ≃ Q∂. The automorphism group of P is denoted by A(P ).

For posets P1 = (X1,≤1) and P2 = (X2,≤2) with X1 ∩ X2 = ∅, their direct sum is the
poset P1+P2 ≡ (X1∪X2,≤1 ∪ ≤2), and their ordinal sum is the poset P1⊕P2 ≡ (X1∪X2,≤1

∪ ≤2 ∪(X1 ×X2)). For k ∈ N, we define

Λk ≡ Ak−1 ⊕ A1,

Mk ≡ A1 ⊕ Ak−2 ⊕ A1 for k ≥ 2.

The posets Λ4 and M5 are illustrated in Figure 1.
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Figure 1: Λ4 and M5.

Given posets P1 = (X1,≤1) and P2 = (X2,≤2), the component-wise partial order P1 ×
P2 ≡ (X1 ×X2,�) on X1 ×X2 is defined by (x1, x2) � (y1, y2) iff x1 ≤1 y1 and x2 ≤2 y2. I
write P k for P × · · · × P with k factors P . We have H(P,Qk) ≃ H(P,Q)k for all k ∈ N. A
binary word is an element of (C2)

k with 0 < 1 as carrier of C2.
In order to avoid repetitions we agree on the following. The finite poset P has always the

carrier X = {x1, . . . , xm} with m = #X, whereas we are using the carrier Y = {y1, . . . , yn},
n = #Y , for the poset Q. We keep the notation for the carriers of P and Q even if these
partial orders are specified: e.g., in the case P = Am, we write X = {x1, . . . , xm} for the
carrier of Am, whereas in the case Q = An, we use Y = {y1, . . . , yn} for the carrier of An.
For the partial orders belonging to P and Q, we use the same symbol “≤” in most cases.

For a mapping f : A→ B, the pre-image of B′ ⊆ B is denoted by

f
1
(B′) ≡ {a ∈ A | f(a) ∈ B′} ;

for b ∈ B we write f
1
(b) ≡ f

1
({b}). We define 0 ≡ ∅ and ℓ ≡ {1, . . . , ℓ} for every ℓ ∈ N.

2.2 Downsets and downset-lattices

Downsets are one of the fundamental concepts in order theory. Given a poset P = (X,≤),
a subset D ⊆ X is called a downset or order ideal of P iff x ∈ D holds for every x ∈ X,
for which a y ∈ D exists with x ≤ y. The set of downsets of P is denoted by D(P ) and its
cardinality by d(P ) ≡ #D(P ). By applying well-known isomorphisms we get for all posets
P and Q

H(P,D(Q)) ≃ H(Q,D(P )). (1)

For x ∈ X we define the downset created by x in P by

↓ x ≡ {y ∈ X | y ≤ x} .

We write δ(x) ≡ #↓ x for the cardinality of ↓ x.
Upsets are the duals of downsets: For a poset P = (X,≤), a subset U ⊆ X is called an

upset or order filter of P iff x ∈ U holds for every x ∈ X for which a y ∈ U exists with x ≥ y.
For x ∈ X and A ⊆ X we define

↑ x ≡ {y ∈ X | y ≥ x} ,

⇑A ≡
⋃

a∈A

↑ a = {y ∈ X | ∃a∈A : a ≤ y} .
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For x, y ∈ X we define the interval

[y, x] ≡ (↑ y) ∩ (↓ x) = {z ∈ X | y ≤ z ≤ x} .

For the cardinality of [y, x] we write ι[y, x] ≡ #[y, x].
A finite partial order P = (X,≤) is called a lattice iff for every subset A ⊆ X the downset

∩a∈A↓ a and the upset ∩a∈A↑ a are non-empty and additionally

inf A ≡ max
⋂

a∈A

↓ a and supA ≡ min
⋂

a∈A

↑ a (2)

both exist. In Section 4.2, we need the following equation:

Lemma 1. Let P be a finite lattice. Then for every k ∈ N

∑

a∈P

∑

b∈↓ a

ι[b, a]k =
∑

(x1,...,xk)∈Xk

(#↓ inf {xi | i ∈ k}) · (#↑ sup {xi | i ∈ k}) .

Proof. For (b, a) ∈ X2

[b, a]k =
{

(x1, . . . , xk) ∈ Xk | b ≤ xi ≤ a for all i ∈ k
}

=
{

(x1, . . . , xk) ∈ Xk | b ∈ ∩i∈k↓ xi, a ∈ ∩i∈k↑Di

}

(2)
=

{

(x1, . . . , xk) ∈ Xk | b ≤ inf {xi | i ∈ k} , a ≥ sup {xi | i ∈ k}
}

,

and the lemma is proven because by rearranging the summation we get
∑

(b,a)∈X2

#
{

(x1, . . . , xk) ∈ Xk | b ≤ inf {xi | i ∈ k} , a ≥ sup {xi | i ∈ k}
}

=
∑

(x1,...,xk)∈Xk

(#↓ inf {xi | i ∈ k}) · (#↑ sup {xi | i ∈ k}) .

If we equip D(P ) with the partial order induced by set inclusion, D(P ) becomes itself
a partial order. We use D2(P ) ≡ D(D(P )) as symbol for the set of the downsets of D(P );
the cardinality of this set is denoted by d2(P ) ≡ #D2(P ). The poset D2(Q) is never an
antichain, and we have

D2(P +Q) ≃ H(D(Q),D2(P )). (3)

Furthermore, inf B = ∩B and supB = ∪B for all B ⊆ D2(P ).
The starting point of this study was the free distributive lattice with k generators which

is initially an (universal) algebraic object. But every distributive lattice is isomorphic to a
lattice of sets [4, p. 194]. The lattice of sets isomorphic to the completed free distributive
lattice with k generators is D2(Ak), the downset-lattice of the power set of a k-element set
[4, p. 61], and d2(Ak) is the k

th Dedekind number. The sets D2(Ak), 0 ≤ k ≤ 3, are shown
in Figure 2. The non-isomorphic elements of D2(A4) and the numbers of their downsets are
shown in the appendix.
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Figure 2: Free distributive lattices with up to three generators.

3 Powers and exponential sums

3.1 Powers of d2(Q) and d2(A1 +Q)

In this section we prove the three inequalities

d2(A1 +Q) < d2(Q)2 < d2(A2 +Q), (4)

d2(Q)3 < d2(A1 +Q)2. (5)

The first inequality in (4) is already mentioned by Wiedemann [28], and its proof is simple.
For every poset R we have D(R)2 ≃∂ H(R, (C2)

2). The chain C3 is a proper sub-poset of
the diamond (C2)

2, hence h(R,C3) ≤ h(R, (C2)
2), with equality iff R is the empty poset.

Now the inequality follows by replacing R by D(Q) 6= ∅, because (3) delivers D2(A1 +Q) ≃
H(D(Q), C3).

The proof of the two remaining inequalities is more involved. We need the following
definition:

Definition 2. Let Q be any poset, A ⊆ Y , and x, y ∈ A. We say that x and y are connected
in A, iff there are z0, z1, . . . , zL ∈ A with x = z0, y = zL and zℓ−1 ≤ zℓ or zℓ ≤ zℓ−1 for all
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Figure 3: Illustrations to Theorem 5 and Corollary 6. a) The posets B ≡ (C2)
3 and S with

their points represented by binary words. b) Assignment of the sets ⊥, ℓ, r, . . . to the points
of B and S.

ℓ ∈ L. We define for all A ⊆ Y , x ∈ A, B ⊆ A

γQ,A(x) ≡ {y ∈ A | x and y are connected in A} ,

γQ,A(B) ≡
⋃

b∈B

γQ,A(b).

We write γQ for γQ,Y , and if Q is fixed, we write γA instead of γQ,A.

Corollary 3. Let A ⊆ Y . The relation “connected in A” is an equivalence relation on A
with partition {γA(a) | a ∈ A}. For x ∈ A ⊆ A′ ⊆ Y and B ⊆ B′ ⊆ A we have

B ⊆ γA(B), (6)

γA(B) ⊆ γA(B
′), (7)

γA(B) ⊆ γA′(B), (8)

γA(B) = γγA(B)(B). (9)

Proof. All but (9) are direct consequences from Definition 2. For the proof of “⊆” in (9),
let x ∈ γA(B). There exists a b ∈ B and z0, z1, . . . , zL ∈ A with x = z0, b = zL and zℓ−1 ≤ zℓ
or zℓ ≤ zℓ−1 for all ℓ ∈ L. We conclude zℓ ∈ γA(b) for all ℓ ∈ L, and x and b are connected
in γγA(b)(b), too. Hence x ∈ γγA(b)(b) ⊆ γγA(B)(B). “⊇” follows with (8).

Lemma 4. Let ξ : Q→ P be a homomorphism.
(a) For B ⊆ A ⊆ Y we have ξ(γQ,A(B)) ⊆ γP,ξ(A)(ξ(B)).

(b) Let A ⊆ X be an antichain of P and A′ ⊆ ξ
1
(A). Then ξ(γQ,A′(x)) = {ξ(x)} for every

x ∈ A′; in particular, for every x ∈ A′, there exists a y ∈ A with γQ,A′(x) ⊆ ξ
1
(y).

Proof. (a) is a direct consequence of Definition 2; for the proof of (b), use (a).

7



Theorem 5. We define the posets B ≡ (C2)
3 (the cube) and S as shown in Figure 3(a) with

their points represented by binary words. For every homomorphism ξ ∈ H(Q,B), we define
the mapping ρ(ξ) : Q→ S by (cf. Figure 3(b))

z ≡ ξ
1
(010), r ≡ ξ

1
(001),

Z ≡ ξ
1
(101), Γ ≡ γZ(Z ∩ ⇑ r),

ρ(ξ)
1
(0000) ≡ ⊥ ≡ ξ

1
(000), ρ(ξ)

1
(0100) ≡ ℓ ≡ ξ

1
(100),

ρ(ξ)
1
(0001) ≡ r, ρ(ξ)

1
(1100) ≡ Z \ Γ,

ρ(ξ)
1
(0101) ≡ z ∪ Γ, ρ(ξ)

1
(1101) ≡ L ≡ ξ

1
(110),

ρ(ξ)
1
(0111) ≡ R ≡ ξ

1
(011), ρ(ξ)

1
(1111) ≡ ⊤ ≡ ξ

1
(111).

Then ρ :H(Q,B) → H(Q,S), ξ 7→ ρ(ξ), is a one-to-one mapping.

Proof. ρ(ξ) is well-defined: ξ is a mapping from Q to B. Therefore, the sets ⊥, ℓ, z, r, L, Z,R,
and ⊤ are pairwise disjoint, and their union is Y . In consequence, also the sets ⊥, ℓ, r, Z \
Γ, z ∪Γ, L,R,⊤ are pairwise disjoint with union Y , and ρ(ξ) is a well-defined mapping from
Q to S.

ρ(ξ) is a homomorphism: Let x, y ∈ Y with x ≤ y. Looking at Figure 3(b), we see that
for x ∈ ⊥ ∪ ℓ ∪ z ∪ L ∪ R ∪ ⊤ the relation ρ(ξ)(x) ≤S ρ(ξ)(y) is a direct consequence of
ξ(x) ≤B ξ(y). The cases x ∈ r and x ∈ Z remain.

For x ∈ r, 001 = ξ(x) ≤B ξ(y) yields y ∈ r ∪ Z ∪ R ∪ ⊤. For y ∈ r ∪ R ∪ ⊤ we get
ρ(ξ)(y) ∈ {0001, 0111, 1111}, and thus ρ(ξ)(x) = 0001 ≤S ρ(ξ)(y). Let y ∈ Z. Because of

x ≤ y, we have y ∈ Z ∩ ⇑ r
(6)

⊆ Γ, and thus ρ(ξ)(x) = 0001 <S 0101 = ρ(ξ)(y).
For x ∈ Z we have ρ(ξ)(x) ∈ {1100, 0101}. Furthermore, ξ(x) ≤B ξ(y) yields y ∈ Z ∪⊤.

In the case y ∈ ⊤ we have ρ(ξ)(x) <S 1111 = ρ(ξ)(y). Let y ∈ Z. Then we have y ∈ γZ(x),
which yields γZ(y) = γZ(x) (Corollary 3). Because Γ is the union of the γZ(a) over the
a ∈ Z ∩ ⇑ r, we have x ∈ Γ ⇔ y ∈ Γ, hence ρ(ξ)(x) = 0101 = ρ(ξ)(y) or ρ(ξ)(x) = 1100 =
ρ(ξ)(y), and ρ(ξ) is indeed a homomorphism.

ρ : H(Q,B) → H(Q,S) is one-to-one: Looking at Figure 3(b), we realize that all is
proven if we can reconstruct the set Γ by means of ρ(ξ). We need the following technical
equations:

Z ∩ ⇑ r = (z ∪ Γ) ∩ ⇑ r, (10)

Γ = γz∪Γ((z ∪ Γ) ∩ ⇑ r). (11)

(10) “⊆”: Z ∩ ⇑ r = (Z ∩ ⇑ r) ∩ ⇑ r
(6)

⊆ Γ ∩ ⇑ r. “⊇”: Assume r = ξ
1
(001) 6= ∅. Then we

have ξ(x) ≥B 001 for every x ∈ ⇑ r, hence x /∈ ξ
1
(010) = z due to 010 ‖B 001. We conclude

z ∩ ⇑ r = ∅ (trivial for r = ∅), hence (z ∪ Γ) ∩ ⇑ r = Γ ∩ ⇑ r ⊆ Z ∩ ⇑ r.

(11): Due to (10), we have to show Γ = γz∪Γ(Z ∩⇑ r). “⊆” we get by Γ
(9)
= γΓ(Z ∩⇑ r)

(8)

⊆

γz∪Γ(Z ∩ ⇑ r). Now let x ∈ γz∪Γ(a) for an a ∈ Z ∩ ⇑ r. We have z ∪ Γ ⊆ ξ
1
({010, 101}) with
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010 ‖B 101. From Lemma 4(b) we get γz∪Γ(a) ⊆ ξ
1
(010) = z or γz∪Γ(a) ⊆ ξ

1
(101) = Z,

and due to a ∈ Z it is the latter inclusion which holds. We obtain x ∈ (z ∪ Γ) ∩ Z = Γ, as
required.

With (11) we get

Γ = γ
ρ(ξ)

1
(0101)

(ρ(ξ)
1
(0101) ∩ ⇑ ρ(ξ)

1
(0001)),

and the proof is finished.

Inequality (5) and the second inequality in (4) are proven as part (b) and (c) of the
following corollary:

Corollary 6. For every finite poset Q we have
(a) h(Q,B) ≤ h(Q,S) with equality iff Q is an antichain.
(b) d2(Q)3 < d2(A1 +Q)2.
(c) d2(Q)2 < d2(A2 +Q).

Proof. (a) The inequality is a direct consequence of Theorem 5. For Q ≃ An, both sets of
homomorphisms have cardinality 8n. If Q is not an antichain, x, y ∈ Y exist with y < x. We
define ζ ∈ H(Q,S) by

ζ
1
(1100) ≡ Y \ ↑ x,

ζ
1
(1101) ≡ ↑ x.

Then we have y ∈ ζ
1
(1100) and x ∈ ζ

1
(1101). But ζ is not in the image of ρ, because for

ξ ∈ H(Q,B), a ∈ ρ(ξ)
1
(1100) ⊆ Z = ξ

1
(101), b ∈ ρ(ξ)

1
(1101) = L = ξ

1
(110) it must hold

a ‖ b due to ξ(a) = 101 ‖B 110 = ξ(b).
(b) We have D2(Q)3 ≃∂ H(D(Q), B), and we have already seen in the proof of the first
inequality in (4) that D2(A1 + Q) is isomorphic to H(D(Q), C3). Thus, D2(A1 + Q)2 is
isomorphic to H(D(Q), (C3)

2), and because S is a proper sub-poset of (C3)
2 and D(Q) is

not empty, (b) follows with (a).

(c) Applying (b) twice yields d2(Q)2 < d2(A1 +Q)
4

3 < d2(A2 +Q)
8

9 .

Corollary 6(a) can be reformulated as follows:

Corollary 7. Let R be a finite distributive lattice and let N be the poset with N-shaped
diagram. Then h(A3, R) = (#R)3 ≤ h(N,R) with equality iff R = D(Ak) for k ∈ N

0, i.e.,
iff R is a power set.

Proof. With Q being the poset of the join-irreducible elements of R, we have R ≃ D(Q). (1)
yields H(A3, R) ≃ H(Q,D(A3)) and H(N,R) ≃ H(Q,D(N)), and due to D(A3) ≃ (C2)

3 =
B and D(N) ≃ S the statements follow with Corollary 6(a).
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k d2(Ak) d2(Ak)
2 d2(Ak)

3

0 2 4 8
1 3 9 27
2 6 36 216
3 20 400 8000
4 168 28224 4741632
5 7581 57471561 4.35692E+11
6 7828354 6.12831E+13 4.79746E+20
7 2414682040998 5.83069E+24 1.40793E+37

Table 2: Dedekind numbers and their squares and cubes.

In H(A3, R), all three points of A3 can independently be mapped to R, whereas in
H(N,R) this holds only for two points, and the images of the two remaining ones get
squeezed by the images of the first two ones. At least for me it was a surprise that never-
theless the number of homomorphisms in H(N,R) is greater than or equal to the number of
homomorphisms in H(A3, R) for all distributive lattices R.

In Section 4.2, we will use the inequalities (4) and (5) in a comparison of the calculation
times of algorithms for the calculation of Dedekind numbers. It makes sense to ask if a
difference between calculation times is “really large” (then take the algorithm with the lower
calculation time) or if it is “not so large” (then look first, if the algorithm with the higher
effort provides benefits which balance the larger calculation time). Without specifying the
exact meaning of “large”, we can state the following: in the proofs of the inequalities (4) and
(5), we have firstly shown h(D(Q), T ) ≤ h(D(Q), T ′) for posets T and T ′, and afterwards
enforced “<” by “adding a right corner” to T ′ (step from T ′ = C3 to (C2)

2 and from
T ′ = S to (C3)

2). It is obvious that the latter step increases considerably the amount of
homomorphisms for a poset Q which provides sufficiently rich order combinatorics. The
differences between d2(A1 +Q), d2(Q)2, and d2(A2 +Q) on the one hand, and the difference
between d2(Q)3 and d2(A1+Q)

2 on the other hand, will be large in most cases, as confirmed
by Table 2 for Dedekind numbers. (Here, as in what follows, we avoid calculations involving
the 8th Dedekind number.)

3.2 Exponential sums

In this section, we prove relations regarding exponential sums of downset sizes and of interval
sizes. They can be written as cardinalities of sets of homomorphisms: for every finite poset
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Q we have

∑

x∈Q

δ(x)k = h(Λk+1, Q), (12)

∑

x∈Q

∑

y∈↓x

ι[y, x]k = h(Mk+2, Q). (13)

Furthermore, (3) yields

D2(Am +Q) ≃ H(D(Am),D
2(Q)), (14)

with the immediate consequences

d2(A1 +Q) =
∑

A∈D2(Q)

δ(A), (15)

d2(A2 +Q) =
∑

A∈D2(Q)

∑

B∈↓A

ι[B,A]2. (16)

Eq. (15) can be found in the papers [3, 11, 20, 21, 22, 29], and (16) is used by Fidytek et al.
[11].

The basis of our investigation in this section is the following lemma:

Lemma 8. Let P1, P2, and Q be non-empty finite or infinite posets, X1 the carrier of P1,
X2 the carrier of P2.
(a) Let φ : P1 → P2 be a bijective homomorphism. Then

Φ : H(P2, Q) → H(P1, Q),

ξ 7→ ξ ◦ φ

is a one-to-one homomorphism. If Q is not an antichain, then Φ is onto (and an isomor-
phism) iff φ is an isomorphism. If Q is an antichain, then Φ is onto iff the induced mapping

φ′ : {γP1
(x) | x ∈ X1} → {γP2

(z) | z ∈ X2}

γP1
(x) 7→ γP2

(φ(x))

is one-to-one.
(b) Let ψ : P1 → P2 be an embedding, and let Q be a complete lattice. Then

Ψ : H(P2, Q) → H(P1, Q)

ξ 7→ ξ ◦ ψ

is a homomorphism and onto. For Q ≃ A1, Ψ is one-to-one. For Q 6≃ A1, Ψ is one-to-one
(and an isomorphism) iff ψ is an isomorphism.

11



Proof. Obviously, Φ and Ψ are well defined homomorphisms.
(a) Because φ is bijective, Φ is one-to-one. If Q is not an antichain, then there exist elements
a, b ∈ Y with a < b. Nothing has to be proven if φ is an isomorphism. Assume that φ is
not an isomorphism. Then there exist x, y ∈ X1 with x 6≤ y but φ(x) ≤ φ(y). We define an
homomorphism ζ ∈ H(P1, Q) by setting for all z ∈ X1:

ζ(z) ≡

{

a, if z ∈ ↓ y;

b, if z ∈ X1 \ ↓ y.

Then ζ(x) = b > a = ζ(y), and Φ is not onto due to (ξ◦φ)(x) ≤ (ξ◦φ)(y) for all ξ ∈ H(P2, Q).
Assume, that Q is an antichain. With the help of Lemma 4 we see that the mapping φ′

is well-defined. Assume, that φ′ is one-to-one. Let ζ ∈ H(P1, Q), and define ξ ≡ ζ ◦ φ−1.
For x, y ∈ X2 with x ≤ y, Corollary 3 yields γP2

(x) = γP2
(y), and thus φ′(γP1

(φ−1(x)) =
γP2

(x) = γP2
(y) = φ′(γP1

(φ−1(y)). Because φ′ is one-to-one, γP1
(φ−1(x)) = γP1

(φ−1(y)), and
with Lemma 4(b) we get the equalities {ζ(φ−1(x))} = ζ(γP1

(φ−1(x))) = ζ(γP1
(φ−1(y))) =

{ζ(φ−1(y))}. We conclude ξ(x) = ζ(φ−1(x)) = ζ(φ−1(y)) = ξ(y), and ξ is a homomorphism.
Thus, Φ is onto.

If Q is an antichain and φ′ not one-to-one, then there exist x, y ∈ X1 with γP1
(x) 6= γP1

(y)
and γP2

(φ(x)) = γP2
(φ(y)). From γP1

(x) 6= γP1
(y) we conclude y /∈ γP1

(x) (Corollary 3).
With a, b ∈ Y, a 6= b, we define ζ : X1 → Y by

ζ(z) ≡

{

a, if z ∈ γP1
(x);

b, if z ∈ X1 \ γP1
(x).

For every z ∈ γP1
(x), we have (↓ z) ∪ (↑ z) ⊆ γP1

(x). We conclude z1‖z2 for all z1 ∈ γP1
(x),

z2 ∈ X1 \ γP1
(x), and ζ is a well-defined homomorphism with ζ(x) = a 6= b = ζ(y). But

for every homomorphism ξ ∈ H(P2, Q), Lemma 4(b) enforces {ξ(φ(x))} = ξ(γP2
(φ(x))) =

ξ(γP2
(φ(y))) = {ξ(φ(y))}, whence ζ /∈ Φ(H(P2, Q)).

(b) Let ζ ∈ H(P1, Q). We have to construct a ξ ∈ H(P2, Q) with ξ ◦ ψ = ζ. We define for
all x ∈ X2

ξ(x) ≡ sup ζ(ψ
1
(↓x)).

It is easily seen that ξ is an homomorphism with ξ ◦ ψ ≥ ζ. Let y ∈ X1. For every

x ∈ ψ
1
(↓ψ(y)), the inequality ψ(x) ≤ ψ(y) holds, and thus x ≤ y because ψ is an embedding.

In consequence, (ξ ◦ ψ)(y) = sup ζ(ψ
1
(↓ψ(y))) ≤ ζ(y). Hence ξ ◦ ψ = ζ, and Ψ is onto.

The case Q ≃ A1 is trivial, and Ψ is an isomorphism, if ψ is an isomorphism. Let Q 6≃ A1

and let a, b ∈ Y with a 6= b. With c ≡ inf{a, b}, d ≡ sup{a, b}, we have c < d. If ψ is not
onto, then there exists a x0 ∈ X2 \ ψ(X1). Now we define two mappings ξ1, ξ2 : X2 → Y by

12



Figure 4: Illustrations for the proof of Corollary 9.

setting

ξ1(x) ≡

{

c, if x ∈ ↓ x0;

d, if x ∈ X2 \ ↓x0;

ξ2(x) ≡

{

c, if x ∈ (↓x0) \ {x0};

d, if x ∈ (X2 \ ↓x0) ∪ {x0}.

Then ξ1 and ξ2 are different elements of H(P2, Q) with Ψ(ξ1) = Ψ(ξ2).

In the proof of Lemma 8(b) we have only used the existence of supA for every A ⊆ Y ,
but this is equivalent to the completeness of the lattice Q [9, Thm. 2.31].

The two following corollaries collect relations regarding exponential sums of downset sizes
and exponential sums of interval sizes. In the proofs, Lemma 8(b) can always be applied
becauseD2(Q) is always a complete lattice. With respect to the “<”-relations, the reader will
remember that D2(Q) is never an antichain. In the following applications of Lemma 8(a), the
resulting homomorphism Φ is therefore never onto because the constructed homomorphism
φ is not an isomorphism, and in the applications of Lemma 8(b), Ψ is never one-to-one
because the respective ψ is not an isomorphism.

Corollary 9. Let Q be a finite poset. Then for all k ≥ 1 and ℓ ≥ 1

d2(A2 +Q) <
∑

A∈D2(Q)

δ(A)3, (17)

∑

A∈D2(Q)

δ(A)k+ℓ <
∑

A∈D2(Aℓ+Q)

δ(A)k ≤ d2(Ak+ℓ +Q), (18)

∑

A∈D2(A1+Q)

δ(A)k <
∑

A∈D2(Q)

δ(A)2k+1, (19)

with “=” in the second inequality of (18) iff k = 1.

Proof. (17): In Figure 4(a), a bijective homomorphism from Λ4 to D(A2) is shown. Now the
inequality follows with Lemma 8(a) and (14).
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k \ n 0 1 2 3 4

0 2 3 6 20 168
1 3 6 20 168 7581
2 5 14 84 2008 595649
3 9 36 404 28926 62534979
4 17 98 2100 462076 7663696589
5 33 276 11420 7865238 1,02233E+12
6 65 794 63804 139669708 1,43264E+14
7 129 2316 362564 2554437606 2,07113E+16

Table 3: Values of
∑

A∈D2(An)
δ(A)k.

Figure 5: Illustrations for the proof of Corollary 10.

(18): Figure 4(b) contains an embedding of Λk+2 in Λk+1 × C2. Lemma 8(b) delivers
h(Λk+2,D

2(Q)) < h(Λk+1×C2,D
2(Q)), and H(Λk+1×C2,D

2(Q)) ≃ H(Λk+1,H(C2,D
2(Q)))

yields together with (14) the first inequality for ℓ = 1. The first inequality with arbi-
trary ℓ follows by iteration. For k > 1, the first inequality delivers

∑

A∈D2(Aℓ+Q) δ(A)
k <

∑

A∈D2(Ak+ℓ−1+Q) δ(A) = d2(Ak+ℓ +Q) due to (15).

(19): A bijective homomorphism from Λ2k+2 to Λk+1 × C2 is easily constructed. With
Lemma 8(a) we get h(Λk+1×C2,D

2(Q)) < h(Λ2k+2,D
2(Q)), and the inequality follows as in

the proof of (18).

In Table 3, values of
∑

A∈D2(An)
δ(A)k are shown for small k and n. As it can be

expected by looking at Figure 4(b) (used in the proof of (18)), the difference between
∑

A∈D2(An)
δ(A)k+1 and

∑

A∈D2(An+1)
δ(A)k is large in most cases.
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Corollary 10. Let Q be a finite poset. Then for all k ≥ 1

d2(A2 +Q) <
∑

A∈D2(Q)

∑

B∈↓A

ι[B,A]3 < d2(A3 +Q), (20)

d2(A3 +Q) <
∑

A∈D2(Q)

∑

B∈↓A

ι[B,A]6 < d2(A4 +Q), (21)

∑

A∈D2(Q)

δ(A)k <
∑

A∈D2(Q)

∑

B∈↓A

ι[B,A]k <
∑

A∈D2(Q)

δ(A)k+1. (22)

Furthermore,
∑

A∈D2(A1+Q)

∑

B∈↓A

ι[B,A]k−1 <
∑

A∈D2(Q)

∑

B∈↓A

ι[B,A]2k. (23)

Proof. (20): Of course, D(A2) ≃ M4 (the diamond) can be embedded in M5. Lemma 8(b)
delivers h(D(A2),D

2(Q)) < h(M5,D
2(Q)), and the first inequality follows with (14) and

(13). An embedding of M5 into D(A3) is shown in Figure 5(a) and the second inequality
follows in the same way.

(21): A bijective homomorphism from M8 to D(A3) (the cube) is trivial. Lemma 8(a)
yields h(D(A3),D

2(Q)) < h(M8,D
2(Q)) and the first inequality follows with (14) and (13).

We embed M8 into D(A4) as shown in Figure 5(b), and the second inequality follows as in
the proof of (20).

(22): The embedding of Λk+1 into Mk+2 ≃ A1 ⊕Λk+1 is trivial and a bijective homomor-
phism from Λk+2 to Mk+2 is easily constructed. Now the inequalities follow with Lemma 8
and the equations used so far in this proof. (The first inequality can also directly be seen by
δ(A) = ι[∅,A].)

(23): Figure 5(c) shows a bijective homomorphism fromM2k+2 toMk+1×C2. Now apply
Lemma 8(a) and the respective equations.

3.3 Averages

The equalities and inequalities proven in the previous sections give raise to the quick calcu-
lation of averages. As (15) and (16) show:

1

d2(Q)

∑

A∈D2(Q)

δ(A) =
d2(A1 +Q)

d2(Q)

(4)
< d2(Q),

1

d2(A1 +Q)

∑

A∈D2(Q)

∑

B∈↓A

ι[B,A]2 =
d2(A2 +Q)

d2(A1 +Q)
,

which are the average size of ↓A over all A ∈ D2(Q) and the average size of [B,A]2 over all
non-empty intervals [B,A] ⊆ D2(Q).
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n d2(An)
1

d2(An)

∑

A∈D2(An)

δ(A) 1
d2(An)2

∑

(A,B)∈D2(An)2

δ(A) · δ(B)

0 2 1.5 2.3
1 3 2.0 4.0
2 6 3.3 11.1
3 20 8.4 70.6
4 168 45.1 2036.3
5 7581 1032.6 1066320.9
6 7828354 308453.4 95143471073.6

Table 4: Averages of downset sizes and products of downset sizes.

Also, inequality (5) has an interpretation with respect to an average. Using (15) we get

1

d2(Q)2

∑

(A,B)∈D2(Q)2

δ(A) · δ(B) =

(

d2(A1 +Q)

d2(Q)

)2

> d2(Q).

The average of the the product δ(A) · δ(B) of arbitrary elements A,B ∈ D2(Q) is therefore
always larger than d2(Q). The averages are shown in Table 4 for Q = An.

4 Computational time of algorithms for the calculation

of Dedekind numbers

4.1 Algorithms

The calculation of d2(Am+Q) can in general be done with nested algorithms. Each algorithm
except the innermost one transfers a structure to the next lower level algorithm which itself
refines the structure by adding additional elements to it. In the innermost algorithm, a
calculation formula counts the number of relevant elements in the final structure, and these
numbers are summed up. (The final structure has of course to be unique — the algorithm
is not allowed to produce duplicates.)

All algorithms described in literature use the isomorphism (14) in the form D2(Am+Q) ≃
H(D(Aℓ),D

2(Am−ℓ + Q)) for some 0 ≤ ℓ ≤ m. We call ℓ the level of the algorithm. The
outermost algorithm runs over the set D2(Am−ℓ+Q). Therefore, it must construct D2(Am−ℓ+
Q) or to refer to a model of it, which has to be created in advance [3, 11, 20, 21, 25, 28, 29].

Algorithms for the calculation of d2(Am+Q) in literature focus on the case Q = An, but
we also retain the general notation d2(Am + Q) in this section. Even if it has been noticed
that a nested algorithm can be written for all values ofm [21, 25], the algorithms in literature
use m = 0, 1, 2, 4 only. (In fact, the algorithms were restricted to m = 0, 1, 2 even in the
fourth quarter of the 20th century which may be due to the remarks of Lunnon [20] and
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Markowsky [21], cf. [25].) In what follows, we deal with the calculation of d2(A4 +Q). The
descriptions of the level-3-algorithm (30) and the level-4-algorithm (31) provide a scheme
how to construct algorithms for levels higher than 4.

For small posets Q, D2(A4 +Q) can be directly constructed and its elements can simply
be counted. Formally we can describe this approach as a level-0-algorithm [6, 20]

d2(A4 +Q) =
∑

A∈D2(A4+Q)

1. (24)

A level-1-algorithm has already been presented in Section 3.2 in formula (15). It is
mentioned or used in many publications [3, 11, 20, 21, 22, 29]:

d2(A4 +Q) =
∑

A∈D2(A3+Q)

δ(A) (25)

Fidytek et al. [11] realized the algorithm in the form

d2(A4 +Q) =
∑

(A,B)∈D2(A3+Q)2

ζ(B,A), (26)

where ζ is the zeta-function with ζ(B,A) = 1 for B ⊆ A and = 0 otherwise.
Level-2-algorithms exist in literature in two variants. The first one is the algorithm which

has been used in most of the calculations of Dedekind numbers [3, 20, 21, 28, 29]. It is in
general notated as

d2(A4 +Q) =
∑

(A,B)∈D2(A2+Q)2

#↓ (A ∩B) ·#↑ (A ∪B). (27)

The summation runs over the images of the left and right corner of M4 ≃ D(A2), and if
they are fixed, the images of its minimum and maximum are independently selected from
the respective downset and upset in (27).

The second variant is used by Fidytek et al. [11]:

d2(A4 +Q) =
∑

(A,B)∈D2(A2+Q)2

ι[B,A]2. (28)

Now the summation runs over the images of the maximum and minimum of M4, and the
images of the corners are independently selected from the interval spanned up by those.

The potential of algorithm (28) becomes visible if we write it as

d2(A4 +Q) =
∑

A∈D2(A2+Q)

∑

B∈↓A

ι[B,A]2. (29)

In (29) the summation runs over
∑

A∈D2(A2+Q) δ(A)
(15))
= d2(A3 + Q) terms, whereas in (27)

and (28) the number of terms is d2(A2 + Q)2
(4)
> d2(A3 + Q). Algorithm (29) therefore
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Figure 6: Illustration of algorithm (30).

provides an algorithmic benefit — supposing that it is possible to step easily through ↓A
for every A ∈ D2(A2+Q). And the benefit will be large for sufficiently rich posets Q, as our
considerations at the end of Section 3.1 and Table 6 in Section 4.2 show.

I did not find a level-3-algorithm in the literature, but it is not difficult to construct an
example (however, I did not test it):

D2(A4 +Q) =
∑

A∈D2(A1+Q)

∑

(C1,C2,C3)∈(↓A)3

f(A,C1,C2,C3) (30)

with

f(A,C1,C2,C3) ≡ ι[C1 ∪ C2,A] · ι[C1 ∪ C3,A]

· ι[C2 ∪ C3,A] · δ(C1 ∩ C2 ∩ C3).

The algorithm uses the isomorphism D2(A4 + Q) ≃ H(D(A3),D
2(A1 + Q)) as illustrated

in Figure 6. Once A ∈ D2(A1 + Q) and (C1,C2,C3) ∈ (↓A)3 have been selected, B12 ∈
[C1 ∪ C2,A], B13 ∈ [C1 ∪ C3,A], B23 ∈ [C2 ∪ C3,A], and D123 ∈ ↓ (C1 ∩ C2 ∩ C3) can
independently be selected.

Fidytek et al. [11] use a level-4-algorithm for the calculation of d2(A7) and d
2(A8). With

the notation ~C for (C1, . . . ,C6) ∈ D2(Q)6 the algorithm is

D2(A4 +Q) =
∑

~C∈D2(Q)6





∑

B≤inf{Ci | i∈6}

g−(B, ~C)



 ·





∑

A≥sup{Ci | i∈6}

g+(~C,A)



 (31)

with

g−(B, ~C) ≡ ι[B,C1 ∩ C2 ∩ C3] · ι[B,C1 ∩ C4 ∩ C5]

· ι[B,C2 ∩ C4 ∩ C6] · ι[B,C3 ∩ C5 ∩ C6],

g+(~C,A) ≡ ι[C1 ∪ C2 ∪ C4,A] · ι[C1 ∪ C3 ∪ C5,A]

· ι[C2 ∪ C3 ∪ C6,A] · ι[C4 ∪ C5 ∪ C6,A].

The six elements of the downset-tuple ~C ∈ D2(Q)6 are the images of the six-element antichain
in the middle of D(A4) (encircled in Figure 5(b) on the right), A and B are the images of
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Level Algorithm # Calls

0 (24) d2(A4 +Q)
1 (25) d2(A3 +Q)

(26) d2(A3 +Q)2

2 (27) d2(A2 +Q)2

(28) d2(A2 +Q)2

(29) d2(A3 +Q)

3 (30)
∑

A∈D2(A1+Q)

δ(A)3

4 (31)
∑

A∈D2(Q)

∑

B∈↓A

ι[B,A]6

Table 5: Number of calls of the innermost calculation formula.

the maximum and the minimum of D(A4), respectively, and the eight remaining images of
the elements in the second and fourth layer of D(A4) can independently be chosen from the
intervals evaluated in the formulas of g− and g+.

4.2 Computational time

Table 5 shows the number of calls of the innermost calculation formula in the algorithms for
the calculation of d2(A4 +Q) described in Section 4.1 (for algorithm (31), apply Lemma 1).
This number can be regarded as a measure for the computational time of an algorithm, and
the numbers can be compared as long as the different innermost calculation formulas cause
roughly the same calculation effort. The estimate d2(A1+n)

4 presented by Markowsky [21]
for the number of calls of a level-3-algorithm turns out to be quite pessimistic.

Due to (4), we have d2(A3+Q) < d2(A2+Q)
2 < d2(A4+Q). Furthermore, d2(A3+Q) is,

according to (17) and (21), less than
∑

A∈D2(A1+Q) δ(A)
3 and

∑

A∈D2(Q)

∑

B∈↓A ι[B,A]
6, and

due to (18) and (21), these two sums are both less than d2(A4 +Q). Finally, d2(A4 +Q) <
d2(A3+Q)

2 according to (4). Thus, we get the following ranking of the computational times
of the algorithms:

(25) = (29) < (27) = (28), (30), (31) < (24) < (26).

The results of Section 3 tell us nothing about relations between the numbers of calls of (28),
(30), and (31).

However, the number of calls covers only one aspect of the computational time because
the innermost calculation formulas of the algorithms are quite different. Another measure
is the number of enumerations of intervals. These figures are shown in Table 6 for the
calculation of d2(A4+n), 0 ≤ n ≤ 3.

Some authors calculate parameters in a pre-computational step before the main com-
putation of the Dedekind number itself. Lunnon [20] calculates and saves #↓A and #↑A

19



Algorithm # Interval enumerations n = 0 1 2 3

(25), (29) d2(A3+n) 20 168 7581 7828354
(28) d2(A2+n)

2 36 400 28224 57471561
(27) 2 · d2(A2+n)

2 72 800 56448 114943122

(30) 4 ·
∑

A∈D2(A1+n)

δ(A)3 144 1616 115704 249924492

(31) 4 ·
∑

A∈D2(An)

∑

B∈↓A

ι[B,A]6 264 3440 341232 1155311364

(24) d2(A4+n) 168 7581 7828354 2414682040998
(26) d2(A3+n)

2 400 28224 57471561 61283126349316

Table 6: Number of interval enumerations for the calculation of d2(A4+n).

for every A ∈ D2(A2+n) in advance, and it pays off: in the pre-computation, he invests
2 · d2(A2+n) enumerations of intervals, causing an exchange of 2 · d2(A2+n)

2 enumerations of
intervals in the main computation against simple operations consisting of two fetches from
a table and one multiplication.

For the calculation of d2(A7) with the algorithms (28) and (31), Fidytek et al. [11]
calculate ι[B,A] in advance for every A,B ∈ D2(A7−ℓ) by calculating the square of the
incidence matrix of D2(A7−ℓ). By means of these pre-calculated interval sizes, they exchange
all interval enumerations in the main computation against simple operations with two (four)
fetches from a table and one (three) multiplications each. The numbers of entries to be
pre-calculated for the level-2-algorithm is by a factor of around 140000 larger than for the
level-4-algorithm.

Starting with Church [6], the numerous symmetries of D2(A4−ℓ + Q) have been used to
speed-up the main computation. In doing so, the outermost algorithm runs over a represen-
tation system of the non-isomorphic downsets of D2(A4−ℓ +Q), and for each representative
the number of constructed homomorphisms in H(D(Aℓ),D

2(A4−ℓ + Q)) is multiplied with
the number of the isomorphic copies of the representative in D2(A4−ℓ + Q). Using the
orbit-stabilizer theorem, this number can be calculated without evaluating D2(A4−ℓ + Q)
[6, 20, 21, 28]. Additionally, Lunnon [20] exploits duality.

Exploiting the symmetries makes the programming work quite demanding [21, 28], but it
pays off: the comparison of the computational times of the calculation of d2(A7) by means of
the level-2-algorithm (27) with and without exploitation of symmetries done by Markowsky
[21] shows a speed-up factor around 34 (main computation only). But of course, the pre-
computational step to create a list of non-isomorphic elements ofD2(Am−ℓ) is time consuming
[21, 28].

Fidytek et al. [11] did not exploit this type of symmetry, but instead used the symmetries
provided by A(D(A4)). I assume that the trivial symmetry provided by A(D(A2)) has been
used in all calculations with algorithm (27), even if none of the authors has mentioned it.
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For the calculation of d2(Am + Q), a model of D2(Am−ℓ + Q) has to be created, stored,
and managed. The larger the value of ℓ, the smaller the model will be. For the calculation
of d2(A7), Church [7] had to use a memory saving model of D2(A5) in 1965, but all later
authors could keep the model and all pre-calculated parameters in main memory. But it is
not only the required memory space which matters: the pure management of data structures
of such a huge size and complexity slows down the total computation. On modern computer
systems, parallel computing is a natural choice [11, 21, 25].

In the calculation of d2(Am + Q), the model of D2(Am−ℓ + Q) is extremely frequently
evaluated. Here, the art of creating suitable data structures and efficient algorithms for their
evaluation plays a crucial role [25]; the structure used by Church [7] provides both, memory
savings and quick model evaluation. The differences in the numbers of calls between the three
level-2-algorithms (27), (28), and (29) emphasize the critical importance of quick evaluation
algorithms. For models allowing an effective evaluation of ↓A, we get the quicker algorithm
(29). Otherwise we work with (27) or (28). (For algorithms at the same level, I assume
that the relations between the computational times will be of the same order of magnitude
without and with exploitation of symmetries)

Fidytek et al. [11] calculated d2(A7) with the algorithms (26), (28), and (31) on the same
computer system. (31) was clearly the fastest algorithm (3 seconds), followed by (28) (30
minutes), whereas (26) was definitely the slowest one (estimated 19 months). The inequalities
between the numbers of calls and the figures in Table 6 show that the low performance of (26)
had to be expected, but the empirical calculation times of (28) and (31) are clearly the other
way around than the figures in Table 6. However, the measured calculation times include
both, the pre-calculation and the main calculation, of which the former one is more time
consuming for (28), and the latter one for (31). Additionally, the lower effort for handling
the model is in favor of the level-4-algorithm.

Under these aspects, the level-3-algorithm (30) will show advantages and drawbacks in
the calculation of D2(A4+Q). The model of D2(A1+Q) required by it is clearly simpler than
the model used by level-2-algorithms, and the number of calls and the number of interval
enumerations of (30) look better than for the level-4-algorithm (31). Thus, (30) may show
a good performance. The drawback of a level-3-algorithm is of course, that the model of
D(A1 + Q) and the pre-computational effort are clearly larger than for a level-4-algorithm;
furthermore, A(D(A3)) provides fewer symmetries than A(D(A4)).
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5 Appendix

The non-isomorphic downsets of D(A4) together with the number of their isomorphic
copies (left number) and the number of their downsets (right number). The downsets are
grouped in pairs of duals, i.e., A and (D(A4) \ A)

∂ . The last four downsets are self-dual, i.e.,
A ≃ (D(A4) \ A)

∂.
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[8] D. M. Cvetković, The number of antichains of finite power sets, Publications de l’Institut
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