Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.3

Sums of Digits and the Distribution of Generalized Thue-Morse Sequences

Hancong Zhao and Dong Zhang Peking University
Beijing 100871
P. R. China
1401210046@pku.edu.cn dongzhang@pku.edu.cn

Abstract

In this paper we study the distribution of the infinite word $\mathrm{t}_{q, n}:=\left(s_{q}(k) \bmod n\right)_{k=0}^{\infty}$, which we call the generalized Thue-Morse sequence. Here $s_{q}(k)$ is the digit sum of k in base q. We give an explicit formulation of the exact minimal value of M such that every M consecutive terms in $t_{q, n}$ cover the residue system of n, i.e., $\{0,1, \ldots, n-1\}$. Also, we prove some stronger related results.

1 Introduction and main results

For $k \in \mathbb{N}$ and $q \in\{2,3, \ldots\}$, let $s_{q}(k)$ denote the sum of the digits of k when expressed in base q. By convention, we use $k=\left(k_{1}^{d_{1}} k_{2}^{d_{2}} \cdots k_{l}^{d_{l}}\right)_{q}$ to denote

$$
k=(\underbrace{k_{1} k_{1} \cdots k_{1}}_{d_{1}} \underbrace{k_{2} k_{2} \cdots k_{2}}_{d_{2}} \cdots \underbrace{k_{l} k_{l} \cdots k_{l}}_{d_{l}})_{q},
$$

where we first have $d_{1} k_{1}$ s followed by $d_{2} k_{2} \mathrm{~s}$, and so on up until $d_{l} k_{l} \mathrm{~s}$, and omit every $d_{i}=1$. For example, the binary expansion of 6 is 110 , so $6=\left(1^{2} 0\right)_{2}$ and $s_{2}(6)=1+1+0=2$.

The sum of digits is an interesting object in number theory. In recent years, there have been some new results about the distribution of the digit sum sequence $\left(s_{q}(k)\right)_{k=1}^{\infty}$. Morgenbesser, Shallit, and Stoll [1] considered the classical Thue-Morse sequence

$$
\left(s_{2}(k) \bmod 2\right)_{k=1}^{\infty} .
$$

They proved that the least number k satisfying $s_{2}(d \cdot k) \equiv 1(\bmod 2)$ is at most $d+4$, for every fixed positive integer d. For the general infinite word $\mathrm{t}_{q, n}:=\left(s_{q}(k) \bmod n\right)_{k=0}^{\infty}$, Allouche and Shallit [2] showed that the sequence $\mathrm{t}_{q, n}$ over the alphabet $\{0,1, \ldots, n-1\}$ is overlap-free if and only if $n \geq q$.

In this paper we study the distribution of the generalized Thue-Morse sequence $\mathrm{t}_{q, n}$. We give the exact minimal positive integer $M_{q, n}$ (see Definition 3) such that every $M_{q, n}$ consecutive terms in $\mathrm{t}_{q, n}$ contain j for every $j \in\{0,1, \ldots, n-1\}$. First we give some basic examples to help readers understand.

Example $1\left(M_{10,7}=13\right)$. Every 13 consecutive positive integers have an element whose digit sum is divisible by 7 . But it is false for 12 consecutive positive integers because the sums of digits of the numbers $994,995, \ldots, 999,1000,1001, \ldots, 1005$, are all not divisible by 7.

Example $2\left(M_{10,11}=39\right)$. Every 39 consecutive positive integers have an element whose digit sum is divisible by 11 , but it is false for 38 consecutive positive integers. In fact, it is easy to check that the sums of digits of the numbers $999981,999982, \ldots, 999999,1000000,1000001$, $\ldots, 1000018$, are all not divisible by 11 .

The general results are given in Corollary 13.
Next, we introduce the positive integers $M_{q, n}$, where $n \in \mathbb{Z}^{+}$and $q \in\{2,3, \ldots\}$.
Definition 3. Let $q, n \in \mathbb{Z}^{+}$with $q \geq 2$ and $n=k \cdot(q-1)+l$, where $l \in\{0,1, \ldots, q-2\}$ and $k \in \mathbb{N}$. For convenience, let

$$
r= \begin{cases}\operatorname{gcd}(q-1, l) \cdot\left\lfloor\frac{l-1}{\operatorname{gcd}(q-1, l)}\right\rfloor, & \text { if } 1 \leq l \leq q-2 \tag{1}\\ 0, & \text { if } l=0 .\end{cases}
$$

Now the number $M_{q, n}$ is defined to be $(l+r+1) \cdot q^{k}-1$, or equivalently $M_{q, n}=((l+r)(q-$ $\left.1)^{k}\right)_{q}$.

Theorem 4 and Theorem 5 are the main results of this paper.
Theorem 4. The number $M_{q, n}$ is the least value of M, where every M consecutive terms in $\mathrm{t}_{q, n}$ contain 0 .

In other words, every $M_{q, n}$ consecutive positive numbers contain a number whose digit sum is divisible by n. And there exists a sequence of $M_{q, n}-1$ consecutive positive numbers
such that it contains no integer whose digit sum is divisible by n. The least value of the first term of such sequence is

$$
\begin{cases}(1)_{q}, & \text { if } l-1<\operatorname{gcd}(q-1, l) \tag{2}\\ \left((q-1)^{x}(q-1-r) 0^{k-1} 1\right)_{q}, & \text { if } l-1 \geq \operatorname{gcd}(q-1, l)\end{cases}
$$

where r is given in Eq. (1), and x is the minimal nonnegative integer solution of the congruence equation

$$
\begin{equation*}
(q-1) \cdot(x+1)-r \equiv 0 \quad(\bmod (q-1) \cdot k+l) \tag{3}
\end{equation*}
$$

Theorem 5 is a strengthened form of Theorem 4.
Theorem 5. For every $j \in\{0,1, \ldots, n-1\}$, the minimum value of M, where every M consecutive terms in $\mathrm{t}_{q, n}$ contain j, is also equal to $M_{q, n}$. In other words, every $M_{q, n}$ consecutive positive integers contain an integer d with $s_{q}(d) \equiv j(\bmod n)$. And there exists a sequence of $M_{q, n}-1$ consecutive positive integers containing no integer d with $s_{q}(d) \equiv j(\bmod n)$. The first term of such sequence can be chosen as $\left(1^{j} 0(q-1)^{x}(q-1-r) 0^{k-1} 1\right)_{q}$, where x is a nonnegative integer solution of the congruence equation $(q-1) \cdot(x+1)-r \equiv 0(\bmod n)$.

Remark 6. The facts below are true about $M_{q, n}$.

1. For the following set of sequences
$\mathbb{A}_{q}(n)=\left\{(m+i)_{i=0}^{k} \mid m, \ldots, m+k\right.$ are not divisible by n, where $\left.m, k \in \mathbb{Z}^{+}\right\}$,
we have $\max _{S \in \mathbb{A}_{q}(n)}$ length $(S)=M_{q, n}-1$. Here, length (S) represents the number of terms in sequence S.
2. $M_{q, n}$ is the least value of M, where every M consecutive terms in $\mathrm{t}_{q, n}$ cover the residue system of n, i.e., $\{0,1, \ldots, n-1\}$.

2 Proofs

In this section, we prove our main results. Before that, some lemmas as follows are needed.
Lemma 7. For positive integers a, b and m, the equation $a x \equiv b(\bmod m)$ has a positive integer solutions if and only if $\operatorname{gcd}(a, m) \mid b$.

Lemma 8. For fixed $h \in\{0, \ldots, q-2\}$ and $t \in \mathbb{N}$, the following statements are true.
(1) Consider a sequence of consecutive integers starting with zero. If no integer in this sequence has digit sum over $s:=(q-1) \cdot t+h$, then the length of the sequence is not longer than $\left((h+1)(q-1)^{t}\right)_{q}$ that has sum of digits $s+1$.
(2) Consider a sequence of consecutive nonnegative integers ending with $\left((q-1)^{k}\right)_{q}$. If every integer in this sequence has digit sum at least $(q-1) \cdot k-s+1$, then the length of the sequence is not longer than $\left(h(q-1)^{t}\right)_{q}$.

Proof. (1) If $t \geq 1$, then $\left((h+1)(q-1)^{t}\right)_{q}-1=\left((h+1)(q-1)^{t-1}(q-2)\right)_{q}$ has sum of digits

$$
(h+1)+(t-1) \cdot(q-1)+(q-2)=h+t \cdot(q-1)=s .
$$

If $t=0$, then $\left((h+1)(q-1)^{0}\right)_{q}-1=h+1-1=h=s$ still has sum of digits s. Since the terms of the sequence are consecutive, the length of such sequence is not longer than $\left((h+1)(q-1)^{t}\right)_{q}-1+1=\left((h+1)(q-1)^{t}\right)_{q}$.
(2) Let $\left((q-1)^{k}\right)_{q}$ minus $\left((q-1)^{k}\right)_{q}, \ldots,(1)_{q},(0)_{q}$ respectively. Then the sequence in (2) starts with 0 , and no integer in this sequence has digit sum over $s-1$. Combining with $s-1=(q-1) \cdot t+h-1$ and the conclusion of (1), we can easily derive that the length of the sequence satisfying the condition is $\left(h(q-1)^{t}\right)_{q}$.

Let $a_{k}(n)$ be the coefficient of q^{k} of the representation of n in base q (i.e., $n=\sum_{k=0}^{\infty} a_{k}(n) q^{k}$, where $\left.a_{k}(n) \in\{0,1, \ldots, q-1\}\right)$ and let $v_{q}(n)=\max \left\{k \in \mathbb{N}: q^{k} \mid n\right\}$. We have the following result.

Lemma 9. For every positive integer A, we have $s_{q}(A)=s_{q}(A+1)+(q-1) \cdot x-1$, where x is the number of consecutive $(q-1)$ in the tail of A, or equivalently, $x=v_{q}(A+1)$.

Hereinafter, we use $[a, b]$ (resp., $[a, b),(a, b)$ and $(a, b])$ to denote the set of integers in the interval $[a, b]$ (resp., $[a, b),(a, b)$ and $(a, b])$, where a, b are integers.

Lemma 10. Below we make some relevant properties.
(1) For every integer $X, s_{q}(X)+1 \geq s_{q}(X+1)$.
(2) Let A, \ldots, B be consecutive positive integers satisfying $s_{q}(A)=\min _{X \in[A, B]} s_{q}(X)$. Then $\left\{s_{q}(A), \ldots, s_{q}(B)\right\}=\left[s_{q}(A), \max _{X \in[A, B]} s_{q}(X)\right]$.
(3) Let A, A^{\prime}, B and B^{\prime} be positive integers such that $B-A=B^{\prime}-A^{\prime}, s_{q}(A)=\min _{X \in[A, B]} s_{q}(X)=$ $s_{q}\left(A^{\prime}\right)=\min _{X^{\prime} \in\left[A^{\prime}, B^{\prime}\right]} s_{q}\left(X^{\prime}\right)$ and $s_{q}(A+C) \geq s_{q}\left(A^{\prime}+C\right)$ for every $C \in[0, B-A]$. Then $\left\{s_{q}(A), \ldots, s_{q}(B)\right\} \supset\left\{s_{q}\left(A^{\prime}\right), \ldots, s_{q}\left(B^{\prime}\right)\right\}$.

Proof. (1) is easy to verify by Lemma 9 and (3) can be deduced from (2). So it suffices to prove (2).

Suppose the contrary, that there exists an integer $N \in\left(s_{q}(A), \max _{X \in[A, B]} s_{q}(X)\right)$ such that $s_{q}(X) \neq N$ for every $X \in[A, B]$.

Let $C=\min \left\{D \in[A, B] \mid s_{q}(D)>N\right\}$. Then by the definitions of C and N, we have $s_{q}(C)>N$ and $s_{q}(C-1)<N$. However, according to (1), $s_{q}(C-1)+1 \geq s_{q}(C)>N$, that is $s_{q}(C-1) \geq N$. This leads to a contradiction.

Lemma 11. Let $q, n \in \mathbb{Z}^{+}$with $q \geq 2$ and $n=k \cdot(q-1)+l$, where $l \in\{0,1, \ldots, q-2\}$ and $k \in \mathbb{N}$. Every $\left(l(q-1)^{k}\right)_{q}$ consecutive terms of $\mathrm{t}_{q, n}$ with indexes in $\left[\left(A 0^{k+1}\right)_{q},\left((A+1) 0^{k+1}\right)_{q}\right)$ for some $A \in \mathbb{N}$, cover $\{0,1, \ldots, n-1\}$, where A is always written in base q.
Proof. Consider a sequence of $\left(l(q-1)^{k}\right)_{q}$ consecutive positive integers. We divide this proof into two cases.
Case 1: $l \geq 1$. In fact, the first $q^{k}=\left(10^{k}\right)_{q}$ terms of such sequence must contain a number N satisfying $a_{i}(N)=0, i \in\{1,2, \ldots, k\}$ and $a_{k+1}(N) \in\{0,1, \ldots, q-l\}$. Therefore, the numbers $N, N+1, \ldots, N+(q-1), N+(1(q-1))_{q}, \ldots, N+((q-1)(q-1))_{q}, N+(1(q-1)(q-1))_{q}, \ldots, N+$ $((q-1)(q-1)(q-1))_{q}, \ldots, N+\left((q-1)^{k}\right)_{q}, N+\left(1(q-1)^{k}\right)_{q}, \ldots, N+\left((l-1)(q-1)^{k}\right)_{q}$ all belong to such sequence, and they all belong to the interval $\left[\left(A 0^{k+1}\right)_{q},\left((A+1) 0^{k+1}\right)_{q}\right)$ as well. Their digit sums are respectively $s_{q}(N), s_{q}(N)+1, \ldots, s_{q}(N)+(q-1), s_{q}(N)+q, \ldots, s_{q}(N)+k$. $(q-1), \ldots, s_{q}(N)+k \cdot(q-1)+l-1$, which cover all the residue classes modulo $k \cdot(q-1)+l$. Case 2: $l=0$. If the $\left((q-1)^{k}\right)_{q}$ consecutive positive integers lie in $\left[\left(A b 0^{k}\right)_{q},\left(A b(q-1)^{k}\right)_{q}\right]$ for some $b \in\{0,1, \ldots, q-1\}$, then they must be $\left(A b 0^{k}\right)_{q},\left(A b 0^{k-1} 1\right)_{q}, \ldots,\left(A b(q-1)^{k-1}(q-2)\right)_{q}$ or $\left(A b 0^{k-1} 1\right)_{q},\left(A b 0^{k-1} 2\right)_{q}, \ldots,\left(A b(q-1)^{k}\right)_{q}$, and their digit sums are $s(A)+b, s(A)+b+$ $1, \ldots, s(A)+b+k \cdot(q-1)-1$ or $s(A)+b+1, s(A)+b+2, \ldots, s(A)+b+k \cdot(q-1)$, which cover the residue classes modulo $k \cdot(q-1)$.

If the $\left((q-1)^{k}\right)_{q}$ consecutive positive integers are not in $\left[\left(A b 0^{k}\right)_{q},\left(A b(q-1)^{k}\right)_{q}\right]$ for every $b \in\{0,1, \ldots, q-1\}$, then there exists an integer $b \in[0, q-2]$ such that $\left(A b(q-1)^{k}\right)_{q}$ and $\left(A(b+1) 0^{k}\right)_{q}$ are contained in these consecutive positive integers. Hence, there exists an integer X with the form of k digits ${ }^{1}$ such that these consecutive positive integers can be written as $(A b X)_{q}, \ldots,\left(A b(q-1)^{k}\right)_{q},\left(A(b+1) 0^{k}\right)_{q}, \ldots,(A(b+1)(X-2))_{q}$. Note that $s(A(b+1) Y) \geq s(A b(Y+1))$ for every Y with the form of k digits. Thus, by Lemma 10 (3) it is easy to verify that the digit sums of $\left(A(b+1) 0^{k}\right)_{q}, \ldots,(A(b+1)(X-2))_{q}$ cover the digit sums of $\left(A b 0^{k-1} 1\right)_{q}, \ldots,(A b(X-1))_{q}$. Therefore, the digit sums of $(A b X)_{q}, \ldots,\left(A b(q-1)^{k}\right)_{q},(A(b+$ 1) $\left.0^{k}\right)_{q}, \ldots,(A(b+1)(X-2))_{q}$ cover the digit sums of $\left(A b 0^{k-1} 1\right)_{q},\left(A b 0^{k-1} 2\right)_{q}, \ldots,\left(A b(q-1)^{k}\right)_{q}$, and consequently they cover the residue classes modulo $k \cdot(q-1)$.

We are now ready to prove our main results.
Proof of Theorem 4. We divide our proof into three steps.
Step 1. In this step we prove every $M_{q, n}$ consecutive positive integers contain a number whose digit sum is divisible by n.

Suppose the contrary, that there exists a sequence possessing $M_{q, n}$ consecutive positive integers which contains no number whose digit sum is divisible by n.

By Lemma 11 and the fact that $\left(l(q-1)^{k}\right)_{q} \leq M_{q, n}$ from the definition of $M_{q, n}$, the sequence is not contained in $\left[\left(A 0^{k+1}\right)_{q},\left((A+1) 0^{k+1}\right)_{q}\right)$ for every $A \in \mathbb{N}$. Furthermore, it is obvious that there exists an $A \in \mathbb{N}$ such that the sequence can be written in two parts

$$
\begin{equation*}
\underbrace{\left(A s_{1} \cdots s_{k+1}\right)_{q}, \ldots,\left(A(q-1)^{k+1}\right)_{q}}_{\text {the first part }}, \underbrace{\left((A+1) 0^{k+1}\right)_{q}, \ldots,\left((A+1) e_{1} \cdots e_{k+1}\right)_{q}}_{\text {the second part }} \tag{4}
\end{equation*}
$$

[^0]where $s_{i}, e_{i} \in\{0,1, \ldots, q-1\}$ satisfy
\[

$$
\begin{gathered}
\left(A(q-1)^{k+1}\right)_{q}-\left(A s_{1} \cdots s_{k+1}\right)_{q}<\left(l(q-1)^{k}\right)_{q}-1, \\
\left((A+1) e_{1} \cdots e_{k+1}\right)_{q}-\left((A+1) 0^{k+1}\right)_{q}<\left(l(q-1)^{k}\right)_{q}-1
\end{gathered}
$$
\]

and

$$
\left((A+1) e_{1} \cdots e_{k+1}\right)_{q}-\left(A s_{1} \cdots s_{k+1}\right)_{q}=M_{q, n}-1
$$

Notice that

$$
s_{q}\left(\left(A(q-1)^{k+1}\right)_{q}\right)=s_{q}(A)+(q-1) \cdot(k+1)
$$

and

$$
s_{q}\left(\left((A+1) 0^{k+1}\right)_{q}\right)=s_{q}(A+1) .
$$

Suppose

$$
\begin{equation*}
s_{q}(A)+(q-1) \cdot(k+1) \equiv \alpha \quad(\bmod (q-1) \cdot k+l) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{q}(A+1) \equiv \beta \quad(\bmod (q-1) \cdot k+l), \tag{6}
\end{equation*}
$$

where $\alpha, \beta \in\{0,1,2, \ldots,(q-1) \cdot k+l-1\}$. Since every number F in the sequence shown in (4) satisfies $s_{q}(F) \not \equiv 0(\bmod n)$, we indeed have

$$
\begin{equation*}
\alpha, \beta \in\{1,2, \ldots,(q-1) \cdot k+l-1\} . \tag{7}
\end{equation*}
$$

Then the digit sums of the second part of the sequence shown in (4) are contained in the following $n-\beta$ numbers:

$$
\begin{equation*}
s_{q}(A+1), \ldots, s_{q}(A+1)+(q-1) \cdot k+l-1-\beta . \tag{8}
\end{equation*}
$$

The digit sums of the first part of the sequence shown in (4) are contained in the following α numbers:

$$
\begin{equation*}
s_{q}(A)+(q-1) \cdot(k+1)-\alpha+1, \ldots, s_{q}(A)+(q-1) \cdot(k+1) . \tag{9}
\end{equation*}
$$

By Lemma 9, we have $s_{q}(A)=s_{q}(A+1)+(q-1) \cdot x-1$, where x is the number of consecutive $(q-1)$ in the tail of A, i.e., $x:=v_{q}(A+1)$. Hence, we deduce from (5) that

$$
s_{q}(A+1)+(q-1) \cdot x-1+(q-1) \cdot(k+1) \equiv \alpha \quad(\bmod (q-1) \cdot k+l) .
$$

Combining with (6), we have

$$
\begin{equation*}
\beta-\alpha+(q-1) \cdot(x+k+1)-1 \equiv 0 \quad(\bmod (q-1) \cdot k+l) . \tag{10}
\end{equation*}
$$

According to Lemma 7, (10) has a positive integer solution if and only if $\operatorname{gcd}(q-1,(q-1)$. $k+l) \mid \alpha+1-\beta$, namely

$$
\begin{equation*}
\operatorname{gcd}(q-1, l) \mid \alpha+1-\beta \tag{11}
\end{equation*}
$$

A quick inspection of (7) reveals $\alpha+1-\beta \leq(q-1) \cdot k+l-1$. Note that $(q-1) \cdot k+r$ is the largest integer which is divisible by $\operatorname{gcd}(q-1, l)$ and not larger than $(q-1) \cdot k+l-1$. Thus, combining with (7) and (11), it is easy to see that $\alpha+1-\beta$ is not larger than $(q-1) \cdot k+r$. Next, in order to get a contradiction, we will estimate the lengths of the two parts of the sequence shown in (4).
(I). We will apply Lemma 8 (1) to the second part of the sequence. Combining with Lemma 11, we know that the number of the consecutive integers behind $(A+1) 0^{k+1}$ is less than $\left(l(q-1)^{k}\right)_{q}$, and then these integers all have the form $((A+1) X)_{q}$, where X possesses at most $k+1$ digits. Thus, from $s_{q}\left(((A+1) X)_{q}\right)=s_{q}(A+1)+s_{q}(X)$ and (8) we know

$$
\begin{align*}
s_{q}(X) & =s_{q}\left(((A+1) X)_{q}\right)-s_{q}(A+1) \\
& \leq s_{q}(A+1)+(q-1) \cdot k+l-1-\beta-s_{q}(A+1) \\
& =(q-1) \cdot k+l-1-\beta \tag{12}\\
& :=(q-1) \cdot m+\beta_{1}, \tag{13}
\end{align*}
$$

where $m \leq k$ and $\beta_{1} \in\{0,1, \ldots, q-2\}$. Note that the least value of $s_{q}(X)$ is 0 . Therefore, by Lemma 8 (1), we can obtain that the length of the second part of the sequence is at most $\left(\left(\beta_{1}+1\right)(q-1)^{m}\right)_{q}$.
(II). We will apply Lemma 8 (2) to the first part of the sequence. Combining with Lemma 11, we know that the number of the consecutive integers before $\left(A(q-1)^{k+1}\right)_{q}$ is less than $\left(l(q-1)^{k}\right)_{q}$, and then obtain these integers all have the form $(A Y)_{q}$, where Y possesses at most $k+1$ digits. Therefore, from $s_{q}\left((A Y)_{q}\right)=s_{q}(A)+s_{q}(Y)$ and (9), we have

$$
\begin{aligned}
s_{q}(Y) & =s_{q}\left((A Y)_{q}\right)-s_{q}(A) \\
& \geq s_{q}(A)+(q-1) \cdot(k+1)-\alpha+1-s_{q}(A) \\
& =(q-1) \cdot(k+1)-\alpha+1
\end{aligned}
$$

Let $\alpha=(q-1) \cdot t+h$, where $t \leq k$ and $h \in\{0,1, \ldots, q-2\}$. Since Y ends up with $(q-1)^{k+1}$, by Lemma $8(2)$, the length of the first part of the sequence must be at most $h(q-1)^{t}$.

Summing up the above, we obtain the length of this sequence is at most

$$
\left(\left(\beta_{1}+1\right)(q-1)^{m}\right)_{q}+\left(h(q-1)^{t}\right)_{q} .
$$

Since $\left(h(q-1)^{t}\right)_{q}<\left((q-1)^{k}\right)_{q}$ for $t \leq k-1$, we should let $t=k$ to make $\left(\left(\beta_{1}+1\right)(q-\right.$ $\left.1)^{m}\right)_{q}+\left(h(q-1)^{t}\right)_{q}$ as large as possible. And then, we obtain from (II) that $h=\alpha-(q-1) \cdot k$.

Since $\left(\left(\beta_{1}+1\right)(q-1)^{m}\right)_{q} \leq\left((q-1)^{k-1}\right)_{q}<\left((q-1)^{k}\right)_{q}$ for $m \leq k-2$, we should take $m \in\{k-1, k\}$ to make $\left(\left(\beta_{1}+1\right)(q-1)^{m}\right)_{q}+\left(h(q-1)^{t}\right)_{q}$ as large as possible.

If $l=0,(12)$ and (13) imply $m \leq k-1$ and thus we should let $m=k-1$. Then, we obtain from (I) that $q-1-1-\beta=\beta_{1} \leq q-2$. Hence, $\left(\left(\beta_{1}+1\right)(q-1)^{m}\right)_{q} \leq\left((q-1)^{k}\right)_{q}$. To make $\left(\left(\beta_{1}+1\right)(q-1)^{m}\right)_{q}+\left(h(q-1)^{t}\right)_{q}$ as large as possible, we should take $\beta_{1}=q-2$. And in this case, $\beta=l=0$.

If $l \geq 1$, (12) and (13) imply $m \leq k$ and thus we should let $m=k$. Then, we obtain from (I) that $l-1-\beta=\beta_{1} \geq 0$.

Note that in both cases, we have

$$
\begin{align*}
\left(\left(\beta_{1}+1\right)(q-1)^{m}\right)_{q}+\left(h(q-1)^{t}\right)_{q} & =\left((l-\beta)(q-1)^{k}\right)_{q}+\left((\alpha-(q-1) \cdot k)(q-1)^{k}\right)_{q} \\
& =\left((l+\alpha+1-\beta-(q-1) \cdot k)(q-1)^{k}\right)_{q}-1 \\
& \leq\left((l+r)(q-1)^{k}\right)_{q}-1=M_{q, n}-1, \tag{14}
\end{align*}
$$

which is a contradiction. The proof in Step 1 is completed.
Step 2. In this step, we will prove there exists a sequence of $M_{q, n}-1$ consecutive positive numbers containing no integer whose digit sum is divisible by n.

Note that in the case of $l-1<\operatorname{gcd}(q-1, l)$, we have $M_{q, n}=\left(l(q-1)^{k}\right)_{q}$ by Definition 3 , and thus the numbers $1,2, \ldots,\left(l(q-1)^{k-1}(q-2)\right)_{q}$ are $M_{q, n}-1$ consecutive positive integers containing no integer whose digit sum is divisible by $n=k \cdot(q-1)+l$. So we only need to explain the case of $l-1 \geq \operatorname{gcd}(q-1, l)$ for detail. Now, we verify the following $M_{q, n}-1=\left((l+r)(q-1)^{k}\right)_{q}-1$ consecutive positive integers
$\underbrace{\left((q-1)^{x}(q-1-r) 0^{k-1} 1\right)_{q}, \ldots,\left((q-1)^{x+1+k}\right)_{q}}_{\text {the first part }}, \underbrace{\left(10^{x+1+k}\right)_{q}, \ldots,\left(10^{x}(l-1)(q-1)^{k-1}(q-2)\right)_{q}}_{\text {the second part }}$
contain no integer whose digit sum is divisible by n.
The sums of digits of the integers in the first part shown in (15) are contained in $(q-1)$. $x+q-r, \ldots,(q-1) \cdot(x+1+k)$, which equal to $1,2, \ldots,(q-1) \cdot k+r$ modulo n according to Eq. (3).

The sums of digits of the integers in the second part shown in (15) are contained in $1, \ldots,(q-1) \cdot k+l-1$, which equal to $1,2, \ldots,(q-1) \cdot k+l-1$ modulo n by Eq. (3).
Step 3. To complete our proof, it remains to show that (15) is the smallest $M_{q, n}-1$ consecutive positive numbers containing no integer whose digit sum is divisible by n.

According to Step 2, it suffices to consider the case of $l-1 \geq \operatorname{gcd}(q-1, l)$.
In this step, the length of the sequence is $M_{q, n}-1$. So in inequality (14), $\left(\left(\beta_{1}+1\right)(q-\right.$ $\left.1)^{m}\right)_{q}+\left(h(q-1)^{t}\right)_{q}=M_{q, n}-1$, which means

$$
\begin{equation*}
\alpha+1-\beta=(q-1) \cdot k+r . \tag{16}
\end{equation*}
$$

Combining with (10), we have

$$
\begin{equation*}
(q-1) \cdot(x+1)-r \equiv 0 \quad(\bmod (q-1) \cdot k+l) \tag{17}
\end{equation*}
$$

As the priori proof in Step 1, the smallest number possesses the form $(A Y)_{q}$. By $x=v_{q}(A+1)$, the minimal possible value of A is $\left((q-1)^{x}\right)_{q}$. Continuing the proof in Step 1, one can get the number of digits of Y (followed by A) must be $k+1$. To make $(A Y)_{q}$ as small as possible, we let $A=\left((q-1)^{x}\right)_{q}$.

Equality (16) implies that $\alpha=(q-1) \cdot k+r+\beta-1 \geq(q-1) \cdot k+r$. So, we may assume that $\alpha=(q-1) \cdot k+r^{\prime}$, where $r^{\prime} \in\{0,1, \ldots, l-1\}$. Then we can simplify (5) further to

$$
\begin{equation*}
s_{q}(A)+q-1-r^{\prime} \equiv 0 \quad(\bmod (q-1) \cdot k+l) \tag{18}
\end{equation*}
$$

Together with (17), (18) and $A=\left((q-1)^{x}\right)_{q}$, we immediately obtain $r^{\prime}=r$.
From (II) in Step 1, we can obtain that the length of the first part of the sequence is $r(q-1)^{k}$. Thus, the first term of such sequence is

$$
\left(A(q-1)^{k+1}\right)_{q}-\left(r(q-1)^{k}\right)_{q}+1=\left((q-1)^{x}(q-1)^{k+1}\right)_{q}-\left(r(q-1)^{k}\right)_{q}+1=\left((q-1)^{x}(q-1-r) 0^{k-1} 1\right)_{q} .
$$

By Step 2 and the discussions above in Step 3, the first term $\left((q-1)^{x}(q-1-r) 0^{k-1} 1\right)_{q}$ is the smallest possible one.

Proof of Theorem 5. Suppose the contrary, that for some integer j, there exists a sequence of $M_{q, n}$ consecutive positive integers containing no integer d with $s_{q}(d) \equiv j(\bmod n)$. For simplicity, we use $m_{1}, m_{2}, \ldots, m_{M_{q, n}}$ to denote these consecutive integers. Let c be the number of the digits of $m_{M_{q, n}}$, and let $b=\sum_{k=1}^{n-j} q^{k+c}$. Then $s_{q}\left(m_{i}\right)+n-j=s_{q}\left(m_{i}+b\right)$, $i \in\left\{1,2, \ldots, M_{q, n}\right\}$.

Note that $s_{q}\left(m_{i}\right) \neq j(\bmod n)$ means $s_{q}\left(m_{i}+b\right) \neq 0(\bmod n)$. Therefore, the new sequence $\left\{m_{k}+b\right\}_{k=1}^{M_{q, n}}$ is consecutive, but it contains no integer $m_{i}+b$ with $s_{q}\left(m_{i}+b\right) \equiv 0(\bmod n)$, which is a contradiction with Theorem 4.

3 Further conclusions and open problems

From Theorem 4, it is easy to obtain the special results below.
Corollary 12 (Binary system case). $M_{2, n}=2^{n}-1$.
Corollary 13 (Decimalism case). Let $n=9 \cdot k+l, k \in \mathbb{N}$, and $l \in\{1,2,3,4,5,6,7,8,9\}$, and then we have $M_{10, n}=\left(M_{10, l}+1\right) \cdot 10^{k}-1$. The details are presented in Table 1 .

l	$M_{10,9 k+l}$	example on $k=0$	example on $k \in \mathbb{Z}^{+}$
1	$\left(19^{k}\right)_{10}$	$(1)_{10}$	$(1)_{10}$
2	$\left(39^{k}\right)_{10}$	$(9)_{10}$	$\left(9^{4 k} 80^{k-1} 1\right)_{10}$
3	$\left(39^{k}\right)_{10}$	$(1)_{10}$	$(1)_{10}$
4	$\left(79^{k}\right)_{10}$	$(997)_{10}$	$\left(9^{6 k+2} 60^{k-1} 1\right)_{10}$
5	$\left(99^{k}\right)_{10}$	$(6)_{10}$	$\left(9^{k} 50^{k-1} 1\right)_{10}$
6	$\left(99^{k}\right)_{10}$	$(7)_{10}$	$\left(9^{k} 60^{k-1} 1_{10}\right.$
7	$\left(139^{k}\right)_{10}$	$(994)_{10}$	$\left(9^{3 k+2} 30^{k-1} 1\right)_{10}$
8	$\left(159^{k}\right)_{10}$	$(999993)_{10}$	$\left(9^{7 k+6} 20^{k-1} 1\right)_{10}$
9	$\left(99^{k}\right)_{10}$	$(1)_{10}$	$(1)_{10}$

Table 1: This table is a detailed explanation about Corollary 13, in which we symbolically set $\left(19^{0}\right)_{10}=1$, and the third and fourth columns of this table are the concrete realizations of Eq. (2).

Corollary 13 is a general form of Examples 1 and 2. To illustrate Table 1, we show two examples:

For $l=8$ and $k=0$, we obtain from Table 1 that $M_{10,8}=15$ and the 14 numbers, 9999993, $9999994, \ldots, 10000006$, are the smallest 14 consecutive positive integers whose digit sums are all not divisible by 8 .

For $l=6$ and $k=1$, Table 1 shows that $M_{10,15}=99$ and the 98 numbers, $961,962, \ldots, 1058$, are the smallest 98 consecutive positive integers whose digit sums are all not divisible by 15 .

Finally, we give some open problems.

1. How to extend the method in this paper to prove results about $\left(s_{q}(a k) \bmod n\right)_{k=1}^{\infty}$ for given integers $q, n, a \geq 2$?
2. How often do $M_{q, n}$ consecutive terms in $\mathrm{t}_{q, n}$ cover $\{0,1, \ldots, n-1\}$?

References

[1] J. F. Morgenbesser, J. Shallit and T. Stoll, Thue-Morse at multiples of an integer, J. Number Theory. 131 (2011), 1498-1512.
[2] J.-P. Allouche and J. Shallit, Sums of digits, overlaps, and palindromes, Discrete Math. Theor. Comput. Sci. 4 (2000), 1-10.

2010 Mathematics Subject Classification: 11B99, 11Y55, 11N25, 11A63, 68R15.

Keywords: digit sum, Thue-Morse sequence.
(Concerned with sequences A010060 and A141803.)

Received April 12 2016; revised version received July 24 2016; August 31 2016; January 7 2017. Published in Journal of Integer Sequences, January 72017.

Return to Journal of Integer Sequences home page.

[^0]: ${ }^{1}$ In fact, this means that X should be taken from $\left\{\left(0^{k-1} 1\right)_{q},\left(0^{k-1} 2\right)_{q}, \ldots,\left((q-1)^{k}\right)_{q}\right\}$.

