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Abstract

In this paper we study the distribution of the infinite word tq,n := (sq(k) mod n)∞k=0,
which we call the generalized Thue-Morse sequence. Here sq(k) is the digit sum of k
in base q. We give an explicit formulation of the exact minimal value of M such that
every M consecutive terms in tq,n cover the residue system of n, i.e., {0, 1, . . . , n− 1}.
Also, we prove some stronger related results.

1 Introduction and main results

For k ∈ N and q ∈ {2, 3, . . .}, let sq(k) denote the sum of the digits of k when expressed in
base q. By convention, we use k = (kd1

1 kd2
2 · · · kdl

l )q to denote

k = (k1k1 · · · k1
︸ ︷︷ ︸

d1

k2k2 · · · k2
︸ ︷︷ ︸

d2

· · · klkl · · · kl
︸ ︷︷ ︸

dl

)q,

where we first have d1 k1s followed by d2 k2s, and so on up until dl kls, and omit every di = 1.
For example, the binary expansion of 6 is 110, so 6 = (120)2 and s2(6) = 1 + 1 + 0 = 2.
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The sum of digits is an interesting object in number theory. In recent years, there
have been some new results about the distribution of the digit sum sequence (sq(k))

∞

k=1.
Morgenbesser, Shallit, and Stoll [1] considered the classical Thue-Morse sequence

(s2(k) mod 2)∞k=1.

They proved that the least number k satisfying s2(d · k) ≡ 1 (mod 2) is at most d + 4,
for every fixed positive integer d. For the general infinite word tq,n := (sq(k) mod n)∞k=0,
Allouche and Shallit [2] showed that the sequence tq,n over the alphabet {0, 1, . . . , n− 1} is
overlap-free if and only if n ≥ q.

In this paper we study the distribution of the generalized Thue-Morse sequence tq,n.
We give the exact minimal positive integer Mq,n (see Definition 3) such that every Mq,n

consecutive terms in tq,n contain j for every j ∈ {0, 1, . . . , n − 1}. First we give some basic
examples to help readers understand.

Example 1 (M10,7 = 13). Every 13 consecutive positive integers have an element whose
digit sum is divisible by 7. But it is false for 12 consecutive positive integers because the
sums of digits of the numbers 994, 995, . . . , 999, 1000, 1001, . . . , 1005, are all not divisible by
7.

Example 2 (M10,11 = 39). Every 39 consecutive positive integers have an element whose
digit sum is divisible by 11, but it is false for 38 consecutive positive integers. In fact, it is easy
to check that the sums of digits of the numbers 999981, 999982, . . . , 999999, 1000000, 1000001,
. . . , 1000018, are all not divisible by 11.

The general results are given in Corollary 13.
Next, we introduce the positive integers Mq,n, where n ∈ Z

+ and q ∈ {2, 3, . . .}.

Definition 3. Let q, n ∈ Z
+ with q ≥ 2 and n = k · (q − 1) + l, where l ∈ {0, 1, . . . , q − 2}

and k ∈ N. For convenience, let

r =

{

gcd(q − 1, l) ·
⌊

l−1
gcd(q−1,l)

⌋

, if 1 ≤ l ≤ q − 2;

0, if l = 0.
(1)

Now the number Mq,n is defined to be (l + r + 1) · qk − 1, or equivalently Mq,n = ((l+ r)(q−
1)k)q.

Theorem 4 and Theorem 5 are the main results of this paper.

Theorem 4. The number Mq,n is the least value of M , where every M consecutive terms in
tq,n contain 0.

In other words, every Mq,n consecutive positive numbers contain a number whose digit
sum is divisible by n. And there exists a sequence of Mq,n − 1 consecutive positive numbers
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such that it contains no integer whose digit sum is divisible by n. The least value of the first
term of such sequence is

{

(1)q, if l − 1 < gcd(q − 1, l);

((q − 1)x(q − 1− r)0k−11)q, if l − 1 ≥ gcd(q − 1, l),
(2)

where r is given in Eq. (1), and x is the minimal nonnegative integer solution of the congru-
ence equation

(q − 1) · (x+ 1)− r ≡ 0 (mod (q − 1) · k + l). (3)

Theorem 5 is a strengthened form of Theorem 4.

Theorem 5. For every j ∈ {0, 1, . . . , n− 1}, the minimum value of M , where every M con-
secutive terms in tq,n contain j, is also equal to Mq,n. In other words, every Mq,n consecutive
positive integers contain an integer d with sq(d) ≡ j (mod n). And there exists a sequence
of Mq,n − 1 consecutive positive integers containing no integer d with sq(d) ≡ j (mod n).
The first term of such sequence can be chosen as (1j0(q − 1)x(q − 1− r)0k−11)q, where x is
a nonnegative integer solution of the congruence equation (q − 1) · (x+ 1)− r ≡ 0 (mod n).

Remark 6. The facts below are true about Mq,n.

1. For the following set of sequences

Aq(n) = {(m+ i)ki=0|m, . . . ,m+ k are not divisible by n, where m, k ∈ Z
+},

we have max
S∈Aq(n)

length (S) = Mq,n − 1. Here, length (S) represents the number of terms in

sequence S.

2. Mq,n is the least value of M , where every M consecutive terms in tq,n cover the residue
system of n, i.e., {0, 1, . . . , n− 1}.

2 Proofs

In this section, we prove our main results. Before that, some lemmas as follows are needed.

Lemma 7. For positive integers a, b and m, the equation ax ≡ b (mod m) has a positive
integer solutions if and only if gcd(a,m)|b.

Lemma 8. For fixed h ∈ {0, . . . , q − 2} and t ∈ N, the following statements are true.

(1) Consider a sequence of consecutive integers starting with zero. If no integer in this
sequence has digit sum over s := (q − 1) · t + h, then the length of the sequence is not
longer than ((h+ 1)(q − 1)t)q that has sum of digits s+ 1.
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(2) Consider a sequence of consecutive nonnegative integers ending with ((q−1)k)q. If every
integer in this sequence has digit sum at least (q − 1) · k − s + 1, then the length of the
sequence is not longer than (h(q − 1)t)q.

Proof. (1) If t ≥ 1, then ((h+1)(q− 1)t)q − 1 = ((h+1)(q− 1)t−1(q− 2))q has sum of digits

(h+ 1) + (t− 1) · (q − 1) + (q − 2) = h+ t · (q − 1) = s.

If t = 0, then ((h + 1)(q − 1)0)q − 1 = h + 1 − 1 = h = s still has sum of digits s. Since
the terms of the sequence are consecutive, the length of such sequence is not longer than
((h+ 1)(q − 1)t)q − 1 + 1 = ((h+ 1)(q − 1)t)q.

(2) Let ((q − 1)k)q minus ((q − 1)k)q, . . . , (1)q, (0)q respectively. Then the sequence in
(2) starts with 0, and no integer in this sequence has digit sum over s− 1. Combining with
s− 1 = (q − 1) · t+ h− 1 and the conclusion of (1), we can easily derive that the length of
the sequence satisfying the condition is (h(q − 1)t)q.

Let ak(n) be the coefficient of qk of the representation of n in base q (i.e., n =
∑

∞

k=0 ak(n)q
k,

where ak(n) ∈ {0, 1, . . . , q − 1}) and let vq(n) = max{k ∈ N : qk|n}. We have the following
result.

Lemma 9. For every positive integer A, we have sq(A) = sq(A+ 1) + (q − 1) · x− 1, where
x is the number of consecutive (q − 1) in the tail of A, or equivalently, x = vq(A+ 1).

Hereinafter, we use [a, b] (resp., [a, b), (a, b) and (a, b]) to denote the set of integers in the
interval [a, b] (resp., [a, b), (a, b) and (a, b]), where a, b are integers.

Lemma 10. Below we make some relevant properties.

(1) For every integer X, sq(X) + 1 ≥ sq(X + 1).

(2) Let A, . . . , B be consecutive positive integers satisfying sq(A) = min
X∈[A,B]

sq(X). Then

{sq(A), . . . , sq(B)} = [sq(A), max
X∈[A,B]

sq(X)].

(3) Let A, A′, B and B′ be positive integers such that B−A = B′−A′, sq(A) = min
X∈[A,B]

sq(X) =

sq(A
′) = min

X′∈[A′,B′]
sq(X

′) and sq(A + C) ≥ sq(A
′ + C) for every C ∈ [0, B − A]. Then

{sq(A), . . . , sq(B)} ⊃ {sq(A
′), . . . , sq(B

′)}.

Proof. (1) is easy to verify by Lemma 9 and (3) can be deduced from (2). So it suffices to
prove (2).

Suppose the contrary, that there exists an integer N ∈ (sq(A), max
X∈[A,B]

sq(X)) such that

sq(X) 6= N for every X ∈ [A,B].
Let C = min{D ∈ [A,B] |sq(D) > N }. Then by the definitions of C and N , we have

sq(C) > N and sq(C − 1) < N . However, according to (1), sq(C − 1)+ 1 ≥ sq(C) > N , that
is sq(C − 1) ≥ N . This leads to a contradiction.
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Lemma 11. Let q, n ∈ Z
+ with q ≥ 2 and n = k · (q− 1)+ l, where l ∈ {0, 1, . . . , q− 2} and

k ∈ N. Every (l(q− 1)k)q consecutive terms of tq,n with indexes in [(A0k+1)q, ((A+1)0k+1)q)
for some A ∈ N, cover {0, 1, . . . , n− 1}, where A is always written in base q.

Proof. Consider a sequence of (l(q−1)k)q consecutive positive integers. We divide this proof
into two cases.

Case 1: l ≥ 1. In fact, the first qk = (10k)q terms of such sequence must contain a number N
satisfying ai(N) = 0, i ∈ {1, 2, . . . , k} and ak+1(N) ∈ {0, 1, . . . , q−l}. Therefore, the numbers
N,N+1, . . . , N+(q−1), N+(1(q−1))q, . . . , N+((q−1)(q−1))q, N+(1(q−1)(q−1))q, . . . , N+
((q−1)(q−1)(q−1))q, . . . , N+((q−1)k)q, N+(1(q−1)k)q, . . . , N+((l−1)(q−1)k)q all belong
to such sequence, and they all belong to the interval [(A0k+1)q, ((A+1)0k+1)q) as well. Their
digit sums are respectively sq(N), sq(N) + 1, . . . , sq(N) + (q − 1), sq(N) + q, . . . , sq(N) + k ·
(q−1), . . . , sq(N)+k · (q−1)+ l−1, which cover all the residue classes modulo k · (q−1)+ l.

Case 2: l = 0. If the ((q−1)k)q consecutive positive integers lie in [(Ab0k)q, (Ab(q−1)k)q] for
some b ∈ {0, 1, . . . , q− 1}, then they must be (Ab0k)q, (Ab0

k−11)q, . . . , (Ab(q− 1)k−1(q− 2))q
or (Ab0k−11)q, (Ab0

k−12)q, . . . , (Ab(q − 1)k)q, and their digit sums are s(A) + b, s(A) + b +
1, . . . , s(A) + b+ k · (q− 1)− 1 or s(A) + b+1, s(A) + b+2, . . . , s(A) + b+ k · (q− 1), which
cover the residue classes modulo k · (q − 1).

If the ((q− 1)k)q consecutive positive integers are not in [(Ab0k)q, (Ab(q− 1)k)q] for every
b ∈ {0, 1, . . . , q − 1}, then there exists an integer b ∈ [0, q − 2] such that (Ab(q − 1)k)q
and (A(b + 1)0k)q are contained in these consecutive positive integers. Hence, there exists
an integer X with the form of k digits1 such that these consecutive positive integers can
be written as (AbX)q, . . . , (Ab(q − 1)k)q, (A(b + 1)0k)q, . . . , (A(b + 1)(X − 2))q. Note that
s(A(b+1)Y ) ≥ s(Ab(Y +1)) for every Y with the form of k digits. Thus, by Lemma 10 (3) it is
easy to verify that the digit sums of (A(b+1)0k)q, . . . , (A(b+1)(X−2))q cover the digit sums of
(Ab0k−11)q, . . . , (Ab(X−1))q. Therefore, the digit sums of (AbX)q, . . . , (Ab(q−1)k)q, (A(b+
1)0k)q, . . . , (A(b+1)(X−2))q cover the digit sums of (Ab0k−11)q, (Ab0

k−12)q, . . . , (Ab(q−1)k)q,
and consequently they cover the residue classes modulo k · (q − 1).

We are now ready to prove our main results.

Proof of Theorem 4. We divide our proof into three steps.

Step 1. In this step we prove every Mq,n consecutive positive integers contain a number
whose digit sum is divisible by n.

Suppose the contrary, that there exists a sequence possessing Mq,n consecutive positive
integers which contains no number whose digit sum is divisible by n.

By Lemma 11 and the fact that (l(q − 1)k)q ≤ Mq,n from the definition of Mq,n, the
sequence is not contained in [(A0k+1)q, ((A + 1)0k+1)q) for every A ∈ N. Furthermore, it is
obvious that there exists an A ∈ N such that the sequence can be written in two parts

(As1 · · · sk+1)q, . . . , (A(q − 1)k+1)q
︸ ︷︷ ︸

the first part

, ((A+ 1)0k+1)q, . . . , ((A+ 1)e1 · · · ek+1)q
︸ ︷︷ ︸

the second part

(4)

1In fact, this means that X should be taken from {(0k−11)q, (0
k−12)q, . . . , ((q − 1)k)q}.
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where si, ei ∈ {0, 1, . . . , q − 1} satisfy

(A(q − 1)k+1)q − (As1 · · · sk+1)q < (l(q − 1)k)q − 1,

((A+ 1)e1 · · · ek+1)q − ((A+ 1)0k+1)q < (l(q − 1)k)q − 1

and
((A+ 1)e1 · · · ek+1)q − (As1 · · · sk+1)q = Mq,n − 1.

Notice that
sq((A(q − 1)k+1)q) = sq(A) + (q − 1) · (k + 1)

and
sq(((A+ 1)0k+1)q) = sq(A+ 1).

Suppose
sq(A) + (q − 1) · (k + 1) ≡ α (mod (q − 1) · k + l) (5)

and
sq(A+ 1) ≡ β (mod (q − 1) · k + l), (6)

where α, β ∈ {0, 1, 2, . . . , (q − 1) · k + l − 1}. Since every number F in the sequence shown
in (4) satisfies sq(F ) 6≡ 0 (mod n), we indeed have

α, β ∈ {1, 2, . . . , (q − 1) · k + l − 1}. (7)

Then the digit sums of the second part of the sequence shown in (4) are contained in the
following n− β numbers:

sq(A+ 1), . . . , sq(A+ 1) + (q − 1) · k + l − 1− β. (8)

The digit sums of the first part of the sequence shown in (4) are contained in the following
α numbers:

sq(A) + (q − 1) · (k + 1)− α + 1, . . . , sq(A) + (q − 1) · (k + 1). (9)

By Lemma 9, we have sq(A) = sq(A + 1) + (q − 1) · x − 1, where x is the number of
consecutive (q − 1) in the tail of A, i.e., x := vq(A+ 1). Hence, we deduce from (5) that

sq(A+ 1) + (q − 1) · x− 1 + (q − 1) · (k + 1) ≡ α (mod (q − 1) · k + l).

Combining with (6), we have

β − α + (q − 1) · (x+ k + 1)− 1 ≡ 0 (mod (q − 1) · k + l). (10)

According to Lemma 7, (10) has a positive integer solution if and only if gcd(q − 1, (q − 1) ·
k + l)|α + 1− β, namely

gcd(q − 1, l)|α + 1− β. (11)
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A quick inspection of (7) reveals α+1−β ≤ (q−1)·k+l−1. Note that (q−1)·k+r is the
largest integer which is divisible by gcd(q− 1, l) and not larger than (q− 1) · k+ l− 1. Thus,
combining with (7) and (11), it is easy to see that α+1−β is not larger than (q− 1) · k+ r.
Next, in order to get a contradiction, we will estimate the lengths of the two parts of the
sequence shown in (4).

(I). We will apply Lemma 8 (1) to the second part of the sequence. Combining with
Lemma 11, we know that the number of the consecutive integers behind (A+ 1)0k+1

is less than (l(q− 1)k)q, and then these integers all have the form ((A+1)X)q, where
X possesses at most k + 1 digits. Thus, from sq(((A + 1)X)q) = sq(A + 1) + sq(X)
and (8) we know

sq(X) = sq(((A+ 1)X)q)− sq(A+ 1)

≤ sq(A+ 1) + (q − 1) · k + l − 1− β − sq(A+ 1)

= (q − 1) · k + l − 1− β (12)

:= (q − 1) ·m+ β1, (13)

where m ≤ k and β1 ∈ {0, 1, . . . , q − 2}. Note that the least value of sq(X) is 0.
Therefore, by Lemma 8 (1), we can obtain that the length of the second part of the
sequence is at most ((β1 + 1)(q − 1)m)q.

(II). We will apply Lemma 8 (2) to the first part of the sequence. Combining with Lemma
11, we know that the number of the consecutive integers before (A(q− 1)k+1)q is less
than (l(q − 1)k)q, and then obtain these integers all have the form (AY )q, where Y

possesses at most k + 1 digits. Therefore, from sq((AY )q) = sq(A) + sq(Y ) and (9),
we have

sq(Y ) = sq((AY )q)− sq(A)

≥ sq(A) + (q − 1) · (k + 1)− α + 1− sq(A)

= (q − 1) · (k + 1)− α + 1.

Let α = (q − 1) · t + h, where t ≤ k and h ∈ {0, 1, . . . , q − 2}. Since Y ends up with
(q − 1)k+1, by Lemma 8 (2), the length of the first part of the sequence must be at
most h(q − 1)t.

Summing up the above, we obtain the length of this sequence is at most

((β1 + 1)(q − 1)m)q + (h(q − 1)t)q.

Since (h(q − 1)t)q < ((q − 1)k)q for t ≤ k − 1, we should let t = k to make ((β1 + 1)(q −
1)m)q+(h(q−1)t)q as large as possible. And then, we obtain from (II) that h = α−(q−1) ·k.

Since ((β1 + 1)(q − 1)m)q ≤ ((q − 1)k−1)q < ((q − 1)k)q for m ≤ k − 2, we should take
m ∈ {k − 1, k} to make ((β1 + 1)(q − 1)m)q + (h(q − 1)t)q as large as possible.
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If l = 0, (12) and (13) imply m ≤ k − 1 and thus we should let m = k − 1. Then, we
obtain from (I) that q − 1 − 1 − β = β1 ≤ q − 2. Hence, ((β1 + 1)(q − 1)m)q ≤ ((q − 1)k)q.
To make ((β1 + 1)(q − 1)m)q + (h(q − 1)t)q as large as possible, we should take β1 = q − 2.
And in this case, β = l = 0.

If l ≥ 1, (12) and (13) imply m ≤ k and thus we should let m = k. Then, we obtain
from (I) that l − 1− β = β1 ≥ 0.

Note that in both cases, we have

((β1 + 1)(q − 1)m)q + (h(q − 1)t)q = ((l − β)(q − 1)k)q + ((α− (q − 1) · k)(q − 1)k)q

= ((l + α + 1− β − (q − 1) · k)(q − 1)k)q − 1

≤ ((l + r)(q − 1)k)q − 1 = Mq,n − 1, (14)

which is a contradiction. The proof in Step 1 is completed.

Step 2. In this step, we will prove there exists a sequence of Mq,n − 1 consecutive positive
numbers containing no integer whose digit sum is divisible by n.

Note that in the case of l − 1 < gcd(q − 1, l), we have Mq,n = (l(q − 1)k)q by Definition
3, and thus the numbers 1, 2, . . . , (l(q − 1)k−1(q − 2))q are Mq,n − 1 consecutive positive
integers containing no integer whose digit sum is divisible by n = k · (q − 1) + l. So we only
need to explain the case of l − 1 ≥ gcd(q − 1, l) for detail. Now, we verify the following
Mq,n − 1 = ((l + r)(q − 1)k)q − 1 consecutive positive integers

((q − 1)x(q − 1− r)0k−11)q, . . . , ((q − 1)x+1+k)q
︸ ︷︷ ︸

the first part

, (10x+1+k)q, . . . , (10
x(l − 1)(q − 1)k−1(q − 2))q

︸ ︷︷ ︸

the second part

(15)
contain no integer whose digit sum is divisible by n.

The sums of digits of the integers in the first part shown in (15) are contained in (q− 1) ·
x+ q− r, . . . , (q− 1) · (x+1+ k), which equal to 1, 2, . . . , (q− 1) · k+ r modulo n according
to Eq. (3).

The sums of digits of the integers in the second part shown in (15) are contained in
1, . . . , (q − 1) · k + l − 1, which equal to 1, 2, . . . , (q − 1) · k + l − 1 modulo n by Eq. (3).

Step 3. To complete our proof, it remains to show that (15) is the smallest Mq,n − 1
consecutive positive numbers containing no integer whose digit sum is divisible by n.

According to Step 2, it suffices to consider the case of l − 1 ≥ gcd(q − 1, l).
In this step, the length of the sequence is Mq,n − 1. So in inequality (14), ((β1 + 1)(q −

1)m)q + (h(q − 1)t)q = Mq,n − 1, which means

α + 1− β = (q − 1) · k + r. (16)

Combining with (10), we have

(q − 1) · (x+ 1)− r ≡ 0 (mod (q − 1) · k + l). (17)
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As the priori proof in Step 1, the smallest number possesses the form (AY )q. By x = vq(A+1),
the minimal possible value of A is ((q − 1)x)q. Continuing the proof in Step 1, one can get
the number of digits of Y (followed by A) must be k+1. To make (AY )q as small as possible,
we let A = ((q − 1)x)q.

Equality (16) implies that α = (q− 1) · k+ r+β− 1 ≥ (q− 1) · k+ r. So, we may assume
that α = (q − 1) · k + r′, where r′ ∈ {0, 1, . . . , l − 1}. Then we can simplify (5) further to

sq(A) + q − 1− r′ ≡ 0 (mod (q − 1) · k + l). (18)

Together with (17), (18) and A = ((q − 1)x)q, we immediately obtain r′ = r.
From (II) in Step 1, we can obtain that the length of the first part of the sequence is

r(q − 1)k. Thus, the first term of such sequence is

(A(q−1)k+1)q−(r(q−1)k)q+1 = ((q−1)x(q−1)k+1)q−(r(q−1)k)q+1 = ((q−1)x(q−1−r)0k−11)q.

By Step 2 and the discussions above in Step 3, the first term ((q − 1)x(q − 1− r)0k−11)q is
the smallest possible one.

Proof of Theorem 5. Suppose the contrary, that for some integer j, there exists a sequence
of Mq,n consecutive positive integers containing no integer d with sq(d) ≡ j (mod n). For
simplicity, we use m1,m2, . . . ,mMq,n

to denote these consecutive integers. Let c be the

number of the digits of mMq,n
, and let b =

n−j∑

k=1

qk+c. Then sq(mi) + n − j = sq(mi + b),

i ∈ {1, 2, . . . ,Mq,n}.
Note that sq(mi) 6= j (mod n) means sq(mi+b) 6= 0 (mod n). Therefore, the new sequence

{mk + b}
Mq,n

k=1 is consecutive, but it contains no integer mi + b with sq(mi + b) ≡ 0 (mod n),
which is a contradiction with Theorem 4.

3 Further conclusions and open problems

From Theorem 4, it is easy to obtain the special results below.

Corollary 12 (Binary system case). M2,n = 2n − 1.

Corollary 13 (Decimalism case). Let n = 9 · k + l, k ∈ N, and l ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9},
and then we have M10,n = (M10,l + 1) · 10k − 1. The details are presented in Table 1.
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l M10,9k+l example on k = 0 example on k ∈ Z
+

1 (19k)10 (1)10 (1)10
2 (39k)10 (9)10 (94k80k−11)10
3 (39k)10 (1)10 (1)10
4 (79k)10 (997)10 (96k+260k−11)10
5 (99k)10 (6)10 (9k50k−11)10
6 (99k)10 (7)10 (9k60k−11)10
7 (139k)10 (994)10 (93k+230k−11)10
8 (159k)10 (9999993)10 (97k+620k−11)10
9 (99k)10 (1)10 (1)10

Table 1: This table is a detailed explanation
about Corollary 13, in which we symbolically set
(190)10 = 1, and the third and fourth columns of
this table are the concrete realizations of Eq. (2).

Corollary 13 is a general form of Examples 1 and 2. To illustrate Table 1, we show two
examples:

For l = 8 and k = 0, we obtain from Table 1 that M10,8 = 15 and the 14 numbers,
9999993, 9999994, . . . , 10000006, are the smallest 14 consecutive positive integers whose digit
sums are all not divisible by 8.

For l = 6 and k = 1, Table 1 shows thatM10,15 = 99 and the 98 numbers, 961, 962, . . . , 1058,
are the smallest 98 consecutive positive integers whose digit sums are all not divisible by 15.

Finally, we give some open problems.

1. How to extend the method in this paper to prove results about (sq(ak) mod n)∞k=1 for
given integers q, n, a ≥ 2?

2. How often do Mq,n consecutive terms in tq,n cover {0, 1, . . . , n− 1}?
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