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Abstract

For any set of positive and relatively prime integers A, the set of positive integers
that are not representable as a nonnegative integral linear combination of elements of
A is always a non-empty finite set. Thus we may define g(A), n(A), s(A) to denote
the largest integer in, the number of integers in, and the sum of integers in this finite
set, respectively. We determine g(A), n(A), s(A) when A = {a, b, c} with a | lcm(b, c).
A particular case of this is when A = {kℓ, ℓm,mk}, with k, ℓ,m pairwise coprime. We
also solve a related problem when a | lcm(b, c), thereby providing another proof of the
formula for g(A).

1 Introduction

The following problem was the third of the six problems in the Twenty-Fourth International
Mathematical Olympiad, held in Paris on July 6–7, 1983:

Let a, b, c be positive integers satisfying (a, b) = (b, c) = (c, a) = 1. Show that
2abc− ab− bc− ca is the largest integer not representable as

xbc+ yca+ zab

with nonnegative integers x, y, z.
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This is a special case of the well-known linear Diophantine problem, posed by Sylvester
[7], but known as the Frobenius problem, after G. Frobenius who was largely instrumental
in popularizing the problem. Consider a finite set A = {a1, . . . , ak} of positive integers
with gcd A := gcd(a1, . . . , ak) = 1. Let Γ(A) := {a1x1 + · · · + akxk : xi ∈ Z≥0}. Then
Γc(A) := Z≥0 \ Γ(A) can be shown to be a finite set, and this allows us to define the
Frobenius number g(A) and the Sylvester number n(A):

g(A) := maxΓc(A), n(A) :=
∣

∣Γc(A)
∣

∣.

Here, and elsewhere, |X| denotes the cardinality of the finite set X. The Frobenius problem
is to determine g(A) and n(A) in the general case.

For A = {a, b}, gcd(a, b) = 1, Sylvester [7] showed

g(a, b) = ab− a− b, n(a, b) =
1

2
(a− 1)(b− 1).

Exact values for g(A) have been known only for few cases when |A| > 2 – in some cases
when the elements of A satisfy a specific condition. For instance, g(kℓ, ℓm,mk) = 2kℓm −
kℓ− ℓm−mk whenever gcd(k, ℓ) = gcd(ℓ,m) = gcd(m, k) = 1. On the other hand, bounds
and algorithms to compute g(A), especially in the case |A| = 3, have been a major source of
research. Corresponding results for n(A) have been much rarer, even in special cases; refer
to [4].

Brown and Shiue [1] introduced the related problem of determining the function

s(A) :=
∑

n∈Γc(A)

n,

and found

s(a, b) =
1

12
(a− 1)(b− 1)(2ab− a− b− 1)

when gcd(a, b) = 1; also see [10].
Tripathi [8] introduced the following variation on the Frobenius problem. The set Γ(A)

is closed under addition, and so n+Γ(A) ⊆ Γ(A) whenever n ∈ Γ(A). It is conceivable that
n ∈ Γc(A) satisfy a slightly modified condition, replacing Γ(A) by Γ(A) \ {0}. In fact, g(A)
is clearly the largest number satisfying such a condition. Thus we study the set given by

S⋆(A) :=
{

n ∈ Γc(A) : n+ Γ⋆(A) ⊂ Γ⋆(A)
}

,

where Γ⋆(A) = Γ(A) \ {0}.
In this note, we consider the set A = {a, b, c} with gcd(a, b) = 1, where a divides lcm(b, c).

Observe that the IMO problem introduced at the beginning of this article, involving triples
a = kℓ, b = ℓm, c = mk with k, ℓ,m pairwise coprime, satisfies the condition a divides
lcm(b, c). We determine g(A), n(A), s(A), and the set S⋆(A), giving more than one proof
for each of the results for g(A) and n(A). We list all results that we will base our study on
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in Section 2, and prove our main results, listed as Theorem 1 and Corollary 2, in Section 3.
The results of Corollary 2 follow directly from those of Theorem 1, and the results for g(A),
n(A) and S⋆(A) are also special cases of [9, Theorem 1, 2]. The proofs of the results in
Corollary 2 are omitted.

Theorem 1. Let A = {a, b, c}, where gcd(a, b, c) = 1 and a | lcm(b, c). Then

(a)
g(a, b, c) = lcm(a, b) + lcm(a, c)− (a+ b+ c).

(b)

n(a, b, c) =
1

2

(

lcm(a, b) + lcm(a, c)− (a+ b+ c) + 1
)

.

(c)

s(a, b, c) =
1

12

(

a2 + b2 + c2 + 3abc+ 3(ab+ bc+ ca)− 3(a+ b+ c)
(

lcm(a, b) + lcm(a, c)
)

+2
((

lcm(a, b)
)2

+
(

lcm(a, c)
)2)

− 1
)

.

(d)

S⋆({a, b, c}) =
{

lcm(a, b) + lcm(a, c)− (a+ b+ c)
}

.

Corollary 2. Let k, ℓ,m be pairwise coprime, positive integers. If σ1 = k + ℓ + m, σ2 =
kℓ+ ℓm+mk, and σ3 = kℓm, then

g(kℓ, ℓm,mk) = 2σ3 − σ2, n(kℓ, ℓm,mk) =
1

2

(

2σ3 − σ2 + 1
)

,

s(kℓ, ℓm,mk) =
1

12

(

7σ2
3 − 6σ2 σ3 + σ2

2 + σ1 σ3 − 1
)

, S⋆
(

{kℓ, ℓm,mk}
)

=
{

2σ3 − σ2

}

.

2 Preliminary results

Suppose A is any set of positive integers with gcdA = 1, and let a ∈ A. For each residue
class C modulo a, let mC denote the least integer in Γ(A) ∩ C. It is well known that the
functions g, n and s are easily determined from the values of mC. The following result,
part (i) of which is due to Brauer and Shockley [2], part (ii) to Selmer [6], and part (iii) to
Tripathi [10], is often a key step in this determination.

Proposition 3. [2, 6, 10]
Let A be any set of positive integers with gcd(A) = 1. For any a ∈ A,

g(A) =
(

max
C

mC

)

− a, n(A) =
1

a

∑

C

mC −
1

2
(a− 1),

s(A) =
1

2a

∑

C

mC
2 −

1

2

∑

C

mC +
1

12
(a2 − 1),
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where the maximum and the sums are taken over all nonzero classes C modulo a.

Generating functions naturally enter as a tool in the study of the Frobenius problem.
The results in Proposition 4 are the combinatorial analogues of the corresponding results in
Proposition 3. The generating function fA for the set A can be used to evaluate the functions
g and n (this is almost folklore, but the evaluation of n in this manner actually appears in
[7]). The use of the function fA to evaluate s(A) is due to Brown and Shiue [1]; in fact, they
used this method to determine s(a, b).

Proposition 4. [1, 7]
Let A be any set of positive integers with gcd(A) = 1. Set

fA(t) =
∑

a∈A

ta.

Then

fΓc(A)(t) =
1

1− t
− fΓ(A)(t),

and

g(A) = deg fΓc(A)(t), n(A) = lim
t→1

fΓc(A)(t), s(A) = lim
t→1

f ′
Γc(A)(t).

The following reduction formulae for g(A), due to Johnson [3] for the three variable case
and to Brauer and Shockley [2] for the general case, and for n(A) due to Rødseth [5], are
useful in cases when all but one member of A share a common divisor greater than 1.

Proposition 5. [2, 5]
Let A be any set of positive integers with gcd(A) = 1. If a ∈ A is such that gcd(A\{a}) = d,
and A′ = 1

d

(

A \ {a}
)

, then

g
(

A
)

= d · g
(

A′ ∪ {a}
)

+ a(d− 1), n
(

A
)

= d · n
(

A′ ∪ {a}
)

+ 1
2
(a− 1)(d− 1).

The set S⋆(A) consists of integers n in Γc(A) such that translating the set of positive
integers in Γ(A) by n results in a subset of Γ(A). Since g(A) ∈ S⋆(A), determining S⋆(A)
ensures that g(A) is also determined. The following result is due to Tripathi [8].

Proposition 6. [8]
Let A be any set of positive integers with gcd(A) = 1. Let a ∈ A, and let mx denote the least

integer in Γ(A) congruent to x modulo a, 1 ≤ x ≤ a− 1. Then

S⋆(A) =
{

mx − a : mx +my ≥ mx+y + a for 1 ≤ y ≤ a− 1
}

.
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3 Main results

Throughout this section, we consider the set A = {a, b, c} with gcd(a, b, c) = 1 and a |
lcm(b, c). We prove Theorem 1 by using the results in Section 2. More specifically, we use
Proposition 3 and Proposition 5 to determine both g(A) and n(A). We also use Proposition
3 to determine s(A). We use Proposition 4 to determine g(A) and n(A) via the proofs
using Proposition 3. Finally, we use Proposition 6 to determine S⋆(A), which incidentally
also provides another proof for the formula for g(A). The result of Corollary 2 is a direct
consequence of Theorem 1; the details are omitted.

3.1 Determining g(A) and n(A) from Proposition 5

We first use the reduction formula given in Proposition 5 to determine both g(A) and n(A).
The following lemma is crucial to many results in this section.

Lemma 7. Suppose a, b, c are positive integers, with gcd(a, b, c) = 1. If a | lcm(b, c), then
a = gcd(a, b) · gcd(a, c).

Proof. Let p be a prime divisor of a, and let pα, pβ, pγ be the highest power of p dividing a,
b, c, respectively. Then 0 = min{β, γ} < α ≤ max{β, γ}. Thus a = rs, where r = gcd(a, b),
s = gcd(a, c) and gcd(r, s) = 1.

Proof of Theorem 1, (a) and (b).
From Lemma 7 we have a = rs, where r = gcd(a, b), s = gcd(a, c) and gcd(r, s) = 1. Note
that bs = ab/r = lcm(a, b) and cr = ac/s = lcm(a, c).

If 1 ∈ A, then Γ(A) = Z≥0, and so we define g(A) = −1 in this case. We apply Proposition
5.

(a)

g(a, b, c) = r · g
(

a
r
, b
r
, c
)

+ c(r − 1)

= r
(

s · g
(

1, b
r
, c
s

)

+ b
r
(s− 1)

)

+ c(r − 1)

= a · g
(

1, b
r
, c
s

)

+ b(s− 1) + c(r − 1)

= bs+ cr − a− b− c

= lcm(a, b) + lcm(a, c)− (a+ b+ c).
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(b)

n(a, b, c) = r · n
(

a
r
, b
r
, c
)

+ 1
2
(c− 1)(r − 1)

= r
(

s · n
(

1, b
r
, c
s

)

+ 1
2

(

b
r
− 1
)

(s− 1)
)

+ 1
2
(c− 1)(r − 1)

= a · n
(

1, b
r
, c
s

)

+ 1
2
(b− r)(s− 1) + 1

2
(c− 1)(r − 1)

= 1
2
(b− r)(s− 1) + 1

2
(c− 1)(r − 1)

= 1
2

(

bs+ cr − rs− b− c+ 1
)

= 1
2

(

lcm(a, b) + lcm(a, c)− (a+ b+ c) + 1
)

.

�

3.2 Determining g(A), n(A) and s(A) from Proposition 3

We next use Proposition 3 to determine g(A), n(A), and s(A). This requires the determina-
tion of mC for each nonzero residue class C modulo a. We note that the maximum and the
sum in Proposition 3 may also be taken to include m0 = 0.

Theorem 8. Let A = {a, b, c}, where gcd(a, b, c) = 1 and a | lcm(b, c). Let mi denote the

least integer in Γ({a, b, c}) which is congruent to i modulo a. Then

{

mi : 0 ≤ i ≤ a− 1
}

=
{

bx+ cy : 0 ≤ x ≤ s− 1, 0 ≤ y ≤ r − 1
}

,

where r = gcd(a, b) and s = gcd(a, c).

Proof. Suppose bx1+ cy1 ≡ bx2+ cy2 (mod a) with 0 ≤ x1, x2 ≤ s−1 and 0 ≤ y1, y2 ≤ r−1.
Then bx0 ≡ cy0 (mod a) with |x0| < s and |y0| < r. Since r = gcd(a, b) and s = gcd(a, c),
bx0 mod a ∈ {0, r, 2r, 3r, . . . , a−r} and cy0 mod a ∈ {0, s, 2s, 3s, . . . , a−s}. Since rs = a and
gcd(r, s) = 1, it follows that bx0 mod a = cy0 mod a = 0. This is only possible if x0 = y0 = 0
since |x0| < s and |y0| < r, which in turn implies x1 = x2 and y1 = y2. Since rs = a, it
follows that the set {bx + cy : 0 ≤ x ≤ s − 1, 0 ≤ y ≤ r − 1} is a complete residue system
modulo a.

Fix x0 ∈ {0, . . . , s−1} and y0 ∈ {0, . . . , r−1}. We show that bx0+ cy0−a /∈ Γ({a, b, c}).
Suppose, to the contrary, that bx0 + cy0 − a = az + bx + cy for some nonnegative integers
x, y, z. Let x = x1 + ls, 0 ≤ x1 ≤ s − 1, l ≥ 0, and y = y1 + µr, 0 ≤ y1 ≤ r − 1, µ ≥ 0.
Then bx1+ cy1 ≡ bx+ cy ≡ bx0+ cy0 (mod a). By the argument in the preceding paragraph,
x1 = x0 and y1 = y0. But this is clearly impossible since bx0 + cy0 − a = az + bx + cy ≥
bx+ cy ≥ bx1+ cy1 = bx0+ cy0. Therefore bx0+ cy0−a /∈ Γ({a, b, c}) for each 0 ≤ x0 ≤ s−1
and 0 ≤ y0 ≤ r − 1.

Proof of Theorem 1, (a), (b), and (c).
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(a) Recall that bs = lcm(a, b) and cr = lcm(a, c). We apply Proposition 3.

g(a, b, c) =

(

max
0≤i≤a−1

mi

)

− a

=

(

max
0≤x≤s−1, 0≤y≤r−1

(bx+ cy)

)

− a

= b(s− 1) + c(r − 1)− a

= lcm(a, b) + lcm(a, c)− (a+ b+ c).

(b)

n(a, b, c) =
1

a

a−1
∑

i=0

mi −
1

2
(a− 1)

=
1

a

s−1
∑

x=0

r−1
∑

y=0

(bx+ cy)−
1

2
(a− 1)

=
1

a

s−1
∑

x=0

(

brx+
1

2
cr(r − 1)

)

−
1

2
(a− 1)

=
1

a

(

1

2
brs(s− 1) +

1

2
crs(r − 1)

)

−
1

2
(a− 1)

=
1

2

(

b(s− 1) + c(r − 1)
)

−
1

2
(a− 1)

=
1

2

(

lcm(a, b) + lcm(a, c)− (a+ b+ c) + 1
)

.
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(c)

s(a, b, c) =
1

2a

a−1
∑

i=0

mi
2 −

1

2

a−1
∑

i=0

mi +
1

12
(a2 − 1)

=
1

2a

s−1
∑

x=0

r−1
∑

y=0

(bx+ cy)2 −
1

2

s−1
∑

x=0

r−1
∑

y=0

(bx+ cy) +
1

12
(a2 − 1)

=
1

2a

s−1
∑

x=0

(

b2rx2 + bcr(r − 1)x+
1

6
c2r(r − 1)(2r − 1)

)

−
1

2

s−1
∑

x=0

(

brx+
1

2
cr(r − 1)

)

+
1

12
(a2 − 1)

=
1

12a
b2rs(s− 1)(2s− 1) +

1

4a
bcr(r − 1)s(s− 1) +

1

12a
c2rs(r − 1)(2r − 1)

−
1

4
brs(s− 1)−

1

4
crs(r − 1) +

1

12
(a2 − 1)

=
1

12

(

b2(s− 1)(2s− 1) + c2(r − 1)(2r − 1)
)

+
1

4

(

bc(r − 1)(s− 1)− ab(s− 1)− ac(r − 1)
)

+
1

12
(a2 − 1)

=
1

12

(

2
(

(bs)2 + (cr)2
)

− 3b(bs)− 3c(cr) + b2 + c2 + 3abc

−3bc(r + s) + 3bc+ 3ab+ 3ac− 3a(bs+ cr) + a2 − 1
)

=
1

12

(

a2 + b2 + c2 + 3abc+ 3(ab+ bc+ ca)− 3(a+ b+ c)
(

lcm(a, b) + lcm(a, c)
)

+2
((

lcm(a, b)
)2

+
(

lcm(a, c)
)2)

− 1
)

.

�

3.3 Determining g(A), n(A) and s(A) from Proposition 4

Theorem 8 plays a crucial role in determining g(A), n(A), and s(A) using Proposition 4. In
each case, however, we are only able to reduce the problem to an expression that we have
already evaluated in Subsection 3.2, but not able to compute these functions directly. In
effect, this is a demonstration of how the results in Proposition 3 and Proposition 4 are
connected.

From Theorem 8 we know that every n ∈ Γ(A) may be uniquely expressed as bx+cy+az,
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with x ∈ {0, . . . , s− 1}, y ∈ {0, . . . , r − 1}, and z ∈ Z≥0. Hence

fΓc(A)(t) =
1

1− t
− fΓ(A)(t)

=
1

1− t
−

∑

0≤x≤s−1
0≤y≤r−1

z≥0

tbx+cy+az

=
1

1− t
−

(

∑

0≤x≤s−1

tbx

)(

∑

0≤y≤r−1

tcy

)(

∑

z≥0

taz

)

=
1

1− t
−

1− tbs

1− tb
·
1− tcr

1− tc
·

1

1− ta
.

However, it is perhaps more useful to use the equivalent formulation

fΓc(A)(t) =
1

1− ta







∑

0≤z≤a−1

tz −
∑

0≤x≤s−1
0≤y≤r−1

tbx+cy







to see how the computation of g(A) and n(A) would follow from Proposition 4 and Theorem
8. Deriving the formulae for g(A), n(A), and s(A) directly from either of the two equivalent
versions of fΓc(A)(t) appear to be difficult; instead, we use Proposition 4 to reduce the
respective formulae to the situation in Subsection 3.2. The reduction of the formula for s(A)
in Proposition 4 to that in Proposition 3 in this special case is tedious, and is omitted in
this discussion.

(a)

g(a, b, c) = deg













1

1− t
−

∑

0≤x≤s−1
0≤y≤r−1

z≥0

tbx+cy+az













= maxΓc(A) =
(

max
C

mC

)

− a.
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(b)

n(a, b, c) = lim
t→1

1

1− ta







∑

0≤z≤a−1

tz −
∑

0≤x≤s−1
0≤y≤r−1

tbx+cy







= lim
t→1

1

−ata−1













∑

1≤z≤a−1

ztz−1 −
∑

0≤x≤s−1
0≤y≤r−1
(x,y) 6=(0,0)

(bx+ cy)tbx+cy−1













=
1

a













∑

0≤x≤s−1
0≤y≤r−1
(x,y) 6=(0,0)

(bx+ cy)−
∑

1≤z≤a−1

z













=
1

a

∑

C

mC −
1

2
(a− 1).

�

3.4 Deriving n(A) from g(A)

The results of Theorems 1 imply n ∈ Γ({a, b, c}) if and only if g(a, b, c) − n /∈ Γ({a, b, c}).
Were this to hold, it would follow by pairing n with g(a, b, c) − n for n ∈ {0, . . . , g(a, b, c)}
that

n(a, b, c) = 1
2

(

g(a, b, c) + 1
)

.

Thus the formula for n(a, b, c) would follow from that of g(a, b, c), and vice-versa, in this
case.

It is easy to see that at least one of n and g(a, b, c) − n must belong to Γc({a, b, c}); if
both belonged to Γ({a, b, c}), it would lead to their sum g(a, b, c) belonging to Γ({a, b, c}).
Therefore we always have the inequality

n(a, b, c) ≥ 1
2

(

g(a, b, c) + 1
)

,

with equality precisely when

n /∈ Γ({a, b, c}) implies g(a, b, c)− n ∈ Γ({a, b, c})

holds.
Suppose n /∈ Γ({a, b, c}). Then n = bx + cy − az for some x ∈ [0, s − 1], y ∈ [0, r − 1],

and z ≥ 1 by Theorem 8. Hence

g(a, b, c)−n = b(s−1)+c(r−1)−a−(bx+cy−az) = b(s−1−x)+c(r−1−y)+a(z−1) ∈ Γ({a, b, c}).

Therefore n(a, b, c) = 1
2

(

g(a, b, c) + 1
)

holds for A = {a, b, c} with a | lcm(b, c).
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3.5 Determining the set S⋆(A)

Determining the set S⋆(A) is dependent on being able to compute each mC. Since Theorem
8 determines the set of all mC, we may use Proposition 6 to determine S⋆(A), which in turn
gives us g(A).

Proof of Theorem 1 (d).
Each mC is of the form bx + cy with 0 ≤ x ≤ s − 1 and 0 ≤ y ≤ r − 1 by Theorem 8 (a);
note that m0 = 0. Note that bx1 + bx2 ≡ b

(

(x1 + x2) mod s
)

(mod a) since bs = lcm(a, b)
and cy1 + cy2 ≡ c

(

(y1 + y2) mod r
)

(mod a) since cr = lcm(a, c). So if mi = bx1 + cy1 and
mj = bx2 + cy2, then mi+j = b

(

(x1 + x2) mod s
)

+ c
(

(y1 + y2) mod r
)

.
Although it is apparent from the definition of S⋆(A) that g(A) ∈ S⋆(A), we nevertheless

provide a direct proof using Proposition 6. We recall that lcm(a, b) = bs and lcm(a, c) = cr,
so that g(A) = lcm(a, b) + lcm(a, c)− (a+ b+ c) = b(s− 1) + c(r − 1)− a.

Let x ∈ {0, . . . , s − 1} and y ∈ {0, . . . , r − 1}, with (x, y) 6= (0, 0). If x > 0 and y > 0,
then

(

b(s−1)+c(r−1)
)

+(bx+cy) = b(x−1)+c(y−1)+lcm(a, b)+lcm(a, c) ≥ b(x−1)+c(y−1)+2a.

If x = 0, then y > 0 and

(

b(s− 1) + c(r − 1)
)

+ (bx+ cy) = b(s− 1) + c(y − 1) + lcm(a, c) ≥ b(s− 1) + c(y − 1) + a.

If y = 0, then x > 0 and

(

b(s− 1) + c(r − 1)
)

+ (bx+ cy) = b(x− 1) + c(r − 1) + lcm(a, b) ≥ b(x− 1) + c(r − 1) + a.

Hence b(s− 1) + c(r − 1)− a ∈ S⋆ by Proposition 6.
Suppose x0 ∈ [0, s − 1] and y0 ∈ [0, r − 1], with (x0, y0) 6= (0, 0), (s − 1, r − 1). Then

b(s− 1− x0) + c(r − 1− y0) is of form mx and

(bx0 + cy0) + b(s− 1− x0) + c(r − 1− y0) = b(s− 1) + c(r − 1),

so that Proposition 6 fails to hold for at least one x ∈ [1, a− 1]. Hence bx0 + cy0 − a /∈ S⋆ if
(x0, y0) 6= (s− 1, r − 1).

This completes the proof of this theorem. �

Remark 9. For any set of positive integers A with gcdA = 1, it can be shown that n(A) =
1
2

(

1 + g(A)
)

implies S⋆(A) = {g(A)}.

Remark 10. The results of this paper cannot be easily extended to the case A = {a, b1, . . . , bk}
where gcd(a, b1, . . . , bk) = 1 and a | lcm(b1, . . . , bk) for k > 2. This is because the divisibility
condition a | lcm(b1, . . . , bk) does not imply a = r1 · · · rk where ri = gcd(a, bi) for 1 ≤ i ≤ k.
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