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Abstract

In this work, we consider the tessellations (or tilings) of Euclidean and hyperbolic
planes using copies of a regular polygon. We introduce the concept of k-type of vertices
and edges, which allow a thorough control of these elements when the tessellation
increases, and we obtain an enumeration for the vertices, edges, and polygons at a
given distance.
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1 Introduction

In this study, we investigate regular infinite tessellations of the Euclidean or hyperbolic plane
and the Coxeter group G generated by the set S of reflections on the edges of a fundamental
polygon ∆ of the tessellation. Considering the Cayley metric d(·, ·) of the group (G,S), we
denote by ‖g‖ = d(g, e) the norm of an element g ∈ G. For a given positive integer n we
consider the image of ∆ under the n-ball,

Bn(∆) = {g(∆); ‖g‖ ≤ n},

and ask the following natural questions:

1. How many faces (polygons) are there in Bn(∆)?

2. How many polygons edges are there in Bn(∆)?

3. How many polygons vertices are there in Bn(∆)?

The first question is equivalent to asking about the growth sequence {Pn} of the Coxeter
group (G,S), and the answer is known: The generating function of this sequence is rational.
We can obtain an explicit formula given in terms of the Coxeter presentation.

This particular (but quite general) situation arises when we consider the elements of a
group (or semi-group) G acting as isometries of a metric space (X, d), an instance that is
the most general formulation of a dynamical system. In such a theoretical group setting, a
survey, conducted by Grigorchuk and De La Harpe in 1997 [7], explored many aspects of
the growth problem and provided references to the growth of other objects. In a particular
case in which G is an infinite Coxeter (or Artin) group generated by a set S of reflections
(characterized as a simple set of roots), there is a formal power series

∑∞
n=0 ant

n, where the
coefficient an denotes the number of elements within distance n from the identity element.
Cannon [4, 5] also considered the growth series of tessellations related to the surfaces of
genus g ≥ 2, which do not include all possible tessellations of the hyperbolic plane. These
results were generalized by Floyd and Plotnik [6] and Bartholdi and Ceccherini-Silberstein
[2], who considered more general tessellations.

Counting vertices is a dual problem: Counting the vertices of a {p, q} tesselation (a
tesselation through regular p-gons with inner angles equal to 2π/q) is equivalent to counting
the number of polygons on a {q, p} tesselation.

To date, the second question posed above, when counting the edges of these tessellations,
has yet to be answered. We use a geometric approach, similar to the one adopted by Silva
et al. [9] in a simpler situation, which allows us to answer the three questions, by giving a
recursive definition of those quantities. The involved part of the counting process is avoiding
repetitions, and the key results that enabling us to develop recursive formulae are found in
Propositions 1 and 2.

To obtain our results, we introduced the notion of “k-type” of vertices and edges, which
allows us to receive very precise information on the behavior of their growth. In addition to
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obtaining the total amount of these elements, we have a clear way of numbering them from
one level to the next. As another important point, we obtain the number of vertices and
polygons as a function of the number of edges. This type of relationship has not been shown
before.

Such approach can have applications in the natural sciences and computer science, and
has several interpretations and meanings in mathematics. The results obtained also have
applications in communication theory. A signal constellation is a finite subset of points
with suitable geometric properties, and the choice of the set to be used in the design of
such a system plays a fundamental role, mainly because the performance of the system
is dependent on the signal constellation. Signal constellation are usually built up from a
lattice A in Rn, which becomes a signal constellation, after taking a convenient quotient
using a sublattice A′ ⊂ A. One of the most important of such possibilities is considering
the constellations of points in the hyperbolic plane. Silva et al. [10] introduced a proposal
for new communication systems in a hyperbolic context. The main potential for coding in
the hyperbolic plane is the infinitude of essentially distinct tessellations, in contrast to a
Euclidean case. Not only can we find infinite constellations, we can also find an infinite
number of properly discontinuous groups of isometries that are not isomorphic (as abstract
subgroups) to each other. Moreover, because rigidity (in the sense of Mostow) does not hold
in the (two-dimensional) hyperbolic plane, for each co-compact properly discontinuous group
of isometries F , there are an uncountable number of subgroups isomorphic to F , albeit not
conjugated to it. In other words, for every such subgroup, there is a situation similar to the
essentially unique situation found in Rn.

Albuquerque et al. [1] obtained new quantum error correcting codes by using hyperbolic
geometry. The precise control given by the results of this paper can be useful in such contexts,
because this type of information is fundamental to calculating the performance in border
points of signal constellations. Finally, we should mention that Ungerboeck [12] introduced
a very important modulation technique for communication systems using a Euclidean case
of the sets considered here.

2 Growth of hyperbolic tessellations

Let us consider in the hyperbolic plane H2 a regular polygon Pp,q that has p equal-length
edges, and where all p internal angles are equal 2π

q
. From Poincaré’s theorem, such polygons

exist for all positive integers p and q whenever 1
p
+ 1

q
< 1

2
. The above is assumed as a

basic condition throughout the current research. It is possible to tile H2 with Pp,q, in the
sense that there is a family {Pn|n ∈ N} of isometric copies of Pp,q, such that H2 = ∪n∈NPn.
When Pn ∩ Pm 6= ∅, this intersection is either a common edge or a common vertex. We say
that the family Tp,q = {Pn|n ∈ N} defines a tessellation (or tiling) and each Pn is called
a tile. An edge (vertex) of a tessellation is an edge (vertex) of a tile. We denote the set
of edges and vertices of Tp,q by Ep,q and Vp,q, respectively. See Beardon [3] for more details
about hyperbolic geometry. We should note that the results in this paper are also valid in
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the Euclidean case where regular tessellations satisfy 1
p
+ 1

q
= 1

2
. Thus, we use the term

“tessellation of the plane” to include both the Euclidean and hyperbolic cases.
There is a natural metric associated to such tiling. Given tiles P and P ′, we consider

points x and x′ contained in the interior of the tiles. Let γ be a path connecting the given
points, that is, γ : [0, 1] → H2 is a continuous map, such that γ(0) = x and γ(1) = x′. If no
vertex of the tiling is contained in the image of γ, we say that γ is a regular path. Let |γ|
be the number of edges of the tilling crossed by γ:

|γ| := |{ε ∈ Ep,q | ε ∩ γ([0, 1]) 6= ∅}| ,

where |X| throughout the current paper denotes the cardinality of the set X. We define

d(P ,P ′) := inf{|γ | γ is a regular path connecting x to x′}

= min{|γ | γ is a regular path connecting x to x′}.

The above defines a metric in a set of tiles. It is well known that the tiling Tp,q has
exponential growth, that is, there are constants M,α ∈ R, b ∈ N with M,α > 0, b > 1, such
that

0 < lim
n→∞

|Bn(P)|

Mbαn
< ∞ ,

where Bn(P) = {P ′ ∈ Tp,q : d(P ,P ′) ≤ n} is the ball (in Tp,q) centered on P , with radius n
(see Sullivan [11, Proposition 3]).

Let ∆0 be the initial tile of our tessellation, and p0 be its barycenter. The geodesics
of H2, containing the edges of ∆0, are called support geodesics of the tile. Each geodesic
δi, i = 1, . . . , p determines a unique reflection ρi (involutive isometry of H2 that has the
geodesic as a set of fixed points). We let Γp,q denote the group generated by {ρ1, . . . , ρp}.
The group Γp,q is a discrete group of isometries that has ∆0 as a fundamental Dirichlet
domain centered at p0, and thus

∆0 = {x ∈ H2 | d(x, p0) ≤ d(f(x), p0), ∀f ∈ Γp,q} ,

and every tile ∆n ∈ Tp,q is an image f(∆0) for a unique f ∈ Γp,q. If we consider the Cayley
metric dC(·, ·) on Γp,q determined by the set {ρ1, . . . , ρp} of generators, we find that

d(f(∆0), h(∆0)) = dC(f, h), ∀f, h ∈ Γp,q. (1)

We will now introduce a few concepts and definitions. We consider the set of reflections
at the edges of the regular polygon ∆0 (with p edges and angles equal to 2π

q
) as a standard

set of generators of the group Γp,q. A geodesic δ is a support geodesic of the tessellation if
an edge of a tile of the tessellation Tp,q is contained in δ. Let S be the set of all support
geodesics, and δ ∈ S if, and only if, ρδ is a reflection contained in the group Γp,q.

Because d(g(∆0), h(∆0)) = dC(g, h), ∀g, h ∈ Γp,q, we can consider metric constructions in
Tp,q or in Γp,q without a distinction.
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Let Bk be the closed ball in Γp,q with the center in the identity and radius k, and let
Ck := Bk \Bk−1 be the circumference of radius k, which we call the k-th stage (level) of the
tessellation, that is, Bk := {g ∈ Γp,q | dC(g, e) ≤ k} and Ck := {g ∈ Γp,q | dC(g, e) = k}.

From the correspondence between the elements of the group and the polygons of the
tessellation, we let Pk denote the set of polygons of the tessellation corresponding to the ball
Bk in the group, and by NPk := Pk \Pk−1 the set corresponding to the circumference Ck,
where the prefix N stands for new: Pk = {g(∆0) | g ∈ Bk} and NPk = {g(∆0) | g ∈ Ck}.

Naturally, we have |Pk | = |Bk |, |NPk | = |Ck | where |Pk |, the cardinality of Pk, is
the k-th coefficient of the growth series of the group Γp,q. Our goal is to obtain a recursive
enumeration for Pk, and, to attain this objective, we determine the growth of the vertices
and edges of the polygons. We let Vk denote the set of vertices of polygons in Pk, and
Ek denote the set of edges of polygons in Pk. In a similar way, we let NEk := Ek \ Ek−1

and NVk := Vk \Vk−1 denote the sets of the new vertices and edges in the tessellation,
respectively. Clearly, we then have

|Vk | =
k

∑

i=0

|NVi |, |Ek | =
k

∑

i=0

|NEi | and |Pk | =
k

∑

i=0

|NPi | , (2)

where |NV0 | = |NE0 | = p and |NP0 | = 1. Therefore, it is sufficient to know |NPk | to
determine the cardinality of the balls in the group Γp,q.

Considering the polygons in Pk−1, we have only one way to obtain new polygons in stage
k: The reflections in the edges of the polygons in Pk−1. We observe that ε ∈ Ek−1 is an edge
of either one or two polygons in Pk−1: If ε is an edge of only one polygon ∆ ∈ Pk−1, we have
ρε(∆) (the reflection of the polygon ∆ in the edge ε) is a new polygon in NPk; whereas if ε
is an edge of two polygons in Pk−1, the reflection ρε only permutes those tiles, and does not
give rise to any new element in Pk. If edge ε in Ek−1 is an edge of only one polygon, then
ε ∈ NEk−1.

We define the function tk : Vk → {2, . . . , q}, which for each vertex v ∈ Vk gives the
number of edges of Ek that have v as a vertex. We state tk(v) is the k-type of vertex v, and
the notation vwk is used to state that w = tk(v). We also need the following notation:

Vk = {vw1

k,1, v
w2

k,2, . . . , v
w|Vk |

k,|Vk |} and NVk = {vw1

k,1, v
w2

k,2, . . . , v
w|NVk |

k,|NVk |},

where k is the stage of the tessellation, and wi = tk(vk,i), with i = 1, . . . , |Vk | for Vk,
and i = 1, . . . , |NVk | for NVk.

Considering an edge ε ∈ Ek, we characterize it using the k-type of both its vertices:
We state that ε has k-type (tk(ι(ε), tk(τ(ε)))), where ι(ε) and τ(ε) are the initial and final
vertices, respectively, which determine ε. It is assumed that tk(ι(ε)) ≤ tk(τ(ε)), and, without

ambiguity, we can assume the notation ε
ij ,wj

k , where ij = tk(ι(ε)) and wj = tk(τ(ε)), with
j = 1, . . . , |Ek | for Ek and j = 1, . . . , |NEk | for NEk. As in the case of the vertices, we use
the following notation for the set of edges at a given level k:

Ek = {εi1,w1

k,1 , εi1,w1

k,2 , . . . , ε
i|Ek |,w|Ek |

k,|Ek | } ; NEk = {εi1,w1

k,1 , εi2,w2

k,2 , . . . , ε
i|NEk |,w|NEk |

k,|NEk | }.
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We should note that the vertices and edges of the tessellation were defined in accordance
with the tessellation level. This information will be used to distinguish vertices NVk from
Vk \NVk.

We want to determine the types of vertices and edges that generate new polygons in the
next stage.

An edge is k-outer (external) if it is an edge of a unique polygon in stage k; if not, it is

an inner (internal) edge. When an edge ε := ε
ij ,τj
k,j has τj = q edges adjacent to its terminal

vertex, we state that the edges with τ(ε) as a vertex, are a closed cycle of edges if there are
also q polygons in Pk with τ(ε) as a vertex. We note that τj = q does not imply that we
have a closed cycle of edges at τj, because there can be an outer edge among the q edges.

If ε
ij ,τj
k,j is an outer edge, then, the reflection ρ

ε
ij ,τj

k,j

closes the cycle of the edges, because q is

the maximum number of polygons in the tiling with a common vertex.
Let vjk,t ∈ Vk and A := A(vjk,t) = {εi1,τ1k,1 , . . . , ε

ij ,τj
k,j } be the set of edges of Ek that have

vjk,t as a vertex, considering the edges numbered anticlockwise. Because we are interested
only in vertices that have an external edge in the stage in question (because all polygons
having only inner edges have already been counted), we can assume that A has one, and,
consequently, at least, two exterior edges. Thus, we assume that the ordinance of the edges
of A is applied in such a way that εi1,τ1k,1 and ε

ij ,τj
k,j : The first and last edges are k-exterior

edges. Such an ordering of A depends only on the choice of the first edge.
Further, two edges with a common vertex are consecutive if the angle between them (at

the common vertex) is 2π
q
. If εii,τik,i and ε

ii+1,τi+1

k,i+1 are consecutive, for all i = 1, 2, . . . , j − 1,

then the set of all edges of vjk,t is called a consecutive set of edges. Otherwise, there is a

discontinuity, or a hole, at the edges containing vjk,t.

Given a set of consecutive edges A = {εi1,τ1k,1 , εi2,τ2k,2 , . . . , ε
ij ,τj
k,j } of the vertex vjk,t, only the

k-exterior edges of A are εi1,τ1k,1 and ε
ij ,τj
k,j because the edges εi2,τ2k,2 , . . . , ε

ij−1,τj−1

k,j−1 are the edges
of two tiles.

Let α1, · · · , αp be geodesics supporting the edges of the initial polygon ∆0 of the tessel-
lation. The group Γp,q is generated by the reflections ρα1

, · · · , ραp
in the support geodesics

of the edges α1, · · · , αp:
Γp,q = 〈ρα1

, · · · , ραp
〉.

A geodesic δ determines two disjoints, connected open half-spaces, H+
δ and H−

δ , such

that δ = H+
δ ∩ H−

δ . Hence, a support geodesic can be characterized by two polygons ∆1

and ∆2 contained in each of these two disjointed half-spaces determined by δ, and satisfying
∆1 ∩∆2 is an edge contained in δ. In this case, we state that δ supports the polygons ∆1,
∆2, as well as the edge ∆1 ∩∆2.

Let δ be a support geodesic of the tessellation (ρδ ∈ Γp,q). We state that δ separates
the tiles g(∆0) and h(∆0) if they belong to different connected components of H2\δ, that is,
every continuous path connecting these polygons intercepts δ.

Let ε be an edge of the tessellation with initial vertex v and δ as its support geodesic.
We let δ+i denote the geodesic ray with the initial point in v and containing ε, and δ−i as its

6



opposite ray.
Given a support geodesic of the tessellation δ ∈ S and ∆i,∆j ∈ Pk, we consider the

following notation:

∆i |δ ∆j := δ separates the polygons ∆i and ∆j,

∆i ∤δ ∆j := δ does not separate the polygons ∆i and ∆j.

In the following results, we consider an initial polygon ∆0 with edges ε2,20,1, · · · , ε
2,2
0,p, and

the group Γp,q = 〈ρε2,2
0,1
, · · · , ρε2,2

0,p
〉 generated by the reflections in these edges.

Proposition 1. Let {p, q} be a tessellation of H2. If q is even, then the k-type of a vertex

is always even.

Proof. The proof will be conducted through induction over stage k of the tessellation. Note
that the maximum number of edges with a common vertex is q = 2m. For the initial case,
the base tile ∆0 has vertices v20,1, · · · , v

2
0,p, with 0-type equal to 2.

Now, let us assume that, in stage k, all vertices have even k-type. We prove here that
the vertices in stage k + 1 have even (k + 1)-type.

To obtain the tiles in NPk+1, we need to reflect the tiles of NPk in the k-outer edges of
the tessellation. Each vertex without a completed cycle has exactly two k-outer edges. In
the next stage, each one of these edges will contribute to this vertex with a new adjacent
edge (we can have no edges, if the cycle of edges is completed in stage k). Because q is even,
the two edges generated by the outer edges in the previous stage cannot be the same.

Thus, through the induction hypothesis, the (k+1)-type of vertices of NVk+1 are even.

In the next proposition, we identify the types of new vertices in the tessellation, generated
by the reflections in the previous stage.

Proposition 2. Consider a Tp,q tessellation and let vik ∈ Vk. If q is even, then vik ∈ NVk

if, and only if, i = 2. If q is odd, then vik ∈ NVk, if, and, only if, either i = 2 or i = 3, and,
when i = 3 there is an edge ε with v = i(ε) and tk(τ(ε)) = q.

Proof. Because the proof in the odd case follows the same steps, we only prove the proposition
for q to be even. Given vik,l ∈ Vk, with i = 2, we suppose vik,l 6∈ NVk, that is, v

i
k,l ∈ NVt for

some t < k. Through Proposition 1, the k-type of a vertex is always even; then, the t-type
of vik,l in stage t is at least i = 2, and in stage k, it should have type min{2+2(k− t), q} ≥ 2,
which is absurd.

Further, let us consider v = vik−1,l ∈ NVk. We suppose i 6= 2. Through Proposition 1, i
is even, then i ≥ 4, let us enumerate counterclockwise the edges of vik−1,l. Because it is a set

of consecutive edges, we can write εi,τk−1,1, ε
i,τ
k−1,2, . . . , ε

i,τ
k−1,i. Only the (k − 1)-outer edges are

εi,τk−1,1 and εi,τk−1,i. We label the polygons containing these edges as ∆1,∆2, . . . ,∆i−1, with ∆j

containing the edges εi,τk−1,j and εi,τk−1,j+1, for j = 1, . . . , i.
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Thus, ∆1 and ∆i−1 ∈ NPk−1. To conclude the proof, it is sufficient to show that ∆2 (and
∆3, · · · ,∆i−2) ∈ Pk−1. Indeed, if ∆2 ∈ Pr, then ∆2 ∈ NPr, r ≤ k. If ε2, ε3 ∈ NPr, then
ι(ε2) = ι(ε3) = v ∈ NPr, contradicting the hypothesis of v ∈ NPk+1, because NPr ∩NPr+1 =
∅.

If we suppose that ∆2 /∈ Pk−1, then ∆2 ∈ NPk. Because both ∆1, ∆2 ∈ NPk, there are
∆−

1 , ∆
−
2 ∈ NPk−1 such that ρδ1(∆

−
1 ) = ∆1 and ρδ2(∆

−
2 ) = ∆2, where δi = ∆i∩∆−

i is an edge
and ρδi is the reflection in the geodesic containing εi.

Recall that ε2 = ∆1 ∩ ∆2 (because the edges are consecutive). The edge ε1 is the first
segment of a line connecting the common vertex {v} = ∩i

j=1εj to Pk−1 along the boundary
of ∆1. There is also a line connecting v to Pk−1, such that it has εl as an initial segment.
This gives rise to a k-hole, unless ε1 = εi. However, in this case, we changed the parity of
vertices v when passing from stage k − 1 to stage k, contradicting Proposition 1. We thus
conclude the proof.

We should keep in mind that the given edge εi,τk ∈ Ek, i(ε
i,τ
k ) and τ(εi,τk ) denote the initial

and final vertices of εi,τk , respectively. We can then define the following set:

nk(ε
i,τ
k ) = |{∆ ∈ Pk | ι(εi,τk ) ∈ ∆}|, (3)

that is, nk(ε
i,τ
k ) is the cardinality of polygons in the tessellation having in common the initial

vertex of the edge εi,τk,l.
Thus, we can count the new polygons in the following way:

Proposition 3. Let ε = ε2,τk ∈ NEk. Then, nk(ε) = 1 and nk+1(ε) = 3.

Proof. Let v = ι(ε). Because v has k-type 2, there is another edge ε′ ∈ Vk, such that
ι(ε′) = v. It follows that ε and ε′ are edges of the same polygon ∆ ∈ Pk, and hence,
nk(ε) = 1. Because both ι(ε) and ι(ε′) have k-type 2, we have ε, ε′ ∈ NEk. Both will
give rise to new polygons in the next stage, such that nk+1(ε) = 3. We thus conclude the
proof.

If ε2,τk is a k-outer edge, then it contributes with a new polygon at the level k + 1. If
τ < q, then each reflection in the edges with the same vertex will generate different tiles.
However, if τ = q, this tile will be counted twice, because there is another k-outer edge that
generates the same polygon. It follows that the vertex v = ι(ε2,τk ) will have k + 1-type 4. In
the special case in which p = 3, it implies the existence of an edge ε′ ∈ NEk+1 of k + 1-type
(4, 4). We have just proved the following:

Corollary 4. If ε = εi,τk,l ∈ NVk, then (i, τ) = (2, τ), except for the cases τ = q and p = 3,
in which (i, τ) = (4, 4) can occur.

8



3 Recursive counting functions for the growth of the

group Γp,q

We consider the group Γp,q generated by the reflections on the support geodesics of the edges
of the regular polygon ∆0 with angles 2π

q
. We call attention to the fact that reflections

in the k-external edges of the polygons at level k are our only instrument to generate the
tessellation.

We begin at level 0 with the initial tile ∆0. We obtain level 1 by reflecting ∆0 in each of
its edges, obtaining p new polygons. All these polygons constitute the new level 1. Given a
tile at level 1, let us consider the tiles obtained reflecting this tile at its edges. Level 2 is the
set of all tiles obtained similarly at level 1.

At level k, we obtain tiles that are images of ∆0 by g ∈ Γp,q with |g| ≤ k, that is, any
tile ∆ ∈ Pk is in the form g(∆0) for some g ∈ Γp,q, such that

|g|C = dC(e, g) ≤ k.

Therefore, we have |Bk | = |Pk |, where Bk is the closed ball with radius k and the center
in the identity. In a similar manner, Ck = Bk \Bk−1 is the circumference with radius k and
the center in the identity. Thus, |Ck | = |NPk |.

3.1 Counting the polygons

We want to find a recursive function for the growth of the group Γp,q. It is sufficient to

determine |NPk | for each k ∈ N, because |Pk | =
∑k

i=0 |NPi |, where |NP0 | = |P0 | = 1,
and we always have |NP1 | = p. Let NEi,j

k be the set of edges of k-type (i, j) in the set NEk,
and let NVi

k denote the set of vertices of k-type i in NVk. From propositions 1 and 2, we
have the following cases:

i) p > 3 and q = 2m.

Only external edges (at level k − 1) contribute towards new polygons at level k. Moreover,
an edge ε ∈ Ek−1 is an external edge if, and only if, its (k − 1)-type is (2, j). Let us assume
that q = 2m is even; then, the possible types for an external edge are (2, 2), (2, 4), . . . , (2, q−
2), (2, q). Each external edge of type (2, 2i), i ≤ m − 1 gives rise to a new polygon at the
next level. Because q = 2m, for any edge ε ∈ NE2,q

k−1, there is another edge ε′ ∈ NE2,q
k−1 with

a common vertex τ(ε) = τ(ε′), and thus the reflection in ε and ε′ gives rise to the same
polygon. In other words,

|NPk | =
m−1
∑

i=1

|NE2,2i
k−1 |+

1

2
|NE2,q

k−1 | . (4)

ii) p = 3 and q = 2m.
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In addition to the considerations of i), in this case, we also have external edges of type (4, 4),
each of which will contribute with one more polygon at the next level. Then,

|NPk | =
m−1
∑

i=1

|NE2,2i
k−1 |+

1

2
|NE2,q

k−1 |+ |NE4,4
k−1 | . (5)

iii) p > 3 and q = 2m+ 1 > 3.

For any edge ε ∈ E2,j
k−1, with j < q − 1, the reasoning is the same as with the even case. If

ε ∈ NE2,q−1
k−1 , there are edges ε′ and ε′′ ∈ NE2,q

k−1 that have a common vertex τ(ε) = τ(ε′) =
τ(ε′′), and thus the reflection in ε′ and ε′′ gives rise to two new polygons that have ε as a
common edge. Finally, for any edge ε ∈ NE2,q

k−1 there is another edge ε′ ∈ NE2,q
k−1 with a

common vertex τ(ε) = τ(ε′), and thus, the reflections in ε and ε′ give rise to only one new
polygon. It follows that

|NPk | =

q−1
∑

i=2

|NE2,i
k−1 |+

1

2
|NE2,q

k−1 | . (6)

iv) p = 3 and q = 2m+ 1.

If we do not have edges of type (2, 2), edges of types (3, 4) and (4, 4) will appear. Thus,

|NPk | =

q−1
∑

i=4

|NE2,i
k−1 |+ |NE3,4

k−1 |+ |NE4,4
k−1 |+

1

2
|NE2,q

k−1 | . (7)

v) p ≥ 6 and q = 3.

We will have only edges of types (2, 2) and (2, 3). Each edge of type (2, 2) will contribute
with one new polygon; for ε ∈ NE2,3

k , there is ε′ ∈ NE2,3
k , such that ε and ε′ have a common

vertex v, and the angle between them in v is 2π/3. Thus, the pair ε, ε′ will give an origin
only to one new polygon. The total is

|NPk | = |NE2,2
k−1 |+

1

2
|NE2,3

k−1 | . (8)

We will then need to define recursive functions for |NE2,i
k |, |NE3,4

k |, and |NE4,4
k | to define

a recursive function to |NPk |,.

3.2 Counting the vertices

We have determined the formulae for |Pk | and now seek to determine the formulae for |Vk |.
We have |Vk | = |NVk |+ |Vk−1 |. For k = 0, |V0 | = |NV2

0 | = p and |NVl
0 | = 0 for l > 2.

i) We suppose p > 3 and q = 2m, m ≥ 2.

10



For k = 1,
|NV2

1 | = p(p− 2),

|NV4
1 | = p,

|NV1 | = p(p− 2) + p = |NV2
1 |+ |V0 |.

(9)

In a general way, if ε ∈ NE2,j
k−1 with j ≤ q−1, then the reflection in ε will be a new polygon

∆ ∈ NPk, giving origin to p− 3 new edges of type (2, 2) in NEk, providing p− 3+ 1 = p− 2
new vertices of type 2, totaling (p− 2)

∑q−1
j=2 |NE

2,j
k−1 | vertices of type 2.

However, if ε1 ∈ NE2,q
k−1, there exists ε2 ∈ NE2,q

k−1, with a common vertex with ε1, such
that τε1(∆) = τε2(∆). We have p − 4 new edges of type (2, 2), and p − 4 + 1 = p − 3 new
vertices of type 2 in NVk. Therefore, the total in NVk is

|NV2
k | = (p− 2)

q−1
∑

j=2

|NE2,j
k−1 |+ (p− 3)

|NE2,q
k−1 |

2
. (10)

Now, if |Vk−1 | is known, then

|Vk | = |NV2
k |+ |Vk−1 | . (11)

ii) q = 2m+ 1, m ≥ 2 and p > 3.

When k = 0, we have |NV2
0 | = p and |NVl

0 | = 0 for l > 2. For k = 1, we have the same
result of (9).

Now, if ε ∈ NV2,j
k−1 with 3 < j < q − 1, the reflection in ε is a new polygon ∆ in NPk,

giving origin to p− 3 new edges of type (2, 2) in NE2,2
k ; then, p− 3 + 1 = p− 2 new vertices

of type 2 are originated, totaling (p− 2)
∑q−2

j=2 |NE
2,j
k−1 | vertices of type 2.

However, if ε ∈ NE2,q−1
k−1 , there exists ε′ ∈ NE2,q−1

k−1 such that the reflections in ε and ε′

give origin to distinct polygons, but with a common edge ε1 ∈ NE3,q
k−1. Thus, ε gives origin

to p− 4 new edges of type (2, 2), and soon p− 4 + 1 = p− 3 new vertices of type 2 in NVk,
with a total of (p− 4)|NE2,q−1

k−1 |.

Because ε originates ε1 ∈ NE2,3
k , we have a1/2 vertex of type 3, totaling 1/2|NE2,q−1

k−1 |
vertices of type 3.

If ε ∈ NE2,q
k−1, there exists ε1 ∈ NE2,q

k−1 with a common vertex with ε, such that τε(∆) =
τε1(∆). We have p− 4 new edges of type (2, 2), giving p− 4+ 1 = p− 3 new vertices of type
2 in NVk, for a total of (p− 4)|NE2,q

k−1 |/2. Put together, we have

|NV2
k | = (p− 2)

q−2
∑

j=2

|NE2,j
k−1 |+ (p− 4)|NE2,q−1

k−1 |+ (p− 4)
|NE2,q

k−1 |

2
,

|NV3
k | =

|NE2,q−1
k−1 |

2
.

(12)

The total of level k is given by

|Vk | = |NV2
k |+ |NV3

k |+ |Vk−1 | . (13)
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iii) p = 3 and q = 2m.

As in the case of polygons, the edges of type (2, q) at level k − 1 will not contribute to the
new vertices at the next level k. Edges of type (4, 4) will contribute with one additional
vertex. All new vertices are of type 2. Thus,

|NV2
k | =

q−2
∑

j=4

|NE2,j
k−1 |+ |NE4,4

k−1 | . (14)

Equation (11) provides the total.

iv) p = 3 and q = 2m+ 1.

The edges of type (2, j) with 4 ≤ q − 2 at level k − 1 will contribute with new vertices of
type 2 at the next level k, and similarly for the edges of type (4, 4). In this case, we also
have edges of type (3, 4). Thus,

|NV2
k | =

q−2
∑

j=2

|NE2,j
k−1 |+ |NE3,4

k−1 |+ |NE4,4
k−1 |,

|NV3
k | =

|NE2,q−1
k−1 |

2
,

(15)

where Equation (13) gives the total.

v) p ≥ 6 and q = 3.

For k = 1, we have
|NV2

1 | = p(p− 4),

|NV3
1 | = p,

|NV1 | = p(p− 4) + p = |NV2
1 |+ |V0 |.

. (16)

For k ≥ 2, we have only new edges of types (2, 2) and (2, 3). If ε ∈ NE2,3
k−1, then there

exists ε′ ∈ NE2,3
k−1, such that τε(∆) = τε′(∆). Thus, ε gives origin to 1

2
(p − 6) new edges of

type (2, 2) in NE2,2
k , for a total of 21

2
(p−6) vertices in NV2

k. We will then have (p−6)|NE2,3
k−1 |

vertices in NV2
k.

Further, ε will give origin to p− 4+ 1 edges in NE2,3
k , similarly to ε′, giving 1

2
(p− 5) new

edges in NE2,3
k . We will thus have 1

2
(p−5) new vertices in NV3

k, for a total of 1
2
(p−5)|NE2,3

k |
vertices.

If ε ∈ NE2,2
k−1, then the reflection in ε will give origin to a new polygon at level k. We

will have p− 5 new edges of type (2, 2), and p− 5 + 1 = p− 4 new vertices of type 2, for a
total of (p− 4)|NE2,2

k−1 | vertices of type 2.

12



Each polygon in NPk−1 has p− 5 consecutive edges of type (2, 2), ε1, . . . , εp−5, for a total
of p − 5 + 1 = p − 4 consecutive vertices. They will give origin to p − 4 − 2 = p − 6 new
vertices of type 3 at level k, totaling (p− 6)|NPk−1 | vertices of type 3. Therefore,

|NV2
k | = (p− 6)|NE2,3

k−1 |+ (p− 4)|NE2,2
k−1 |,

|NV3
k | =

p− 5

2
|NE2,3

k−1 |+ (p− 6)|NPk |.
(17)

Equation (13) provides the total amount.

3.3 Counting the edges

Subsections 3.1 and 3.2 provide recursive formulae for |NPk | and |NVk |, depending only on
|NEj,l

k |. Thus, recursive formulae for |NEj,l
k | are required.

First, the k-type (i, j) of an edge is strictly increased (with k) for both i and j until both
reach the maximum value q. We are interested in the edges in NEk. How do new edges
arise?

We will consider the possible cases for the edges in {p, q}. Namely, the recursive formulae
that express the number of edges at each level k demand a study of five different cases with
regard to the parity of p and q.

i) p ≥ 4 and q = 2m.

Let ε ∈ NPk−1 be an external edge of (k− 1)-type (2, j). We will assume that j ≤ q− 2.
The edge ε is an edge of an external polygon ∆, and, because j ≤ q−2, the reflected polygon
∆′ = ρε(∆) will have all but ε as an external edge. That is, each ε ∈ ∪q−2

j=1 NE
2,j
k−1 will give

rise to (p− 1) distinct edges in NEk.
Because all types of edges are always even, j = q. Given an edge ε1 ∈ NE2,q

k−1, there is

another edge ε2 ∈ NE2,q
k−1, ε1 6= ε2, such that τ(ε1) = τ(ε2) = v. For i = 1, 2, let ∆i ∈ Pk−1 be

such that εi is an external edge of ∆i, and let ε∗i be another edge of ∆i having v as a vertex.
Because j = q, ε2 ∈ ρε1(∆1) and ε1 ∈ ρε2(∆2), and actually ρε1(ε

∗
1) = ε2 and ρε2(ε

∗
2) = ε1, it

follows that ρε1(∆1) = ρε2(∆2). This is a new polygon having p edges, except for ε1 and ε2,
as external edges at level k. In short, for the case of q = 2m,

|NEk | = (p− 1)

q−2
∑

j=2

|NE2,j
k−1 |+

(p− 2)

2
|NE2,q

k−1 |

= (p− 1)
m−1
∑

j=1

|NE2,2j
k−1 |+

(p− 2)

2
|NE2,q

k−1 | . (18)

The formulae for |NEk | depend on the terms of level k − 1. We must then study these
terms to obtain the recursive formulae. We call attention to the fact that the formulae can
be implemented in an algebraic computer system.

13



Let ǫ ∈ Ek−1 be a vertex of (k − 1)-type (2, j). Because ε ∈ NEk−1, it is the edge of a
new polygon at this level (k− 1). Because new polygons are generated based on a reflection
of existing polygons in an external edge of the previous level (k − 2), we must look at the
external edges of this level, that is, the edges of (k − 2)-type (2, j), with 2 ≤ j ≤ q.

If ǫ ∈ NE2,2
k−2, it is the edge of a polygon ∆ ∈ Pk−2; considering the reflection ρε in the

geodesic containing ε, ρε(∆) is a polygon containing 1 edge in E4,4
k−1 (actually this is the edge

ε itself), 2 edges in NE2,4
k−1 (those adjacent to ε), and all the other (p − 3) edges will be in

NE2,2
k−1. Therefore, each ε ∈ NE2,2

k−2 will generate

2 edges ∈ NE2,4
k−1,

p− 3 edges ∈ NE2,2
k−1,

1 edge = ε ∈ E4,4
k−1 .

(19)

Now consider ε ∈ NE2,j
k−2, with 4 ≤ j < q. Because q is even, we have j < q − 1. Similar

to the previous case, ε is an edge of a polygon ∆ ∈ Pk−2; considering the reflection ρε in
the geodesic containing ε, ρε(∆) is a polygon containing 1 edge in E4,j+2

k−1 (actually, this is
the edge ε itself). The edges of ρε(∆) adjacent to ε at its initial (type 2) and final (type j)
vertices will be the edges of NE2,4

k−1 and NE2,j+2
k−1 , respectively. All remaining (p− 3) edges of

ρε(∆) with no intersection with ε will be vertices in NE2,2
k−1. In short, each ε ∈ E2,j

k−2 generates

1 edge = ε ∈ E4,j+2
k−1 ,

1 edge ∈ NE2,4
k−1,

p− 3 edges ∈ NE2,2
k−1,

1 edge ∈ NE2,j+2
k−1 .

(20)

The case j = q can occur only for an even q. In this case, there are two edges ε and
ε′ of (k − 2) type (2, q) joining a common vertex v of type q. These are edges of distinct
polygons ∆,∆′ ∈ Pk−2; however, ρε(∆) = ρε′(∆

′). We can see that ε and ε′ become edges of
type (4, q), the other two distinct edges adjacent to ε and ε′ become edges of (k − 1)-type
(2, 4), and the other (p− 4) edges of ρε(∆) = ρε′(∆

′) are edges of type (2, 2). In short, each
ε ∈ NE2,q

k−2 generates
1

2
edge = ε ∈ E4,q

k−1,

1 edges ∈ NE2,4
k−1,

p− 4

2
edges ∈ NE2,2

k−1 .

(21)

Now, we can put together the above results to obtain the number of edges. The following
function is useful for controlling the appearance of the types of edges when k increases. This
function will be used throughout the rest of the present paper. Let

fl(j) =

{

1, if j ≤ l − 1;

0 , if j > l − 1 ,
(22)
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for l, j ∈ Z and l ≥ 1. Then, we have the following:

Theorem 5. Let {p, q} be a tessellation with p ≥ 4, q = 2m, m ≥ 2, and k ≥ 2, all of
which are integers. Then, for the two initial levels, |NE2,2

0 | = |E0 | = p; |NEi,j
0 | = 0 for

(i, j) 6= (2, 2); |NE2,2
1 | = (p − 3)p; and |NE2,4

1 | = 2p; |NE2,j
1 | = 0 for j > 4. For the other

levels,

|NE2,2
k−1 | = (p− 3)|NE2,2

k−2 |+ (p− 3)fm(2)
m−1
∑

j=2

|NE2,4
k−j |+ (p− 4)

|NE2,4
k−m |

2
(23)

|NE2,4
k−1 | = 2|NE2,2

k−2 |+
m
∑

j=2

|NE2,4
k−j | (24)

|NE2,4
k−j | = 0 for k ≤ j

|NE2,2j
k−1 | = |NE2,4

k−(j−1) | , for 2 < j ≤ m. (25)

The total at level k is

|NEk | = (p− 1)(p− 3 + 2fm(2))|NE
2,2
k−2 |+ (p− 1)(fm(2)(p− 2) + fm(3))

m−2
∑

j=2

|NE2,4
k−j |

+ ((p− 1)(p− 2)fm(2) +
p− 2

2
)|NE2,4

k−(m−1) |+ (p− 1)(
(p− 4)

2
+ fm(2))|NE

2,4
k−m | .

Proof. Applying together the edges of the same type in (19), (20) and (21), and because
q = 2m, it follows that

|NE2,2
k−1 | = (p− 3)

q−2
∑

j=2

|NE2,j
k−2 |+ (p− 4)

|NE2,q
k−2 |

2
= (p− 3)

m−1
∑

j=1

|NE2,2j
k−2 |

+ (p− 4)
|NE2,2m

k−2 |

2
(26)

|NE2,4
k−1 | = 2|NE2,2

k−2 |+

q−2
∑

j=4

|NE2,j
k−2 |+ 2

|NE2,q
k−2 |

2
= 2|NE2,2

k−2 |+
m
∑

j=2

|NE2,2j
k−2 | (27)

|NE2,j+2
k−1 | = |NE2,j

k−2 |, for 4 ≤ j ≤ q − 2 (28)

The relation (28) is fundamental, and we obtain

|NE2,2j
k−2 | = |NE2,4

k−j | , (29)
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for 2 ≤ j ≤ m. Applying (29) in (26) and (27), we have

|NE2,2
k−1 | = (p− 3)|NE2,2

k−2 |+ (p− 3)
m−1
∑

j=2

|NE2,4
k−j |+ (p− 4)

|NE2,4
k−m |

2
(30)

|NE2,4
k−1 | = 2|NE2,2

k−2 |+
m
∑

j=2

|NE2,4
k−j | (31)

|NE2,2j
k−1 | = |NE2,4

k−(j−1) |, for 2 < j ≤ m, (32)

where |NE2,4
k−j | = 0 for k ≤ j. The expression for |NE2,2

k−1 | in (23) follows from (31),
where the function fl(j) is used to obtain the general case for any k in the sum. To prove
the formula for |NEk |, from (18)

|NEk | = (p− 1)

q−2
∑

j=2

|NE2,j
k−1 |+

(p− 2)

2
|NE2,q

k−1 | = (p− 1)
m−1
∑

j=1

|NE2,2j
k−1 |+

(p− 2)

2
|NE2,2m

k−1 |

Now, using relations (30)−(32), and considering the relation
∑m−1

j=3 |NE2,4
k−(j−1) | =

∑m−2
j=2 |NE2,4

k−j |,
the result follows .

ii) p ≥ 4 and q = 2m+ 1.

In this case, we must be more careful. If j = q − 1, given an edge ε1 ∈ NE2,q−1
k−1 , there is

another edge ε2 ∈ NE2,q−1
k−1 joining a common vertex. Because (for i = 1, 2) ∆i is a polygon

in Pk−1, such that εi is an (exterior) edge of ∆i, we have ε = ρε1(∆1) ∩ ρε2(∆2), and thus
each of the edges ε1 and ε2 contribute with (p− 2) new external edges at level k, in addition
to ε. Now, ε is also a new edge in |NEk | and must also be computed. Because ε1 and ε2
give origin to the same edge, each one contributes with 1

2
an edge. Finally, if j = q, we have

a similar reasoning as in case (i). Then, in short, for q = 2m+ 1,

|NEk | = (p− 1)

q−2
∑

j=2

|NE2,j
k−1 |+ (p−

3

2
)|NE2,q−1

k−1 |+
(p− 2)

2
|NE2,q

k−1 | . (33)

Now, let ε ∈ NE2,j
k−2. The case j = q can occur only for an even q, and thus 2 ≤ j ≤ q−1.

For j < q − 1, we have the same reasoning as case i), obtaining (19) and (20).
For j = q − 1, let ε = ε1, ε2, . . . , εq−1 be the set of all q − 1 edges with the common

vertex v = τ(ε) ∈ Vk−2 numbered such that the angle between the consecutive edges is
2π/q. Because q−1 = 2m, εq−1 ∈ NE2,q−1

k−2 . Let ∆ ∈ Pk−2 be the polygon containing ε; then,
∆1 = ρε(∆) and ∆2 = ρεq−1

(· · · (ρε2(∆)) · · · ) have a common edge ε′ of type (3, q). The
other distinct edge of ∆1 adjacent to ε′ is an edge of (k − 1)-type (3, q). The other (p − 4)
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edges of ∆1 are edges of type (2, 2). In short, ε ∈ NE2,q−1
k−2 generates

1 edge = ε ∈ E4,q
k−1,

1

2
edges ∈ NE3,q

k−1,

1 edges ∈ NE2,4
k−1,

1 edge ∈ NE2,3
k−1,

p− 4 edges ∈ NE2,2
k−1 .

(34)

Now, we obtain the following result.

Theorem 6. Let {p, q} be a tessellation with p ≥ 4, q = 2m + 1, m ≥ 2 and k ≥ 2, all of
which are integers. Then, for the two initial levels, we have |NE2,2

0 | = |E0 | = p, |NEi,j
0 | = 0

for (i, j) 6= (2, 2), |NE2,2
1 | = (p− 3)p; |NE2,4

1 | = 2p, and |NE2,j
1 | = 0 for j > 4; and for the

other levels

|NE2,2
k−1 | = (p− 3)|NE2,2

k−2 |+ (p− 3)fm(2)
m−1
∑

j=2

|NE2,4
k−j |+ (p− 3)

m−1
∑

j=1

|NE2,4
k−(j+m) |+

(35)

+ (p− 4)|NE2,4
k−m |

|NE2,4
k−1 | = 2|NE2,2

k−2 |+
m−1
∑

j=1

|NE2,4
k−(j+m) |+

m
∑

j=2

|NE2,4
k−j | (36)

|NE2,2j
k−1 | = |NE2,4

k−(j−1) |, for 2 ≤ j ≤ m (37)

|NE2,2j+1
k−1 | = |NE2,4

k−(j+m−1) |, for 1 ≤ j ≤ m (38)

|NE2,3
k−1 | = |NE2,4

k−m | (39)

|NE3,q
k−1 | =

|NE2,4
k−m |

2
, (40)

The total at level k is

|NEk | = (p− 1)(p− 3 + 2fm(2))|NE
2,2
k−2 |+ (p− 1)2fm(3)

m−1
∑

j=3

|NE2,4
k−(j−1) |

+ ((p− 1)(p− 2)fm(2) + (p− 3/2))|NE2,4
k−(m−1) |+ (p− 1)2fm(2)

m−1
∑

j=2

|NE2,4
k−(j+m−1) |

+ (p2 − 7p/2 + 2 + fm(2)(p− 1))|NE2,4
k−(2m−1) |+ (p− 1)(p− 3 + fm(2))|NE

2,4
k−m | .

Proof. Applying together the edges of the same type in (19), (20), (34), and since because
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q − 1 = 2m, it follows that

|NE2,2
k−1 | = (p− 3)

q−2
∑

j=2

|NE2,j
k−2 |+ (p− 4)|NE2,q−1

k−2 | (41)

|NE2,4
k−1 | = 2|NE2,2

k−2 |+

q−1
∑

j=3

|NE2,j
k−2 | (42)

|NE2,j+2
k−1 | = |NE2,j

k−2 |, for 3 ≤ j ≤ q − 2 (43)

|NE2,3
k−1 | = |NE2,q−1

k−2 | (44)

|NE3,q
k−1 | =

|NE2,q−1
k−2 |

2
, (45)

and |NE2,3
k−1 | = |NE3,q

k−1 | = 0 for k ≤ q−3
2
.

In the equations (41) and (42), the term |NE2,j
k−2 | appears with even and odd j. When

(43) is used
|NE2,2j+1

k−2 | = |NE2,3
k−(j+1) |, for 1 ≤ j ≤ m (46)

and
|NE2,2j

k−2 | = |NE2,4
k−j |, for 2 ≤ j ≤ m. (47)

Because q − 1 = 2m, from (44) and (45),

|NE2,3
k−1 | = |NE2,4

k−m | . (48)

Now, from (46), we obtain |NE2,3
k−(j+1) | = |NE2,4

k−(j+m) |, and applying together (47),

|NE2,2j+1
k−2 | = |NE2,4

k−(j+m) |, for 1 ≤ j ≤ m. (49)

Similarly, from (45) and (46),

|NE3,q
k−1 | =

|NE2,4
k−m |

2
. (50)

The expression for |NE2,2
k−1 | follows from (41), where the function fl(j) is employed to

obtain the general case for any k in the sum. The formula for |NEk | is obtained by applying
together the relations (36)− (40) in (33), and through the same reasoning of Theorem 5, the
result follows .

iii) p ≥ 6 and q = 3.

In this case, there are no holes between the new edges from one level to the next. Thus, all
vertices at the k − 1 level become vertices of type 3 at level k. We do not need information
on level k − 2. Given ε ∈ NE2,3

k−1, ε is an edge of a polygon ∆ ∈ Pk−1; there is another edge
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ε′ ∈ NE2,3
k−1 in another polygon ∆′ ∈ Pk−1 with the same final vertex v of ε. Considering

the reflections ρε and ρε′ on the geodesics containing ε and ε′, respectively, then ρε(∆) =
ρε′(∆

′) = ∆′′.
Considering the polygon ∆, because ε ∈ E2,3

k−1 and p ≥ 6, there is a sequence of adjacent

edges ε = ε1, ε2, · · · , εp−3 such that εp−3 ∈ E2,3
k−1 and ε2, · · · , εp−4 ∈ E2,2

k−1. Thus, we have

(p − 5) edges of E2,2
k−2 which contains (p − 4) vertices, where each one will give origin to a

new edge of E3,3
k . We will have the same edges if we begin from εp−3, where (p − 4)/2 new

edges of E3,3
k will be generated. We also have one more new edge of E2,3

k adjacent to these
adjacent edges above. All remaining (p− 6) edges of ρε(∆) will be vertices in E2,2

k . In short,
each ε ∈ E2,3

k−1 generates
p− 4

2
edges ∈ E3,3

k ,

1 edge ∈ E2,3
k ,

p− 6

2
edges ∈ E2,2

k .

(51)

If ε ∈ NE2,2
k−1, ε is an edge of a polygon ∆1 ∈ Pk−1. Let ∆′

1 be its reflection in the

geodesic containing ε, ρε(∆1) = ∆′
1; ∆

′
1 then is a polygon containing 1 edge in E3,3

k (actually
this is the edge ε itself). The edges of ∆′

1, which are adjacent to ε, will be edges of E3,3
k ,

and were counted above. We have two more new edges of NE2,3
k adjacent to these adjacent

edges above. All remaining (p− 5) edges of ρε(∆1) will be vertices in NE2,2
k . In short, each

ε ∈ NE2,2
k−1 generates

2 edges ∈ NE2,3
k ,

p− 5 edges ∈ NE2,2
k .

(52)

Thus, putting together the edges of the same type in (51) and (52), it follows that

Theorem 7. Let {p, 3} be a tessellation with p ≥ 6 and k ≥ 2, all of which are integers.

Then, for the two initial levels, we have|NE2,2
0 | = |E0 | = p, |NEi,j

0 | = 0 for (i, j) 6= (2, 2),
|NE2,2

1 | = p(p− 5), |E2,3
1 | = 2p and |NE3,3

1 | = p, and for the other levels,

|NE2,2
k | = (p− 5)|NE2,2

k−1 |+
p− 6

2
|NE2,3

k−1 | (53)

|NE2,3
k | = 2|NE2,2

k−1 |+ |NE2,3
k−1 | (54)

|NE3,3
k | =

p− 4

2
|NE2,3

k−1 | , (55)

The total at level k is

|NEk | = (p− 3)|NE2,2
k−1 |+ (p− 4)|NE2,3

k−1 | .

Now, we turn to case p = 3. Then, q ≥ 6, and there are no edges of type (2, 2) at levels
k > 1. Let ǫ ∈ Ek−1 be an edge of (k − 1)-type (2, j). Thus, ε ∈ NEk−1 because it is an
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edge of a new polygon at this level (k − 1). Because new polygons are generated through
reflections of the existing polygons at an external edge of the previous level (k − 2), we
must look at the external edges of such level, that is, the edges of (k − 2)-type (2, j), with
2 < j ≤ q.

iv) p = 3, q = 2m ≥ 6.

Consider ε ∈ NE2,j
k−2, with 4 ≤ j < q. Because q is even, we have j < q − 1. Now, ε is an

edge of a triangle ∆ ∈ NPk−2, and considering the reflection ρε in the geodesic containing ε,
ρε(∆) is a triangle containing one edge in E4,j+2

k−1 (actually this is the edge ε itself). The two
edges of ρε(∆) adjacent to ε at its initial (type 2) and final (type j) vertex will be edges of
NE2,4

k−1 and NE2,j+2
k−1 , respectively. In short, each ε ∈ NE2,j

k−2 generates

1 edge = ε ∈ E4,j+2
k−1 ,

1 edge ∈ NE2,4
k−1,

1 edge ∈ NE2,j+2
k−1 .

(56)

For j = q, there are two edges ε and ε′ of (k − 2) type (2, q) joining a common vertex v of
type q. These are edges of distinct polygons ∆,∆′ ∈ Pk−2; however, ρε(∆) = ρε′(∆

′), and we
can see that ε and ε′ become edges of type (4, q). The triangle ρε(∆) will originate only one
new edge, which is the same new edge as ρε′(∆). In short, each pair ε, ε′ ∈ NE2,q

k−2 generates

1 edge = ε ∈ E4,q
k−1,

1 edge = ε′ ∈ NE4,q
k−1,

1 edge ∈ NE4,4
k−1 .

(57)

Now, if ε ∈ NE4,4
k−2, there exists ∆ ∈ Pk−2 with ε ∈ ∆ such that ρε(∆) will originate two new

edges of E2,6
k−1.

Thus, we can prove the following result.

Theorem 8. Let {p, q} be a tessellation with p = 3, q = 2m, m ≥ 2 and k ≥ 2, all of which
are integers. Then, for the two initial levels, we have|NE2,2

0 | = |E0 | = 3; |NEi,j
0 | = 0 for

(i, j) 6= (2, 2), |NE2,4
1 | = 2p; |NE2,j

1 | = 0 for j 6= 4, and for the other levels

|NE2,4
k−1 | =

m−1
∑

j=2

|NE2,4
k−j | (58)

|NE
2,2(j+1)
k−1 | = |NE2,4

k−j |, for 2 ≤ j ≤ m− 1 (59)

|NE4,4
k−1 | =

1

2
|NE2,q

k−2 | (60)

|NE2,6
k−1 | = 2|NE4,4

k−2 | , (61)
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The total at level k is

|NEk | = 2(fm−1(2) + fm(3))
m−2
∑

j=2

|NE2,4
k−j |+

5

2
|NE2,4

k−m+1 |+ |NE2,4
k−m | .

Proof. Putting together the edges of the same type from (56) and (57), and because q− 2 =
2m− 2 = 2(m− 1), it follows that

|NE2,4
k−1 | =

q−2
∑

j=4

|NE2,j
k−2 | =

m−1
∑

j=2

|NE2,2j
k−2 | (62)

|NE2,j+2
k−1 | = |NE2,j

k−2 |, for 4 ≤ j ≤ q − 2 (63)

|NE4,4
k−1 | =

1

2
|NE2,q

k−2 | (64)

|NE2,6
k−1 | = 2|NE4,4

k−2 | (65)

where |NE2,4
k−j | = 0 for k ≤ j. The relation (63) is fundamental, and we obtain that

|NE2,2j
k−2 | = |NE2,4

k−j | ,

for 2 ≤ j ≤ m− 1. Applying this relation in (62) and (63), we have

|NE2,4
k−1 | =

m−1
∑

j=2

|NE2,4
k−j | (66)

|NE
2,2(j+1)
k−1 | = |NE2,4

k−j |, for 2 ≤ j ≤ m− 1 . (67)

We need a general formula for |NEk |, for p = 3. Let ε ∈ NPk−1 be an external edge of
(k− 1)-type (2, j). We assume that j ≤ q− 2. The edge ε is an edge of an external polygon
∆, and, because j ≤ q−2, the reflected polygon ∆′ = ρε(∆) will have all but ε as an external
edge. That is, each ε ∈ ∪q−2

j=1 NE
2,j
k−1 will give rise to 2 new distinct edges in NEk. Given an

edge ε1 ∈ NE2,q
k−1, by (64), ε1 will give origin to 1/2 of a new edge of NE4,4

k . Finally, given

ε2 ∈ NE4,4
k−1, by (65), two new edges of NE2,6

k will be originate . Therefore, we have

|NEk | = 2
m−1
∑

j=2

|NE2,2j
k |+

1

2
|NE2,2m

k−1 |+ 2|NE4,4
k | . (68)

Now, using (68) and the relations (64)− (67), the result follows .

v) p = 3, q = 2m+ 1 ≥ 7.
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Supposing for the moment that 4 ≤ j ≤ q − 2, then q > 4, and each ε ∈ NE2,j
k−2 generates

the same result as (56).
For j = q−1, let ε = ε1, ε2, . . . , εq−1 be the set of all q−1 edges with the common vertex

v = τ(ε), numbered such that the angles between the consecutive edges are 2π/q. Because
q − 1 = 2m, εq−1 ∈ E2,q−1

k−2 . Let ∆ ∈ NPk−2 be the polygon containing ε; then, ∆1 = ρε(∆)
and ∆2 = ρεq−1

(· · · (ρε2(∆)) · · · ) have a common edge ε′ of type (3, q). The other distinct
edge of ∆1 adjacent to ε′ is an edge of (k − 1)-type (3, 4).

In short, each ε ∈ NE2,q−1
k−2 generates

1 edge = ε ∈ E4,q
k−1,

1

2
edge ∈ NE3,q

k−1,

1 edge ∈ NE3,4
k−1 .

(69)

The edges of NE3,q
k−1 will not contribute with new edges. For ε ∈ NE3,4

k−2, let v
3
k−2 be the

initial vertex of ε, and let ε′ be the other edge of NE3,4
k−2, also with initial vertex in v3k−2. The

reflection in ε will originate a new edge of NE2,5
k−1, because we will have another new edge

with a vertex in v3k−2, which will appear in the reflection in ε′, and a new edge of NE2,6
k−1. In

short, each ε ∈ NE3,4
k−2 generates

1 edge = ε ∈ E5,6
k−1,

1 edge ∈ NE2,5
k−1,

1 edge ∈ NE2,6
k−1 .

(70)

Now, for j = q, if ε ∈ NE2,q
k−2, let ε = ε1, ε2, . . . , εq be the set of edges with the same final

vertex as ε. Because the angle between ε1 and εq is 2π/q, the reflection in ε will generate
the same polygon as the reflection in εq. Thus, ε will only generate

1 edge = ε ∈ E4,q
k−1,

1

2
edge ∈ NE4,4

k−1 .
(71)

Finally, if ε ∈ NE4,4
k−2, the reflection in ε will generate two new edges, that is,

1 edge = ε ∈ E6,6
k−1,

2 edges ∈ NE2,6
k−1 .

(72)

We can then prove the following result.

Theorem 9. Let {p, q} be a tessellation with p = 3, q = 2m + 1, m ≥ 2 and k ≥ 2, all of
which are integers. Then, for the two initial levels, we have |NE2,2

0 | = |E0 | = 3; in addition,
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we have |NEi,j
0 | = 0 for (i, j) 6= (2, 2), |NE2,4

1 | = 2p, |NE2,j
1 | = 0 for j 6= 4, and for the

other levels

|NE2,4
k−1 | =

m−1
∑

j=2

|NE2,4
k−j |+

m−1
∑

j=2

|NE3,4
k−j−1 | (73)

|NE2,2j+1
k−1 | = |NE2,5

k−(j−1) |, for 3 ≤ j ≤ m (74)

|NE3,q
k−1 | =

1

2
|NE2,q−1

k−2 | (75)

|NE3,4
k−1 | = |NE2,q−1

k−2 | (76)

|NE4,4
k−1 | =

1

2
|NE3,4

k−j−2 | (77)

|NE2,6
k−1 | = 2|NE4,4

k−2 |+ |NE3,4
k−2 | (78)

|NE2,5
k−1 | = |NE3,4

k−2 | (79)

where |NE2,4
k−j | = |NE2,5

k−j | = 0 for k ≤ j.
The total at level k is

|NEk | = (2 + 2fm(3) +
3

2
fk−1(m− 2)f4(m))|NE2,4

k−2 |+ 2fm(3)|NE
2,4
k−3 |+ 4fm(4)

m−2
∑

j=4

|NE2,4
k−j |

+ (4fm(4) +
3

2
fk−1(m− 2)fm(3))|NE

2,4
k−m+1 |

+ 2(fk(m) + fk−1(m))fm−1(2)fm−1(3)
m−2
∑

j=3

|NE3,4
k−j−1 |

+ 2((fk(m) + fk−1(m))fm−1(2) + fm(3)fk−2(m− 1))|NE3,4
k−3 |

+ (2fk(m) + 2fk−1(m) +
1

2
fk−1(2m− 2))|NE3,4

k−m |+ fm(3)fk−2(m+ 2)|NE3,4
k−m−3 |

+ fk−1(m− 1)(2fm(3) +
3

2
fk−1(m− 2)f4(m))|NE3,4

k−2 |

+ 2fk−1(m− 1)|NE3,4
k−1 |+ fk−1(m+ 2)|NE3,4

k−m−1 | .

Proof. Applying together the information of the edges of the same type from the relations
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(56) and (69) with (72), and because q − 3 = 2m+ 1− 3 = 2(m− 1), it follows that

|NE2,4
k−1 | =

q−2
∑

j=4

|NE2,j
k−2 | =

m−1
∑

j=2

|NE2,2j
k−2 |+

m−1
∑

j=2

|NE2,2j+1
k−2 | (80)

|NE2,j+2
k−1 | = |NE2,j

k−2 |, for 4 ≤ j ≤ q − 2 (81)

|NE3,q
k−1 | =

1

2
|NE2,q−1

k−2 | (82)

|NE3,4
k−1 | = |NE2,q−1

k−2 | (83)

|NE4,4
k−1 | =

1

2
|NE2,q

k−2 | (84)

|NE2,6
k−1 | = 2|NE4,4

k−2 | (85)

|NE2,6
k−1 | = |NE3,4

k−2 | (86)

|NE2,5
k−1 | = |NE3,4

k−2 | (87)

The relation (81) is fundamental, and we obtain

|NE2,2j
k−2 | = |NE2,4

k−j | (88)

|NE2,2j+1
k−2 | = |NE2,5

k−j | , (89)

for 3 ≤ j ≤ m. Combining (89) with (87) and (84), we obtain the important relations

|NE2,2j+1
k−2 | = |NE3,4

k−j−1 |, for 2 ≤ j ≤ m (90)

|NE4,4
k−2 | =

1

2
|NE3,4

k−j−2 | . (91)

Using these relations in (80)− (87), we obtain the formulae (73)− (79) in the theorem.
Because we are considering k ≥ 2, different types of edges will appear as k increases.

Then, the edges of type (3, 4) appear for the first time for k = m, (2, 5) for k = m + 1,
(4, 4) for k = m + 3, (2, q − 1) for k = m − 1, and (2, q) for k = 2m − 1. These relations
are important because they determine the functions f that control the appearance of these
edges.

From the relations (80)− (87), we see that several different kinds of edges at level k − 2
give origin to edges of type (2− 6). Thus, the total of these edges is

|NE2,6
k−2 | = |NE2,4

k−3 |+
fk−2(m+ 2)

2
|NE3,4

k−m−3 |+ fk−2(m− 1)|NE3,4
k−3 | .

Another delicate point occurs when q = 7, because we have q − 1 = 6. Then, we need to
separate the cases |NE2,q−1

k | and |NE2,6
k |. In short, we have

|NE3,4
k−1 | = fm(3)|NE

2,4
k−m |+ f4(m)|NE2,6

k−2 | .
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For the general formula for |NEk |, we must be more careful, because it is the most involved
case.

Let ε ∈ NPk−1 be an external edge of (k − 1)-type (2, j). We assume that j ≤ q − 2.
The edge ε is an edge of an external polygon ∆. Because j ≤ q − 2, the reflected polygon
∆′ = ρε(∆) will have all but ε as an external edge. That is, ε will give rise to (p − 1) = 2
distinct edges in NEk.

If j = q−1, given an edge ε1 ∈ E2,q−1
k−1 , there is another edge ε2 ∈ E2,q−1

k−1 joining a common
vertex. Considering (for i = 1, 2) ∆i as a polygon in Pk−1, such that εi is an (exterior) edge
of ∆i, we find that ε = ρε1(∆1) ∩ ρε2(∆2); thus, each of these edges ε1 and ε2 contribute
along with (p− 2) = 1 new external edges at level k, in addition to ε. Now, ε is also a new
edge of type (3, q) in |NEk |, and the total number of edges must also be computed. Because
ε1 and ε2 give origin to the same edge, each one contributes with 1

2
edge, in for a total of

1 + 1
2
= 3

2
new edges.

If j = q, we have the same situation as above, where ε will contribute with 1
2
new edge

of type (4, 4). For (i, j) = (3, 4), let ∆ be the polygon in NPk−1 such that ε is an external
edge. The reflection of ε in ∆ will give two new edges in Ek.

Finally, if (i, j) = (4, 4), the reflection in ε will give origin to two new edges. Then, we
have

|NEk | = 2

q−2
∑

j=4

|NE2,j
k−1 |+

3

2
fk−1(m− 2)(fm(3)|NE

2,q−1
k−1 |+ f4(m)|NE2,6

k−1 |)

+
1

2
fk−1(2m− 2)|NE2,q

k−1 |+ 2fk−1(m− 1)|NE3,4
k−1 |+ 2fk−1(m+ 2)|NE4,4

k−1 | . (92)

The term (fm(3)|NE
2,q−1
k−1 |+f4(m)|NE2,6

k−1 |) in the formula is used for control when q = 7.
Applying together all relations in (92), we obtain the expression in the theorem.
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