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Abstract

In this paper, we prove by algebraic methods two further formulas satisfied by the

r-Whitney numbers of the second kind, which have been an object of recent study.

We establish a version of one of the formulas for a polynomial generalization of the

r-Whitney numbers. As special cases, we obtain apparently new identities for the

Stirling numbers of the second kind and the Bell numbers. Moreover, one may obtain

analogous formulas for Lah numbers and Stirling numbers of the first kind.

1 Introduction

The r-Whitney numbers of the second kind, which will be denoted byW (n, k) = W (n, k; r,m),
were studied by Cheon and Jung [5], where several algebraic properties are found (also see
[11]). The W (n, k) are connection constants in the polynomial identities

(mx+ r)n =
n
∑

k=0

W (n, k)mk(x)k, n ≥ 0,
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where (x)k = x(x − 1) · · · (x − k + 1) if k ≥ 1, with (x)0 = 1. The parameter r is usually
taken to be a non-negative integer and the parameter m a positive integer, but both may
also be regarded as indeterminates. Equivalently, the W (n, k) are defined by the recurrence

W (n, k) = W (n− 1, k − 1) + (r +mk)W (n− 1, k), n, k ≥ 1,

with initial values W (n, 0) = rn and W (0, k) = δk,0 for n, k ≥ 0. The r-Dowling numbers
D(n) = D(n; r,m) [5] are defined as D(n) =

∑n

k=0W (n, k) for n ≥ 0.
The r = 1 case of the r-Whitney and r-Dowling numbers are known simply as Whitney

and Dowling numbers ; see, e.g., [1, 2, 12] for various properties. When r = 0 and m = 1,
the r-Whitney and r-Dowling numbers reduce, respectively, to the Stirling numbers of the
second kind and to the Bell numbers (see sequences A008277 and A000110 in OEIS [14]),
which we will denote here by S(n, k) and B(n). See [9] and references contained therein for
various generalizations of S(n, k) and B(n). When m = 1, the W (n, k) and D(n) reduce to
the r-Stirling numbers [3] of the second kind and to the r-Bell numbers [10].

In the next two sections of this paper, we prove two new identities for the r-Whitney
and r-Dowling numbers. We use generating function techniques to establish our results. As
special cases, we will obtain recurrence formulas for the Stirling and Bell numbers, which
are also given combinatorial proofs. For one of the identities, we in fact prove a polynomial
generalization involving a recently introduced (p, q)-analogue [8] of W (n, k); also see [7] for
a related q-analogue. This result (Theorem 3 below) is seen to generalize the well-known
Stirling number recurrence [16, Identity 1.11] given by

S(n+ 1, k + 1) =
n
∑

i=0

(

n

i

)

S(i, k), n, k ≥ 0,

upon suitably selecting the parameters. The comparable formula for the r-Dowling numbers
(Corollary 4 below) is seen to generalize the Bell number recurrence [15, p. 34] given by

B(n+ 1) =
n
∑

i=0

(

n

i

)

B(i), n ≥ 0.

We conclude by noting analogues of our results that hold for the Stirling numbers of the first
kind and Lah numbers.

2 Generalized r-Whitney formula

In this section, we prove a formula for a polynomial generalization of the r-Whitney numbers.
Given an indeterminate q, let [n]q = 1 + q + · · · + qn−1 if n ≥ 1, with [0]q = 0. Let
Wp,q(n, k) = Wp,q(n, k; r,m) denote the sequence of polynomials defined recursively by

Wp,q(n, k) = Wp,q(n− 1, k − 1) + ([r]p +m[k]q)Wp,q(n− 1, k), n, k ≥ 1,
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with Wp,q(n, 0) = [r]np and Wp,q(0, k) = δk,0 for n, k ≥ 0, see [8]. Note that Wp,q(n, k) reduces
to W (n, k) when p = q = 1. The column generating function for Wp,q(n, k) is given by

∑

n≥k

Wp,q(n, k)x
n =

xk

∏k

i=0(1− ([r]p +m[i]q)x)
, k ≥ 0. (1)

We denote the special case of Wp,q(n, k) when r = 0 and m = p = 1 by Sq(n, k). The
Sq(n, k) sequence is a polynomial generalization of the Stirling numbers which was introduced
by Carlitz [4] and has since been studied (see, e.g., [16]). In what follows, we will make use
of the well-known generating function formulas

∑

n≥k

Sq(n, k)x
n =

xk

∏k

i=1(1− [i]qx)
, k ≥ 0, (2)

and
∑

n≥k

(

n

k

)

xn =
xk

(1− x)k+1
, k ≥ 0. (3)

Before proving our main result, we will need a couple of lemmas.

Lemma 1. If n > k ≥ 0, then

Wp,q(n, k + 1)− [r]pWp,q(n− 1, k + 1) =
n−1
∑

j=k

(

n− 1

j

)

(mq)j−k(m+ [r]p)
n−j−1Sq(j, k). (4)

Proof. Computing the generating function for the right-hand side of (4), we have

∑

n≥k+1

xn

n−1
∑

j=k

(

n− 1

j

)

(mq)j−k(m+ [r]p)
n−j−1Sq(j, k)

=
∑

j≥k

Sq(j, k)(mq)j−k(m+ [r]p)
−jx

∑

n≥j+1

(

n− 1

j

)

(m+ [r]p)
n−1xn−1

=
∑

j≥k

Sq(j, k)(mq)j−k(m+ [r]p)
−jx ·

(m+ [r]p)
jxj

(1− (m+ [r]p)x)j+1

=
(mq)−kx

1− (m+ [r]p)x

∑

j≥k

Sq(j, k)

(

mqx

1− (m+ [r]p)x

)j

=
(mq)−kx

1− (m+ [r]p)x
·

(mqx)k

(1− (m+ [r]p)x)k
∏k

i=1

(

1− mq[i]qx

1−(m+[r]p)x

)

=
xk+1

∏k+1
i=1 (1− ([r]p +m[i]q)x)

,

by formulas (3) and (2) and since m + mq[i]q = m[i + 1]q for i ≥ 0. By (1), the left-hand
side of (4) is seen to have this same generating function, which completes the proof.
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Lemma 2. If d > k + 1, then

d−1
∑

n=k+1

(Wp,q(n, k + 1)− [r]pWp,q(n− 1, k + 1))xn

=
md−k−1

qk

d−1
∑

ℓ=k

ℓ−1
∑

j=k

ℓ−1
∑

i=j

(

d− 1

ℓ

)(

i

j

)

mj−ℓqj[r]i−j
p Sq(j, k)x

i+d−ℓ(1−mx)ℓ−i−1. (5)

Proof. The right-hand side of (5) is seen to be a polynomial in x whose powers lie in the set
{k + 1, k + 2, . . . , d− 1}. If k + 1 ≤ n ≤ d− 1, then the coefficient of xn on the right side of
(5) is given by

(−1)d−nmn−k−1

qk

d−1
∑

ℓ=k

ℓ−1
∑

j=k

ℓ−1
∑

i=j

(−1)ℓ−i

(

d− 1

ℓ

)(

i

j

)(

ℓ− i− 1

d− n− 1

)

mj−iqj[r]i−j
p Sq(j, k)

=
(−1)d−nmn−k−1

qk

d−2
∑

j=k

d−2
∑

i=j

(−1)i
(

i

j

)

mj−iqj[r]i−j
p Sq(j, k)

d−1
∑

ℓ=i+1

(−1)ℓ
(

d− 1

ℓ

)(

ℓ− i− 1

d− n− 1

)

.

Note that the innermost sum in the last expression is the coefficient of xd−i−2 in the convo-
lution product

(−1)d−1(1− x)d−1 ·
xd−n−1

(1− x)d−n
,

and is thus given by

(−1)d−1[xn−i−1](1− x)n−1 = (−1)d−1

(

n− 1

n− 1− i

)

(−1)n−i−1 = (−1)d+n−i

(

n− 1

i

)

.

Plugging this into the last expression implies that the aforementioned coefficient of xn is
given by

d−2
∑

j=k

(mq)j−kSq(j, k)
d−2
∑

i=j

(

i

j

)(

n− 1

i

)

mn−i−1[r]i−j
p

=
d−2
∑

j=k

(

n− 1

j

)

(mq)j−kSq(j, k)
d−2
∑

i=j

(

n− j − 1

i− j

)

mn−i−1[r]i−j
p

=
n−1
∑

j=k

(

n− 1

j

)

(mq)j−kSq(j, k)

n−j−1
∑

i=0

(

n− j − 1

i

)

mn−j−1−i[r]ip

=
n−1
∑

j=k

(

n− 1

j

)

(mq)j−k(m+ [r]p)
n−j−1Sq(j, k)

= Wp,q(n, k + 1)− [r]pWp,q(n− 1, k + 1),

by the binomial theorem and Lemma 1, which completes the proof.
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Theorem 3. If n, k ≥ 0 and d ≥ 1, then

Wp,q(n+ d, k + 1)− [r]pW (n+ d− 1, k + 1)

=
mn+d−k−1

qk

d−1
∑

ℓ=0

n
∑

i=0

i+ℓ
∑

j=0

(

d− 1

ℓ

)(

n

i

)(

i+ ℓ

j

)

m−jqi+ℓ−j[r]jpSq(i+ ℓ− j, k). (6)

Proof. We first assume d > k + 1. Then by (1), we have

∑

n≥0

(Wp,q(n+ d, k + 1)− [r]pWp,q(n+ d− 1, k + 1))xn+d

=
xk+1

∏k+1
i=1 (1− ([r]p +m[i]q)x)

−
d−1
∑

n=k+1

(Wp,q(n, k + 1)− [r]pWp,q(n− 1, k + 1))xn. (7)

We now compute the generating function of the quantity on the right-hand side of (6).
Consider replacing j by i + ℓ − j in the innermost sum. Furthermore, note that if ℓ < k,
then the innermost sum is empty unless i ≥ k− ℓ (since j ≥ k is required), whereas if ℓ ≥ k,
then this sum is non-empty for all i ≥ 0. We rearrange the terms in the sum as follows:

d−1
∑

ℓ=0

n
∑

i=0

i+ℓ
∑

j=k

=
k−1
∑

ℓ=0

n
∑

i=0

i+ℓ
∑

j=k

+
d−1
∑

ℓ=k

n
∑

i=0

i+ℓ
∑

j=k

=
k−1
∑

ℓ=0

ℓ+n
∑

j=k

n
∑

i=j−ℓ

+
d−1
∑

ℓ=k

ℓ+n
∑

j=k

n
∑

i=j−ℓ

−

d−1
∑

ℓ=k

ℓ−1
∑

j=k

−1
∑

i=j−ℓ

=
d−1
∑

ℓ=0

ℓ+n
∑

j=k

n
∑

i=j−ℓ

−

d−1
∑

ℓ=k

ℓ−1
∑

j=k

−1
∑

i=j−ℓ

:= S1 − S2.

If i < 0, then let
(

n

i

)

= (−1)n−i
(

−i−1
−n−1

)

if i ≤ n < 0, with
(

n

i

)

= 0 otherwise. Note that
with this definition that (3) continues to hold for k < 0. While S1 contains terms where
i < 0 in the

(

n

i

)

factor, the sum sought contains no such terms of this form; hence, these
terms are subtracted in S2. We compute the generating function for S1 and S2 separately,
first considering S1:

1

mk+1qk

∑

n≥−d

(mx)n+d

d−1
∑

ℓ=0

ℓ+n
∑

j=k

n
∑

i=j−ℓ

(

d− 1

ℓ

)(

n

i

)(

i+ ℓ

j

)

mj−i−ℓqj[r]i+ℓ−j
p Sq(j, k)

=
md−k−1

qk

d−1
∑

ℓ=0

∑

j≥k

∑

i≥j−ℓ

(

d− 1

ℓ

)(

i+ ℓ

j

)

mj−i−ℓqj[r]i+ℓ−j
p Sq(j, k)

mixi+d

(1−mx)i+1

=
md−k−1

qk

d−1
∑

ℓ=0

∑

j≥k

(

d− 1

ℓ

)

mj−ℓqj[r]ℓ−j
p Sq(j, k)

∑

i≥j−ℓ

(

i+ ℓ

j

)

[r]ipx
i+d

(1−mx)i+1
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=
md−k−1

qk

d−1
∑

ℓ=0

∑

j≥k

(

d− 1

ℓ

)

mj−ℓqj[r]ℓ−j
p Sq(j, k)x

d−ℓ

(

[r]p
1−mx

)−ℓ
([r]px)

j

(1− (m+ [r]p)x)j+1

=
md−k−1

qk

d−1
∑

ℓ=0

(

d− 1

ℓ

)

xd−ℓ

(

1−mx

m

)ℓ
∑

j≥k

Sq(j, k)
(mqx)j

(1− (m+ [r]p)x)j+1

=
md−k−1

qk

d−1
∑

ℓ=0

(

d− 1

ℓ

)

xd−ℓ

(

1−mx

m

)ℓ
(mqx)k

(1− (m+ [r]p)x)k+1
∏k

i=1

(

1− mq[i]qx

1−(m+[r]p)x

)

=
md−1xk

∏k+1
i=1 (1− ([r]p +m[i]q)x)

d−1
∑

ℓ=0

(

d− 1

ℓ

)

xd−ℓ

(

1−mx

m

)ℓ

=
xk+1

∏k+1
i=1 (1− ([r]p +m[i]q)x)

,

which is the first term on the right-hand side of (7).
The generating function for S2 is given by

1

mk+1qk

∑

n≥−d

(mx)n+d

d−1
∑

ℓ=k

ℓ−1
∑

j=k

−1
∑

i=j−ℓ

(

d− 1

ℓ

)(

n

i

)(

i+ ℓ

j

)

mj−i−ℓqj[r]i+ℓ−j
p Sq(j, k)

=
md−k−1

qk

d−1
∑

ℓ=k

ℓ−1
∑

j=k

ℓ−1
∑

i=j

(

d− 1

ℓ

)(

i

j

)

mj−ℓqj[r]i−j
p Sq(j, k)x

i+d−ℓ(1−mx)ℓ−i−1,

upon replacing i by i− ℓ in the innermost sum. By Lemma 2, this last expression equals

d−1
∑

n=k+1

(Wp,q(n, k + 1)− [r]pWp,q(n− 1, k + 1))xn,

which by (7) shows that the right side of (6) has the same generating function as the left.
This implies (6) in the case when d > k + 1. If d ≤ k + 1, then a similar argument may be
given where both S2 and the sum on the right side of (7) are empty, which completes the
proof.

We note some special cases of the prior result.

Corollary 4. If n, k ≥ 0 and d ≥ 1, then

W (n+ d, k + 1)− rW (n+ d− 1, k + 1) =
d−1
∑

ℓ=0

n
∑

i=0

(

d− 1

ℓ

)(

n

i

)

mn+d−i−ℓ−1W (i+ ℓ, k) (8)

and

D(n+ d)− rD(n+ d− 1) =
d−1
∑

ℓ=0

n
∑

i=0

(

d− 1

ℓ

)(

n

i

)

mn+d−i−ℓ−1D(i+ ℓ). (9)
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Proof. Formula (8) follows from substituting p = q = 1 in (6) and using the fact

W (i+ ℓ, k) =
i+ℓ
∑

j=0

(

i+ ℓ

j

)

mi+ℓ−j−krjS(i+ ℓ− j, k),

see [5, Section 3]. Summing (8) over k ≥ 0, and noting that W (n+ d, 0) = rW (n+ d− 1, 0),
gives formula (9).

Taking r = 0 and m = 1 in (6) gives the following recurrence for Sq(n, k).

Corollary 5. If n, k ≥ 0 and d ≥ 1, then

Sq(n+ d, k + 1) =
d−1
∑

ℓ=0

n
∑

i=0

(

d− 1

ℓ

)(

n

i

)

qi+ℓ−kSq(i+ ℓ, k). (10)

Taking q = 1 in (10) gives the following formula for S(n, k):

S(n+ d, k + 1) =
d−1
∑

ℓ=0

n
∑

i=0

(

d− 1

ℓ

)(

n

i

)

S(i+ ℓ, k), d ≥ 1. (11)

Summing (11) over k ≥ 0 yields the following Bell number formula:

B(n+ d) =
d−1
∑

ℓ=0

n
∑

i=0

(

d− 1

ℓ

)(

n

i

)

B(i+ ℓ), d ≥ 1. (12)

Remark 6. The d = 1 cases of (11) and (12) correspond to the well-known recurrences for
the Stirling and Bell numbers, respectively. The d = 2 cases of (11) and (12) may be written
as

S(n+ 2, k + 1) = S(n+ 1, k + 1) + S(n+ 1, k) +
n
∑

i=1

(

n

i− 1

)

S(i, k), n, k ≥ 0, (13)

and

B(n+ 2) = 2B(n+ 1) +
n
∑

i=1

(

n

i− 1

)

B(i), n ≥ 0, (14)

the latter of which is previously known [13].

We conclude this section by giving bijective proofs of the last four identities.

Combinatorial proof of formulas (11)–(14).

Let Pn,k denote the set of all partitions of [n] = {1, 2, . . . , n} containing exactly k blocks
and let Pn = ∪n

k=0Pn,k. To show (11), suppose that the number of elements of [2, d] =

7



{2, 3, . . . , d} lying in the block containing 1 of π ∈ Pn+d,k+1 is d− ℓ− 1, while the number of
elements of [d+1, d+n] lying in this block is n− i, where 0 ≤ ℓ ≤ d−1 and 0 ≤ i ≤ n. Then
there are

(

d−1
d−1−ℓ

)(

n

n−i

)

choices regarding the block of π containing 1, with the remaining i+ ℓ

elements of [n+d] to be partitioned in any one of S(i+ℓ, k) ways. Summing over all possible
i and ℓ gives (11). A similar proof applies to (12), upon allowing partitions to contain any
number of blocks.

To show (13), first note that there are S(n+ 1, k + 1) members of Pn+2,k+1 in which the
elements 1 and 2 belong to the same block and S(n + 1, k) members in which 1 belongs to
its own block. Next observe that there are

(

n

n−i+1

)

S(i, k) =
(

n

i−1

)

S(i, k) members of Pn+2,k+1

for 1 ≤ i ≤ n in which there are exactly n − i + 1 elements of [3, n + 2] belonging to the
block containing 1, with 1 and 2 belonging to different blocks (note that the remaining
n − (n − i + 1) = i − 1 elements of [3, n + 2], together with 2, would constitute a partition
having k blocks). Summing over i yields all members of Pn+2,k+1 in which 1 and 2 belong to
different blocks, with 1 not forming its own block. Combining this with the previous cases
gives (13). Similar reasoning applies to (14). Note that there are 2B(n + 1) members of
Pn+2 in which 1 either belongs to its own block or to the same block as 2 and that there are
(

n

n−i+1

)

B(i) members of Pn+2 for 1 ≤ i ≤ n in which 1 and 2 belong to different blocks with
the cardinality of the block containing 1 equal n− i+ 2.

3 A further formula for r-Whitney numbers

In this section, we prove a further identity satisfied by the r-Whitney numbers of the second
kind.

Theorem 7. If n ≥ 1 and k ≥ 2, then

W (n+1, k)−rW (n, k) =
n−1
∑

j=0

((

n

j

)

+
r

m
− 1

)

mn−jW (j, k−1)+
n
∑

j=1

(

n

j

)

mn−jW (j−1, k−2)

(15)
and

D(n+ 1)− rD(n) = mn +
n−1
∑

j=0

((

n

j

)

+
r

m
− 1

)

mn−jD(j) +
n
∑

j=1

(

n

j

)

mn−jD(j − 1). (16)

Proof. By (1) when p = q = 1, we have

∑

n≥1

(W (n+ 1, k)− rW (n, k))xn =
xk−1

∏k

i=1(1− (r +mi)x)
.
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Computing the generating function of the right-hand side of (15) gives

∑

n≥1

xn

n−1
∑

j=0

((

n

j

)

+
r

m
− 1

)

mn−jW (j, k − 1) +
∑

n≥1

xn

n
∑

j=1

(

n

j

)

mn−jW (j − 1, k − 2)

=
∑

j≥0

W (j, k − 1)m−j
∑

n≥j+1

((

n

j

)

+
r

m
− 1

)

(mx)n

+
∑

j≥1

W (j − 1, k − 2)m−j
∑

n≥j

(

n

j

)

(mx)n

=
∑

j≥0

W (j, k − 1)m−j

(

(mx)j

(1−mx)j+1
− (mx)j +

(

r
m
− 1
)

(mx)j+1

1−mx

)

+
∑

j≥1

W (j − 1, k − 2)m−j (mx)j

(1−mx)j+1

=
∑

j≥0

W (j, k − 1)
xj

(1−mx)j+1
−

1− rx

1−mx

∑

j≥0

W (j, k − 1)xj

+
∑

j≥1

W (j − 1, k − 2)
xj

(1−mx)j+1

=
xk−1

(1−mx)k
∏k−1

i=0

(

1− (r+mi)x
1−mx

) −
xk−1(1− rx)

(1−mx)
∏k−1

i=0 (1− (r +mi)x)

+
xk−1

(1−mx)k
∏k−2

i=0

(

1− (r+mi)x
1−mx

)

=
xk−1(1−mx)− xk−1(1− (r +mk)x) + xk−1(1− (r +mk)x)

(1−mx)
∏k

i=1(1− (r +mi)x)

=
xk−1

∏k

i=1(1− (r +mi)x)
,

as before, which implies (15).
Summing both sides of (15) over k ≥ 2, and noting W (n+ 1, 0) = rW (n, 0), implies

D(n+ 1)− rD(n) = W (n+ 1, 1)− rW (n, 1) +
n−1
∑

j=0

((

n

j

)

+
r

m
− 1

)

mn−jD(j)

+
n
∑

j=1

(

n

j

)

mn−jD(j − 1)−
n−1
∑

j=0

((

n

j

)

+
r

m
− 1

)

mn−jW (j, 0).

9



From this, we see that identity (16) holds if and only if

W (n+ 1, 1)− rW (n, 1) = mn +
n−1
∑

j=0

((

n

j

)

+
r

m
− 1

)

mn−jrj.

This last equality follows from the fact that W (n+ 1, 1)− rW (n, 1) = (m+ r)n (which can
be obtained by taking p = q = 1 and k = 0 in (4)). This gives (16) and completes the
proof.

We have as special cases of the prior result the following recurrence formulas for the
Stirling and Bell numbers which we did not find in the literature.

Corollary 8. If n ≥ 1 and k ≥ 2, then

S(n+ 1, k) =
n
∑

j=1

((

n

j

)

− 1

)

S(j, k − 1) +
n
∑

j=1

(

n

j

)

S(j − 1, k − 2) (17)

and

B(n+ 1) = 1 +
n
∑

j=1

((

n+ 1

j

)

− 1

)

B(j − 1). (18)

Proof. Taking m = 1 and r = 0 in (15) gives (17). Taking m = 1 and r = 0 in (16) implies

B(n+ 1)− 1 =
n−1
∑

j=0

((

n

j

)

− 1

)

B(j) +
n−1
∑

j=0

(

n

j + 1

)

B(j)

=
n
∑

j=0

((

n

j

)

+

(

n

j + 1

)

− 1

)

B(j) =
n
∑

j=0

((

n+ 1

j + 1

)

− 1

)

B(j)

=
n
∑

j=1

((

n+ 1

j

)

− 1

)

B(j − 1),

which gives (18).

Using (2) and (3), it is possible to obtain a q-generalization of formula (17).

Theorem 9. If n ≥ 1 and k ≥ 2, then

Sq(n+ 1, k) =
n
∑

j=1

((

n

j

)

− 1

)

qj−k+1Sq(j, k − 1)

+
n
∑

j=1

n−j+1
∑

i=1

(

n− i

j − 1

)

qn+j−i−2k+3Sq(j − 1, k − 2). (19)

10



One can also give a combinatorial proof of formulas (17) and (18).

Combinatorial proof of Corollary 8.

We first show (17). To do so, we count members of Pn+1,k according to the contents of
the block B containing the element 1. First suppose that it is not the case that B equals [i]
for some i. Then k ≥ 2 implies |B| = n − j + 1 where 1 ≤ j ≤ n − 1. Thus, members of
Pn+1,k may be formed in this case by picking some subset S of [2, n+ 1] of cardinality n− j

where S 6= [2, n− j +1], adding the element 1 to S to obtain B, and then partitioning the j
members of [n+ 1]−B into k − 1 blocks. Summing over all possible i, it follows that there

are
∑n−1

j=1

(

(

n

n−j

)

− 1
)

S(j, k− 1) members of Pn+1,k in which B does not equal [i] for any i.

On the other hand, members of Pn+1,k in which B = [i] for some i where i ≥ 1 may be
formed as follows. First select a subset T of [n+1] of size n− j+1 that contains the element
1, where 1 ≤ j ≤ n. Note that there are

(

n

j

)

choices for T and that j ≥ 1 implies T is a

proper subset of [n + 1]. Let ℓ denote the smallest element of [n + 1]− T . Form a member
of Pn+1,k by letting [ℓ − 1] be one block and {ℓ} ∪ (T ∩ [ℓ + 1, n + 1]) be another, with the
members of [n+1]− (T ∪ {ℓ}) arranged according to a partition containing k− 2 blocks (of
which there are S(j − 1, k− 2) possibilities). Considering all possible j, it follows that there
are

∑n

j=1

(

n

j

)

S(j − 1, k − 2) members of Pn+1,k in which B = [i] for some i. Combining this

case with the prior one gives (17).
Reasoning as in the previous two paragraphs, one may define a one-to-one correspondence

between the members of Pn+1 containing at least two blocks and the set of all ordered pairs
(S, P ), where S is a subset of [n + 1] of cardinality n − j + 1 for some 1 ≤ j ≤ n with
S 6= [2, n − j + 2] and P is a member of Pj−1. Considering the cardinality of the set of all
such ordered pairs implies (18).

4 Related results

We can give analogues of some of the prior results involving related sequences. Given 0 ≤
k ≤ n, let c(n, k) denote the (signless) Stirling number of the first kind and L(n, k) be the
(signless) Lah number; see, e.g., sequences A008275 and A008297 in OEIS [14]. Recall that
c(n, k) counts the number of permutations of [n] containing k cycles and that L(n, k) counts
partitions of [n] into k blocks in which the elements within each block are ordered (see, e.g.,
[6]). Extending the combinatorial arguments presented above for identity (11) above to allow
for ordering within blocks yields the following result.

Theorem 10. If n, k ≥ 0 and d ≥ 1, then

c(n+ d, k + 1) =
d−1
∑

ℓ=0

n
∑

i=0

(

d− 1

ℓ

)(

n

i

)

(n+ d− i− ℓ− 1)!c(i+ ℓ, k) (20)
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and

L(n+ d, k + 1) =
d−1
∑

ℓ=0

n
∑

i=0

(

d− 1

ℓ

)(

n

i

)

(n+ d− i− ℓ)!L(i+ ℓ, k). (21)

Remark 11. Summing (20) and (21) over k gives comparable formulas involving the n! and
L(n) sequences, respectively, where L(n) =

∑n

k=0 L(n, k) (see A000262 in [14]).

We also have the following analogues of identity (17).

Theorem 12. If n ≥ 1 and k ≥ 2, then

c(n+1, k) =
n
∑

j=1

((

n

j

)

− 1

)

(n−j)!c(j, k−1)+
n
∑

j=1

n−j
∑

i=0

(

n− i− 1

j − 1

)

i!(n−i−j)!c(j−1, k−2)

(22)
and

L(n+1, k) =
n
∑

j=1

((

n

j

)

− 1

)

(n−j+1)!L(j, k−1)+
n−1
∑

j=0

n−j
∑

i=1

(

n− i

j

)

i!(n−i−j+1)!L(j, k−2).

(23)

Proof. We show only (22), as a similar proof will apply to (23). We proceed as in the
combinatorial proof of formula (17) above. Let Sn+1,k be the set of permutations of [n + 1]
containing k cycles and let B denote the cycle containing 1 within a member of Sn+1,k. Then
the first term on the right-hand side of (22) is seen to count all members of Sn+1,k in which
B does not comprise the elements of [i] for any i and has cardinality n − j + 1 for some
1 ≤ j ≤ n. Note that the (n− j)! factor accounts for the ordering of the elements within B.

Now consider members of Sn+1,k such that B comprises the elements of [i + 1] for some
0 ≤ i ≤ n − 1. Suppose further that the cycle containing the element i + 2 has cardinality
n− i− j +1 where 1 ≤ j ≤ n− i. Then there are

(

n−i−1
n−i−j

)

=
(

n−i−1
j−1

)

choices for the elements

of this cycle and i!(n − i − j)! ways in which to order the elements of the first two cycles.
The remaining n+1− (i+1)− (n− i− j +1) = j − 1 elements of [n+1] are then arranged
within cycles in c(j − 1, k − 2) ways. Summing over all possible i and j gives the second
term on the right side of (22) and completes the proof.

Summing (22) and (23) over k ≥ 2 yields analogues of identity (16) involving n! and
L(n). These formulas may also be given a combinatorial proof by extending the argument
above for (18).
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