

Journal of Integer Sequences, Vol. 20 (2017), Article 17.8.8

Aperiodic Compositions and Classical Integer Sequences

Margherita Maria Ferrari and Norma Zagaglia Salvi* Department of Mathematics Politecnico di Milano Milano, 20133 Italy margheritamaria.ferrari@polimi.it norma.zagaglia@polimi.it

Abstract

In this paper we define the notion of singular composition of a positive integer. We provide a characterization of these compositions, together with methods for decomposing and also extending a singular composition in terms of other singular compositions. Consecutive extensions of particular compositions determine sequences of integers which coincide with classical integer sequences involving Fibonacci and Lucas numbers.

1 Introduction

Let k, n be integers where $1 \le k \le n$, and let $\alpha = (a_1, a_2, \ldots, a_k)$ denote a composition of n into k parts [3]. We call α (h, i)-singular if

$$(a_1, a_2, \dots, a_i + a_{i+1}, \dots, a_k) = (a_{1+h}, a_{2+h}, \dots, a_{i+h} + a_{i+1+h}, \dots, a_{k+h}),$$
(1)

where $1 \le h \le k - 1$, $1 \le i \le k$ and the indices are modulo k. Note that shifting a (h, i)-singular composition of one position to the right, we obtain a (h, i + 1)-singular composition. Consequently, the choice of a single index i is sufficient for identifying such compositions.

^{*} Work partially supported by MIUR (Ministero dell'Istruzione, dell'Università e della Ricerca).

Thus we fix i = 1 and we call the composition $\alpha = (a_1, a_2, \ldots, a_k)$ h-singular if

$$(a_1 + a_2, a_3, \dots, a_k) = (a_{1+h} + a_{2+h}, a_{3+h}, \dots, a_{k+h}).$$
⁽²⁾

A k-composition of n is singular when it is h-singular for a suitable value of $1 \le h \le k-1$.

Example 1. The 5-composition (1, 2, 2, 1, 2) of n = 8 is 2-singular.

Kramer [2] used singular compositions in order to define the middle levels partition graph of n.

The concatenation of the compositions $\alpha = (a_1, a_2, \ldots, a_k)$ and $\beta = (b_1, b_2, \ldots, b_h)$ of the positive integers n and m respectively is the composition $\alpha\beta = (a_1, a_2, \ldots, a_k, b_1, b_2, \ldots, b_h)$ of n + m. We let α^i denote the concatenation of α with itself i times. A composition α is periodic if $\alpha = \pi^j$, where $1 < j \le k$ and π is a suitable composition.

Fibonacci and Lucas numbers will appear in some of our results. Recall that the Fibonacci sequence $(F_n)_{n\geq 0}$ is defined by setting $F_0 = 0$, $F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$, for $n \geq 2$. The Lucas sequence $(L_n)_{n\geq 0}$ is defined by setting $L_0 = 2$, $L_1 = 1$ and $L_n = L_{n-1} + L_{n-2}$, for $n \geq 2$.

The paper is outlined as follows. In Section 2 we determine a characterization of aperiodic singular compositions which allows us to obtain a method for constructing such compositions (Theorem 11). In Section 3 we study decompositions (Theorem 14) and also extensions (Theorem 18) of a singular composition in terms of other singular compositions. In Section 4 we prove that consecutive extensions of particular compositions determine sequences of integers which coincide with classical sequences involving Fibonacci and Lucas numbers. We conclude the paper by posing a more general definition of singular composition together with an open problem.

2 A characterization of singular compositions

Let α be an *h*-singular *k*-composition of *n*; from (2) it follows that $(a_3, \ldots, a_k) = (a_{3+h}, \ldots, a_{k+h})$.

This equality determines the function $f_h : \{3, 4, \dots, k\} \rightarrow \{3+h, 4+h, \dots, k+h\}$ on the indices of the elements of previous sequences such that

$$f_h(i) = i + h_i$$

where $3 \leq i \leq k$ and the integers are modulo k. We may represent f_h in two-line notation

$$\begin{pmatrix} 3 & 4 & \cdots & k \\ 3+h & 4+h & \cdots & k+h \end{pmatrix}.$$
 (3)

Note that the second line is obtained by shifting of h positions to the left the elements of the sequence (1, 2, 3, 4, ..., k) and ignoring the first two elements 1 + h and 2 + h. A consequence is that the elements 1 and 2, which do not belong to the first line, belong to the second one,

except for h = 1 and h = k - 1. Indeed for h = 1 the second line contains 1, but not 2; for h = k - 1 the second line contains 2, but not 1. In a similar way, the elements 1 + h and 2 + h do not belong to the second line while they belong to the first one, except for h = 1 and h = k - 1.

Proposition 2. An h-singular k-composition of n, where h and k are not coprime, is periodic.

Proof. Let gcd(k, h) = t > 1, where h = th', k = tk' and gcd(k', h') = 1. Note that the sets $H_i = \{i, i+h, \ldots, i+(k'-1)h\}, 1 \le i \le t$, determine a partition of the set [k]. Then, for an *h*-singular *k*-composition $\alpha = (a_1, a_2, \ldots, a_k)$, the elements of the sets $\{a_i, a_{i+h}, \ldots, a_{i+(k'-1)h}\}, 1 \le i \le t$, coincide and α turns out to be the concatenation $(a_1, a_2, \ldots, a_k)^{k'}$.

Throughout the paper we consider only aperiodic compositions.

Beggas et al. [1] proved that a particular bijection, called widened permutation, between two *n*-sets having n - 1 elements in common has a decomposition into a linear order and a possible permutation. In this case we have a similar function in which the two sets have n - 2 elements in common, but for h = 1 and h = k - 1.

Lemma 3. Let h, k be coprime integers, where $1 \le h \le k - 1$. The function f_h does not contain cycles.

Proof. By way of contradiction we assume there is a cycle

$$C = (d, d+h, \dots, d+(r-1)h),$$

where $1 \leq d \leq k$ and $d + rh \equiv d \pmod{k}$. This means that $rh \equiv 0 \pmod{k}$ and therefore k divides rh. Then, because gcd(k,h) = 1, k divides r. The unique possibility is r = k; so the cycle contains all the elements. But this implies the impossible condition that also every line of (3) contains all the elements.

Theorem 4. Let h, k be coprime integers, where $1 \le h \le k - 1$. The function f_h is decomposed into the linear orders:

1.

$$E_h = (1 + h, 1 + 2h, \dots, 1 + rh) \tag{4}$$

and

$$F_h = (2 + h, 2 + 2h, \dots, 2 + sh), \tag{5}$$

where
$$r = h^{-1}$$
, $s = (k-1)h^{-1}$ in \mathbb{Z}_k , for $h \neq 1, k-1$,

- 2. $E_1 = (2)$ and $F_1 = (3, 4, \dots, k, 1)$, for h = 1;
- 3. $E_{k-1} = (k, k-1, \dots, 2)$ and $F_{k-1} = (1)$, for h = k 1.

Proof. Let $h \neq 1, k-1$. Starting from 1+h we obtain the sequence $(1+h, 1+2h, \ldots, 1+rh = a)$, where a is one of the two elements which are in the second but not in the first line. So we have either a = 1 or a = 2. If a = 1, we obtain the impossible relation $rh \equiv 0 \pmod{k}$. If a = 2, we obtain $rh \equiv 1 \pmod{k}$, which is satisfied for $r = h^{-1}$ in \mathbb{Z}_k . Now starting from 2+h we obtain the sequence $(2+h, 2+2h, \ldots, 2+sh = b)$, where either b = 1 or b = 2. The unique possibility is b = 1, which holds for $s = (k-1)h^{-1}$ in \mathbb{Z}_k . By Lemma 3 the function does not contain cycles; therefore it is decomposed into the previous linear orders.

Now let h = 1. The function f_1 is decomposed into $F_1 = (3, 4, ..., k, 1)$ and $E_1 = (2)$. In the case h = k - 1, f_{k-1} is decomposed into $E_{k-1} = (k, k - 1, ..., 2)$ and $F_{k-1} = (1)$. This completes the proof of the theorem.

In the following we let E_h and F_h also denote the sets of the elements of the assigned linear orders.

Corollary 5. For every $1 \le h \le k-1$ such that gcd(k,h) = 1, $E_h \cup F_h = [k]$ and, for k > 2, $|E_h| \ne |F_h|$.

Proof. If $k - h^{-1} = h^{-1}$, then $k = 2h^{-1}$ and kh = 2 in \mathbb{Z}_k . This implies that $2 \equiv 0 \pmod{k}$, a contradiction for k > 2.

Lemma 6. Let h_1, h_2 be two integers such that $1 \le h_1 < h_2 \le k - 1$ and $gcd(k, h_1) = gcd(k, h_2) = 1$. Then $E_{h_1} \ne E_{h_2}$ and $F_{h_1} \ne F_{h_2}$.

Proof. The cardinalities of E_{h_1} and E_{h_2} coincide with h_1^{-1} and h_2^{-1} in \mathbb{Z}_k respectively. Because $h_1 < h_2$, their inverses are distinct; then also the sets E_{h_1} and E_{h_2} are distinct. The same argument applies for F_{h_1} and F_{h_2} .

The following result is straightforward.

Corollary 7. If k is a prime integer, then all the sets E_h (respectively F_h), $1 \le h \le k-1$, are distinct.

Note that when k and h are coprime, then also k and k-h are coprime. In the following result we establish a relation between E_{k-h} (respectively F_{k-h}) and F_h (respectively E_h).

Proposition 8. For every $1 \le h \le \lfloor \frac{k}{2} \rfloor$ such that gcd(k,h) = 1, $E_{k-h} = (F_h \setminus \{1\}) \cup \{2\}$ and $F_{k-h} = (E_h \setminus \{2\}) \cup \{1\}$.

Proof. The result is easy to prove for h = 1. Let h' = k - h. Since gcd(k, h) = 1, then gcd(k, h') = 1, $E_{h'} = \{1 + h', 1 + 2h', \dots, 1 + (r'-1)h', 2\}$ and $F_{h'} = \{2 + h', 2 + 2h', \dots, 2 + (s'-1)h', 1\}$, where $r' = (h')^{-1}$ and $s' = k - (h')^{-1}$ in \mathbb{Z}_k . Let s denote $k - h^{-1}$ in \mathbb{Z}_k ; it follows that

$$1 + k - h \equiv 2 + (s - 1)h \pmod{k}.$$

Then $1+2(k-h) \equiv 2+(s-2)h$ and so on until $1+(s-1)(k-h) \equiv 2+h$ and $1+s(k-h) \equiv 2 \pmod{k}$. (mod k). Thus $E_{k-h} = \{2+(s-1)h, 2+(s-2)h, \dots, 2+h, 2\} = (F_h \setminus \{1\}) \cup \{2\}.$

Moreover, $2 + k - h \equiv 1 + (r - 1)h \pmod{k}$, where $r = h^{-1}$ in \mathbb{Z}_k ; thus $F_{k-h} = \{1 + (r - 1)h, 1 + (r - 2)h, \dots, 1 + h, 1\} = (E_h \setminus \{2\}) \cup \{1\}.$

Corollary 9. If $\alpha = (a_1, a_2, \ldots, a_k)$ is an aperiodic h-singular k-composition of n, then every a_i is equal to a_1 or a_2 , $1 \le i \le k$, as long as $i \in F_h$ or $i \in E_h$ respectively. Then a_1 and a_2 are distinct, and they satisfy the relation

$$(k - h^{-1})a_1 + h^{-1}a_2 = n. (6)$$

Corollary 10. If an aperiodic composition contains more than two distinct elements, then it is not singular.

Previous results allow us to give a characterization of singular compositions, which turns out to be a method for their construction.

Theorem 11. Let h, k, n be positive integers such that $1 \le h < k \le n$ and gcd(k, h) = 1. An aperiodic k-composition $\alpha = (a_1, a_2, ..., a_k)$ is h-singular if and only if $a_1 \ne a_2$ and the pair of elements (a_1, a_2) is a solution of the equation

$$(k - h^{-1})x_1 + h^{-1}x_2 = n, (7)$$

where h^{-1} , $k - h^{-1} \in \mathbb{Z}_k$, and each a_i coincides with a_1 or a_2 for $i \in F_h$ or $i \in E_h$ respectively.

Proof. If α is *h*-singular, then by Corollary 9 the property holds.

Now let us assume that the pair of distinct integers (a_1, a_2) is solution of the equation (7) and each a_i coincides with a_1 or a_2 for $i \in F_h$ or $i \in E_h$ respectively. Hence, for $h \neq 1, k-1$, the composition $\alpha = (a_1, a_2, \ldots, a_k)$ which has the elements a_1 and a_2 in the positions given by (5) and (4) respectively, is *h*-singular. Lastly, if $h = 1, \alpha = (a_1, a_2, a_1, \ldots, a_1)$ is 1-singular, while if $h = k - 1, \alpha = (a_1, a_2, \ldots, a_2)$ is (k - 1)-singular. \Box

Example 12. The list of *h*-singular 9-compositions with $a_1 = 1$ and $a_2 = 2$ is

- 1. for h = 1, $\alpha_1 = (1, 2, 1, 1, 1, 1, 1, 1, 1)$;
- 2. for h = 2, $\alpha_2 = (1, 2, 2, 1, 2, 1, 2, 1, 2);$
- 3. for h = 4, $\alpha_4 = (1, 2, 2, 2, 2, 1, 2, 2, 2)$;
- 4. for h = 5, $\alpha_5 = (1, 2, 1, 1, 1, 2, 1, 1, 1)$;
- 5. for h = 7, $\alpha_7 = (1, 2, 1, 2, 1, 2, 1, 2, 1)$;
- 6. for h = 8, $\alpha_8 = (1, 2, 2, 2, 2, 2, 2, 2, 2, 2)$

where the corresponding integers are $n_1 = 10$, $n_2 = 14$, $n_4 = 16$, $n_5 = 11$, $n_7 = 13$ and $n_8 = 17$. Note that the compositions α_5 , α_7 and α_8 are obtained from α_4 , α_2 and α_1 respectively, by exchanging 1 with 2 after the first two positions.

Let $\alpha = (a_1, a_2, \ldots, a_k)$ be an *h*-singular composition. By Proposition 8, it follows that by exchanging a_1 and a_2 after the first two positions, we obtain a (k - h)-singular composition. We now prove that by exchanging only the first two elements we obtain again a (k - h)-singular composition.

Proposition 13. Let $\alpha = (a_1, a_2, \dots, a_k)$ be an aperiodic h-singular composition of n, where $1 \leq h \leq k-1$. Then $\alpha^* = (a_2, a_1, a_3, \dots, a_k)$ is a (k-h)-singular composition of n, obtained from α by rotation.

Proof. Consider the composition $\alpha^* = (a_1^*, a_2^*, \ldots, a_k^*) = (a_2, a_1, a_3, \ldots, a_k)$ of n. The set E^* of indices of the elements equal to a_2^* in α^* satisfies $E^* = (F_h \setminus \{1\}) \cup \{2\} = E_{k-h}$ (Proposition 8). The same relation holds for $F^* = F_{k-h}$, where F^* is the set of indices of the elements equal to a_1^* in α^* . Then α^* is a (k-h)-singular composition of n. Note that the composition $\alpha' = (a_{1+h}, a_{2+h}, \ldots, a_k, a_1, \ldots, a_h)$ is (k-h)-singular and is obtained from α by rotation. Moreover $a_2 = a_{1+h}$ and $a_1 = a_{2+h}$. Since the first two elements of α^* coincide with the first two of α' and both the compositions are (k-h)-singular, $E^* = E'$ and $F^* = F'$. Thus $\alpha^* = \alpha'$, and the result follows.

3 Decompositions and extensions

In this section we investigate two decompositions and some extensions of an aperiodic singular composition.

Theorem 14. Let $\alpha = (a_1, a_2, ..., a_k)$ be an aperiodic h-singular k-composition of n, where k = hq + r and $1 \le r < h$. Then $\alpha = \lambda \mu \lambda \cdots \lambda$, where $\lambda = (a_1, a_2, ..., a_h)$, μ is the sequence of the last r elements of λ and q is the multiplicity of λ . Moreover λ is a (h - r)-singular h-composition of $a_1 + \cdots + a_h$.

Proof. Since α is *h*-singular, the sequences $\beta = (a_1 + a_2, a_3, \dots, a_k)$ and $\gamma = (a_{1+h} + a_{2+h}, a_{3+h}, \dots, a_{k+h})$ coincide. In particular this holds for the subsequences β' and γ' obtained by deleting the first h-1 elements of β and γ respectively. If $1 \leq h \leq \lfloor \frac{k}{2} \rfloor$, by comparing $\beta' = (a_{1+h}, a_{2+h}, \dots, a_k)$ and $\gamma' = (a_{1+2h}, a_{2+2h}, \dots, a_k, a_1, \dots, a_h) = (a_{1+2h}, \dots, a_k)\lambda$, where $\lambda = (a_1, a_2, \dots, a_h)$, we obtain that the sequence $(a_{k-(h-1)}, \dots, a_k)$ formed by the last h elements of β' coincides with λ . Then the sequence of length h in γ' which precedes the last subsequence λ coincides again with λ . We continue until we find a subsequence μ of length less than h in β' , which is formed by the last r elements of λ . Thus $\mu = (a_{h-(r-1)}, a_{h-(r-2)}, \dots, a_h)$. If $\lfloor \frac{k}{2} \rfloor < h \leq k-1$, by comparing β' and $\gamma' = \mu$ we obtain $\alpha = \lambda\mu$. In both cases $\alpha = \lambda\mu\lambda\cdots\lambda$, where λ occurs q times.

Let us assume that r > 1. Since α is h-singular, the sequence

$$(a_1 + a_2, a_3, \dots, a_h, a_{h-(r-1)}, a_{h-(r-2)}, \dots, a_h)\lambda^{q-1}$$

coincides with

$$(a_{h-(r-1)} + a_{h-(r-2)}, a_{h-(r-3)}, \dots, a_h)\lambda^q$$

Therefore the sequences of the first h-1 elements coincide

$$(a_1 + a_2, a_3, \dots, a_h) = (a_{h-(r-1)} + a_{h-(r-2)}, a_{h-(r-3)}, \dots, a_h, a_1, \dots, a_{h-r}).$$

Thus the composition λ is (h-r)-singular. A similar argument applies in the case r = 1. \Box

Proposition 15. Let $\alpha = (a_1, a_2, ..., a_k)$ be an aperiodic h-singular k-composition of n, where k = hq + r and 1 < r < h. Then $\alpha = \sigma \lambda \cdots \lambda$, where $\lambda = (a_1, a_2, ..., a_h)$, $\sigma = (a_1, a_2, ..., a_r)$ and the multiplicity of λ is q. Moreover λ is a (h - r)-singular h-composition of $a_1 + \cdots + a_h$.

Proof. Let $\lambda = (a_1, a_2, \dots, a_h)$ and $\sigma = (a_1, a_2, \dots, a_r)$. By applying the same argument used in the proof of Theorem 14 to the subsequences obtained by deleting the first r-1 elements of β and γ , the result follows.

Corollary 16. In the case of r = 1, there is not a decomposition $\alpha = \sigma \lambda \lambda \cdots \lambda$.

Proof. In the case of r = 1, σ is reduced to the element a_1 . This implies the relation $a_1 + a_2 = 2a_1$; then $a_2 = a_1$, a contradiction to the assumption that α is aperiodic.

Corollary 17. If k = hq + r and 1 < r < h, then $\sigma \lambda = \lambda \mu$.

Now we investigate an operation which can be considered the inverse of the decomposition; namely we want to determine an extension of a singular composition which turns out to be again a singular composition.

Theorem 18. Let α be an aperiodic h-singular k-composition of n, and let ν denote the sequence formed by the last k - h elements of α . The k'-composition $\beta = \alpha \nu \alpha \cdots \alpha$, where k' = kq' + k - h and q' is the multiplicity of α , is k-singular.

Proof. Let $\alpha = (a_1, a_2, \ldots, a_k)$ be an aperiodic *h*-singular *k*-composition of *n*, where k > 2 and $1 \le h < k - 1$. The composition $\beta = \alpha \nu \alpha \cdots \alpha$, where ν denotes the sequence formed by the last k - h elements of α , is *k*-singular if

$$(a_1 + a_2, \dots, a_k, a_{1+h}, \dots, a_k)\alpha^{q'-1} = (a_{1+h} + a_{2+h}, \dots, a_k)\alpha^{q'}.$$

In order to prove the equality, it is sufficient to show that

$$(a_1 + a_2, a_3, \dots, a_k, a_{1+h}, \dots, a_k) = (a_{1+h} + a_{2+h}, \dots, a_k, a_1, \dots, a_k).$$
(8)

Since α is *h*-singular, $(a_1 + a_2, a_3, \dots, a_k) = (a_{1+h} + a_{2+h}, \dots, a_k, a_1, \dots, a_h)$. Thus the left side of (8) coincides with $(a_{1+h} + a_{2+h}, \dots, a_k, a_1, \dots, a_h, a_{1+h}, \dots, a_k)$ and the result follows. A similar argument applies in the cases k = 2 and h = k - 1.

4 Classical integer sequences

Let α be an *h*-singular *k*-composition of *n*. The composition $\beta = \alpha \nu \alpha \cdots \alpha$, where ν is the sequence formed by the last k - h elements of α and α is repeated *q* times, is called a *q*-extension of α . By consecutive extensions, we determine a sequence of singular compositions and therefore a sequence of integers corresponding to the numbers of their parts.

4.1 Fibonacci sequences

Let us consider the h_0 -singular k_0 -composition $\alpha_0 = (a, b)$, with $a \neq b$, $k_0 = 2$ and $h_0 = 1$. The 2-extension of α_0 is the h_1 -singular k_1 -composition $\alpha_1 = \alpha_0 \nu_0 \alpha_0 = (a, b, b, a, b)$, where $k_1 = k_0 \cdot 2 + 1$, $h_1 = k_0 = 2$ and ν_0 is the composition formed by last $(k_0 - h_0) = 1$ element of α_0 . The consecutive 2-extension is the h_2 -singular k_2 -composition $\alpha_2 = \alpha_1 \nu_1 \alpha_1 = (a, b, b, a, b, b, a, b, b, a, b)$, where $k_2 = k_1 \cdot 2 + 3$, $h_2 = k_1$ and ν_1 is the composition formed by last $(k_1 - h_1) = 3$ elements of α_1 and so on.

The first values of the sequence of the numbers $(k_n)_{n\geq 0}$ of parts of the 2-extensions of α_0 are

$$2, 5, 13, 34, 89, 233, \ldots$$

These numbers appear as the first integers, but the first two, in the sequence $\underline{A001519}$ [4], which is obtained from the recursive relation

$$a_n = 3a_{n-1} - a_{n-2},\tag{9}$$

with the initial conditions $a_0 = 1$, $a_1 = 1$. We prove that the integers k_n satisfy the same recursive relation.

Lemma 19. The integers k_n of the parts of the 2-extensions of the 1-singular 2-composition (a, b), with $a \neq b$, satisfy the recursive relation:

$$k_n = 3k_{n-1} - k_{n-2}$$

with the initial conditions $k_0 = 2, k_1 = 5$.

Proof. Recall that, by Theorem 18,

$$k_n = 2k_{n-1} + k_{n-1} - h_{n-1}.$$

Because $h_{n-1} = k_{n-2}$, the result follows.

The following corollary is straightforward.

Corollary 20. The integers h_n associated to the 2-extensions of the 1-singular 2-composition (a, b), with $a \neq b$, satisfy the recursive relation:

$$h_n = 3h_{n-1} - h_{n-2}$$

with the initial conditions $h_0 = 1$, $h_1 = 2$.

It is easy to prove that the generating function of the sequence of the integers k_n is

$$\frac{2-x}{1-3x+x^2}$$

and

$$k_n = \frac{2 + \sqrt{5}}{\sqrt{5}} \left(\frac{3 + \sqrt{5}}{2}\right)^n + \frac{-2 + \sqrt{5}}{\sqrt{5}} \left(\frac{3 - \sqrt{5}}{2}\right)^n.$$

Proposition 21. The sequence

$$k_0, k_1 - h_1, k_1, k_2 - h_2, k_2, k_3 - h_3, \dots$$
 (10)

coincides with the sequence of Fibonacci numbers F_n , with initial conditions $F_2 = 2, F_3 = 3$.

Proof. We have to prove that every element of (10) is the sum of the preceding two elements and the initial conditions coincide. For $i \ge 1$, $k_i = k_i - h_i + k_{i-1}$, because $h_i = k_{i-1}$. Moreover, for $i \ge 2$, $k_i - h_i = k_{i-1} + k_{i-1} - h_{i-1}$ by Lemma 19. Because $k_0 = 2$, $k_1 = 5$ and $h_1 = 2$, the initial conditions are 2 and 3, which coincide with F_2 and F_3 of the Fibonacci sequence <u>A000045</u>.

Another consequence of Proposition 21 is that the elements k_i , $i \ge 0$, form a bisection of the Fibonacci sequence; this result turns out to be one of the comments to <u>A001519</u>.

By repeating the previous procedure for q > 2, we easily obtain a sequence satisfying the recursive relation

$$a_n = (q+1)a_{n-1} - a_{n-2},$$

with the initial conditions $a_0 = 2$, $a_1 = 2q + 1$.

In the particular case of q = 3, we obtain the sequence whose first elements are

$$2, 7, 26, 97, \ldots$$

which coincides with $\underline{A001075}$, but the first element.

Again, for q = 4 we obtain a sequence whose first elements are

 $2, 9, 43, 206, \ldots$

which coincides with $\underline{A002310}$, but the first element.

4.2 Lucas sequences

The first values of the sequence of the numbers $(p_n)_{n\geq 0}$ of parts of the 2-extensions of the 2-singular 3-composition (a, b, b), with $a \neq b$, are

$$3, 7, 18, 47, 123, \ldots$$

These integers coincide with the first integers, but the first one, of <u>A005248</u>, which is obtained from the recursive relation (9), with the initial conditions $a_0 = 2$, $a_1 = 3$.

Using the same procedure of Lemma 19, the numbers p_n satisfy the same recursive relation with initial conditions $p_0 = 3$ and $p_1 = 7$. Moreover the generating function of the sequence of the integers p_n is

$$\frac{3-2x}{1-3x+x^2},$$

and

$$p_n = \left(\frac{3+\sqrt{5}}{2}\right)^{n+1} + \left(\frac{3-\sqrt{5}}{2}\right)^{n+1}.$$

Proposition 22. The sequence

$$h_0, p_0 - h_0, p_0, p_1 - h_1, p_1, p_2 - h_2, p_2, p_3 - h_3, \dots$$
 (11)

coincides with the sequence of Lucas numbers L_n , with initial conditions $L_0 = 2, L_1 = 1$.

Another consequence of the previous result is that the elements p_i , $i \ge 0$, form a bisection of the Lucas sequence <u>A000032</u>, as noted in a comment to <u>A005248</u>.

4.3 Other integer sequences

We now consider the sequence of the numbers $(t_n)_{n\geq 0}$ of parts of 2-extensions of the 3-singular 4-compositions (a, b, b, b), with $a \neq b$, that is

$$4, 9, 23, 60, 157, \ldots$$

This sequence, which is not contained in [4], satisfies the recursive relation (9), with initial conditions $t_0 = 4$ and $t_1 = 9$. The corresponding generating function is

$$\frac{4-3x}{1-3x+x^2},$$

and

$$t_n = \frac{3 + 2\sqrt{5}}{\sqrt{5}} \left(\frac{3 + \sqrt{5}}{2}\right)^n + \frac{-3 + 2\sqrt{5}}{\sqrt{5}} \left(\frac{3 - \sqrt{5}}{2}\right)^n.$$

By continuing, we may obtain other integer sequences by q-extension, with $q \ge 2$, of the singular composition (a, b, \ldots, b) , where b occurs more than three times.

5 Conclusion

The notion of singular composition can be generalized as follows. We call the composition $\alpha = (a_1, a_2, \ldots, a_k)$ (h, i, j)-singular, if

$$(a_1, a_2, \dots, a_{i-1}, a_i + a_j, a_{i+1}, \dots, a_{j-1}, a_{j+1}, \dots, a_k) = = (a_{1+h}, a_{2+h}, \dots, a_{i-1+h}, a_{i+h} + a_{j+h}, a_{i+1+h}, \dots, a_{j-1+h}, a_{j+1+h}, \dots, a_{k+h}),$$
(12)

where $1 \le h \le k - 1$, $1 \le i < j \le k$ and the indices are modulo k.

This definition leads to compositions which can not be obtained from equation (1). In fact, (1, 1, 2, 2, 2) satisfies $(a_1 + a_3, a_2, a_4, a_5) = (a_{1+h} + a_{3+h}, a_{2+h}, a_{4+h}, a_{5+h})$ for h = 4, but it does not satisfy any equation (1).

Thus this definition poses the problem to find necessary and sufficient conditions based on which a given aperiodic sequence with two distinct elements satisfies (12).

6 Acknowledgments

The authors thank the anonymous referee for his valuable suggestions which led to an improvement of the manuscript.

References

- [1] F. Beggas, M. M. Ferrari, and N. Zagaglia Salvi, Combinatorial interpretations and enumeration of particular bijections, *Riv. Mat. Univ. Parma* 8 (2017). To appear.
- [2] A.-V. Kramer, A particular Hamiltonian cycle on middle levels in the De Bruijn digraph, Discrete Math. 312 (2012), 608–613.
- [3] J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958.
- [4] N. J. A. Sloane, The on-line encyclopedia of integer sequences, 2017. Available at https://oeis.org.

2010 Mathematics Subject Classification: Primary 05A17; Secondary 11B39. Keywords: ordered partition, composition, singular composition, Fibonacci number, Lucas number.

(Concerned with sequences <u>A000032</u>, <u>A000045</u>, <u>A001075</u>, <u>A001519</u>, <u>A002310</u>, and <u>A005248</u>.)

Received April 20 2017; revised versions received May 11 2017; August 2 2017. Published in *Journal of Integer Sequences*, September 5 2017.

Return to Journal of Integer Sequences home page.