Journal of Integer Sequences, Vol. 20 (2017), Article 17.8.8

Aperiodic Compositions and Classical Integer Sequences

Margherita Maria Ferrari and Norma Zagaglia Salvi*
Department of Mathematics
Politecnico di Milano
Milano, 20133
Italy
margheritamaria.ferrari@polimi.it
norma.zagaglia@polimi.it

Abstract

In this paper we define the notion of singular composition of a positive integer. We provide a characterization of these compositions, together with methods for decomposing and also extending a singular composition in terms of other singular compositions. Consecutive extensions of particular compositions determine sequences of integers which coincide with classical integer sequences involving Fibonacci and Lucas numbers.

1 Introduction

Let k, n be integers where $1 \leq k \leq n$, and let $\alpha=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ denote a composition of n into k parts [3]. We call $\alpha(h, i)$-singular if

$$
\begin{equation*}
\left(a_{1}, a_{2}, \ldots, a_{i}+a_{i+1}, \ldots, a_{k}\right)=\left(a_{1+h}, a_{2+h}, \ldots, a_{i+h}+a_{i+1+h}, \ldots, a_{k+h}\right), \tag{1}
\end{equation*}
$$

where $1 \leq h \leq k-1,1 \leq i \leq k$ and the indices are modulo k. Note that shifting a $(h, i)-$ singular composition of one position to the right, we obtain a $(h, i+1)$-singular composition. Consequently, the choice of a single index i is sufficient for identifying such compositions.

[^0]Thus we fix $i=1$ and we call the composition $\alpha=\left(a_{1}, a_{2}, \ldots, a_{k}\right) h$-singular if

$$
\begin{equation*}
\left(a_{1}+a_{2}, a_{3}, \ldots, a_{k}\right)=\left(a_{1+h}+a_{2+h}, a_{3+h}, \ldots, a_{k+h}\right) . \tag{2}
\end{equation*}
$$

A k-composition of n is singular when it is h-singular for a suitable value of $1 \leq h \leq k-1$.
Example 1. The 5 -composition $(1,2,2,1,2)$ of $n=8$ is 2 -singular.
Kramer [2] used singular compositions in order to define the middle levels partition graph of n.

The concatenation of the compositions $\alpha=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ and $\beta=\left(b_{1}, b_{2}, \ldots, b_{h}\right)$ of the positive integers n and m respectively is the composition $\alpha \beta=\left(a_{1}, a_{2}, \ldots, a_{k}, b_{1}, b_{2}, \ldots, b_{h}\right)$ of $n+m$. We let α^{i} denote the concatenation of α with itself i times. A composition α is periodic if $\alpha=\pi^{j}$, where $1<j \leq k$ and π is a suitable composition.

Fibonacci and Lucas numbers will appear in some of our results. Recall that the Fibonacci sequence $\left(F_{n}\right)_{n \geq 0}$ is defined by setting $F_{0}=0, F_{1}=1$ and $F_{n}=F_{n-1}+F_{n-2}$, for $n \geq 2$. The Lucas sequence $\left(L_{n}\right)_{n \geq 0}$ is defined by setting $L_{0}=2, L_{1}=1$ and $L_{n}=L_{n-1}+L_{n-2}$, for $n \geq 2$.

The paper is outlined as follows. In Section 2 we determine a characterization of aperiodic singular compositions which allows us to obtain a method for constructing such compositions (Theorem 11). In Section 3 we study decompositions (Theorem 14) and also extensions (Theorem 18) of a singular composition in terms of other singular compositions. In Section 4 we prove that consecutive extensions of particular compositions determine sequences of integers which coincide with classical sequences involving Fibonacci and Lucas numbers. We conclude the paper by posing a more general definition of singular composition together with an open problem.

2 A characterization of singular compositions

Let α be an h-singular k-composition of n; from (2) it follows that $\left(a_{3}, \ldots, a_{k}\right)=\left(a_{3+h}, \ldots, a_{k+h}\right)$.
This equality determines the function $f_{h}:\{3,4, \ldots, k\} \rightarrow\{3+h, 4+h, \ldots, k+h\}$ on the indices of the elements of previous sequences such that

$$
f_{h}(i)=i+h,
$$

where $3 \leq i \leq k$ and the integers are modulo k. We may represent f_{h} in two-line notation

$$
\left(\begin{array}{cccc}
3 & 4 & \cdots & k \tag{3}\\
3+h & 4+h & \cdots & k+h
\end{array}\right) .
$$

Note that the second line is obtained by shifting of h positions to the left the elements of the sequence $(1,2,3,4, \ldots, k)$ and ignoring the first two elements $1+h$ and $2+h$. A consequence is that the elements 1 and 2 , which do not belong to the first line, belong to the second one,
except for $h=1$ and $h=k-1$. Indeed for $h=1$ the second line contains 1 , but not 2 ; for $h=k-1$ the second line contains 2 , but not 1 . In a similar way, the elements $1+h$ and $2+h$ do not belong to the second line while they belong to the first one, except for $h=1$ and $h=k-1$.

Proposition 2. An h-singular k-composition of n, where h and k are not coprime, is periodic.

Proof. Let $\operatorname{gcd}(k, h)=t>1$, where $h=t h^{\prime}, k=t k^{\prime}$ and $\operatorname{gcd}\left(k^{\prime}, h^{\prime}\right)=1$. Note that the sets $H_{i}=\left\{i, i+h, \ldots, i+\left(k^{\prime}-1\right) h\right\}, 1 \leq i \leq t$, determine a partition of the set $[k]$. Then, for an $h-$ singular k-composition $\alpha=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$, the elements of the sets $\left\{a_{i}, a_{i+h}, \ldots, a_{i+\left(k^{\prime}-1\right) h}\right\}$, $1 \leq i \leq t$, coincide and α turns out to be the concatenation $\left(a_{1}, a_{2}, \ldots, a_{t}\right)^{k^{\prime}}$.

Throughout the paper we consider only aperiodic compositions.
Beggas et al. [1] proved that a particular bijection, called widened permutation, between two n-sets having $n-1$ elements in common has a decomposition into a linear order and a possible permutation. In this case we have a similar function in which the two sets have $n-2$ elements in common, but for $h=1$ and $h=k-1$.

Lemma 3. Let h, k be coprime integers, where $1 \leq h \leq k-1$. The function f_{h} does not contain cycles.

Proof. By way of contradiction we assume there is a cycle

$$
C=(d, d+h, \ldots, d+(r-1) h),
$$

where $1 \leq d \leq k$ and $d+r h \equiv d(\bmod k)$. This means that $r h \equiv 0(\bmod k)$ and therefore k divides $r h$. Then, because $\operatorname{gcd}(k, h)=1, k$ divides r. The unique possibility is $r=k$; so the cycle contains all the elements. But this implies the impossible condition that also every line of (3) contains all the elements.

Theorem 4. Let h, k be coprime integers, where $1 \leq h \leq k-1$. The function f_{h} is decomposed into the linear orders:
1.

$$
\begin{equation*}
E_{h}=(1+h, 1+2 h, \ldots, 1+r h) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{h}=(2+h, 2+2 h, \ldots, 2+s h), \tag{5}
\end{equation*}
$$

where $r=h^{-1}, s=(k-1) h^{-1}$ in \mathbb{Z}_{k}, for $h \neq 1, k-1$;
2. $E_{1}=(2)$ and $F_{1}=(3,4, \ldots, k, 1)$, for $h=1$;
3. $E_{k-1}=(k, k-1, \ldots, 2)$ and $F_{k-1}=(1)$, for $h=k-1$.

Proof. Let $h \neq 1, k-1$. Starting from $1+h$ we obtain the sequence $(1+h, 1+2 h, \ldots, 1+r h=$ $a)$, where a is one of the two elements which are in the second but not in the first line. So we have either $a=1$ or $a=2$. If $a=1$, we obtain the impossible relation $r h \equiv 0(\bmod k)$. If $a=2$, we obtain $r h \equiv 1(\bmod k)$, which is satisfied for $r=h^{-1}$ in \mathbb{Z}_{k}. Now starting from $2+h$ we obtain the sequence $(2+h, 2+2 h, \ldots, 2+s h=b)$, where either $b=1$ or $b=2$. The unique possibility is $b=1$, which holds for $s=(k-1) h^{-1}$ in \mathbb{Z}_{k}. By Lemma 3 the function does not contain cycles; therefore it is decomposed into the previous linear orders.

Now let $h=1$. The function f_{1} is decomposed into $F_{1}=(3,4, \ldots, k, 1)$ and $E_{1}=(2)$. In the case $h=k-1, f_{k-1}$ is decomposed into $E_{k-1}=(k, k-1, \ldots, 2)$ and $F_{k-1}=(1)$. This completes the proof of the theorem.

In the following we let E_{h} and F_{h} also denote the sets of the elements of the assigned linear orders.

Corollary 5. For every $1 \leq h \leq k-1$ such that $\operatorname{gcd}(k, h)=1, E_{h} \cup F_{h}=[k]$ and, for $k>2$, $\left|E_{h}\right| \neq\left|F_{h}\right|$.

Proof. If $k-h^{-1}=h^{-1}$, then $k=2 h^{-1}$ and $k h=2$ in \mathbb{Z}_{k}. This implies that $2 \equiv 0(\bmod k)$, a contradiction for $k>2$.
Lemma 6. Let h_{1}, h_{2} be two integers such that $1 \leq h_{1}<h_{2} \leq k-1$ and $\operatorname{gcd}\left(k, h_{1}\right)=$ $\operatorname{gcd}\left(k, h_{2}\right)=1$. Then $E_{h_{1}} \neq E_{h_{2}}$ and $F_{h_{1}} \neq F_{h_{2}}$.
Proof. The cardinalities of $E_{h_{1}}$ and $E_{h_{2}}$ coincide with h_{1}^{-1} and h_{2}^{-1} in \mathbb{Z}_{k} respectively. Because $h_{1}<h_{2}$, their inverses are distinct; then also the sets $E_{h_{1}}$ and $E_{h_{2}}$ are distinct. The same argument applies for $F_{h_{1}}$ and $F_{h_{2}}$.

The following result is straightforward.
Corollary 7. If k is a prime integer, then all the sets E_{h} (respectively F_{h}), $1 \leq h \leq k-1$, are distinct.

Note that when k and h are coprime, then also k and $k-h$ are coprime. In the following result we establish a relation between E_{k-h} (respectively F_{k-h}) and F_{h} (respectively E_{h}).
Proposition 8. For every $1 \leq h \leq\left\lfloor\frac{k}{2}\right\rfloor$ such that $\operatorname{gcd}(k, h)=1$, $E_{k-h}=\left(F_{h} \backslash\{1\}\right) \cup\{2\}$ and $F_{k-h}=\left(E_{h} \backslash\{2\}\right) \cup\{1\}$.

Proof. The result is easy to prove for $h=1$. Let $h^{\prime}=k-h$. Since $\operatorname{gcd}(k, h)=1$, then $\operatorname{gcd}\left(k, h^{\prime}\right)=1, E_{h^{\prime}}=\left\{1+h^{\prime}, 1+2 h^{\prime}, \ldots, 1+\left(r^{\prime}-1\right) h^{\prime}, 2\right\}$ and $F_{h^{\prime}}=\left\{2+h^{\prime}, 2+2 h^{\prime}, \ldots, 2+\right.$ $\left.\left(s^{\prime}-1\right) h^{\prime}, 1\right\}$, where $r^{\prime}=\left(h^{\prime}\right)^{-1}$ and $s^{\prime}=k-\left(h^{\prime}\right)^{-1}$ in \mathbb{Z}_{k}.
Let s denote $k-h^{-1}$ in \mathbb{Z}_{k}; it follows that

$$
1+k-h \equiv 2+(s-1) h \quad(\bmod k)
$$

Then $1+2(k-h) \equiv 2+(s-2) h$ and so on until $1+(s-1)(k-h) \equiv 2+h$ and $1+s(k-h) \equiv 2$ $(\bmod k)$. Thus $E_{k-h}=\{2+(s-1) h, 2+(s-2) h, \ldots, 2+h, 2\}=\left(F_{h} \backslash\{1\}\right) \cup\{2\}$.

Moreover, $2+k-h \equiv 1+(r-1) h(\bmod k)$, where $r=h^{-1}$ in \mathbb{Z}_{k}; thus $F_{k-h}=$ $\{1+(r-1) h, 1+(r-2) h, \ldots, 1+h, 1\}=\left(E_{h} \backslash\{2\}\right) \cup\{1\}$.

Corollary 9. If $\alpha=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is an aperiodic h-singular k-composition of n, then every a_{i} is equal to a_{1} or $a_{2}, 1 \leq i \leq k$, as long as $i \in F_{h}$ or $i \in E_{h}$ respectively. Then a_{1} and a_{2} are distinct, and they satisfy the relation

$$
\begin{equation*}
\left(k-h^{-1}\right) a_{1}+h^{-1} a_{2}=n . \tag{6}
\end{equation*}
$$

Corollary 10. If an aperiodic composition contains more than two distinct elements, then it is not singular.

Previous results allow us to give a characterization of singular compositions, which turns out to be a method for their construction.

Theorem 11. Let h, k, n be positive integers such that $1 \leq h<k \leq n$ and $\operatorname{gcd}(k, h)=1$. An aperiodic k-composition $\alpha=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is h-singular if and only if $a_{1} \neq a_{2}$ and the pair of elements $\left(a_{1}, a_{2}\right)$ is a solution of the equation

$$
\begin{equation*}
\left(k-h^{-1}\right) x_{1}+h^{-1} x_{2}=n, \tag{7}
\end{equation*}
$$

where $h^{-1}, k-h^{-1} \in \mathbb{Z}_{k}$, and each a_{i} coincides with a_{1} or a_{2} for $i \in F_{h}$ or $i \in E_{h}$ respectively.
Proof. If α is h-singular, then by Corollary 9 the property holds.
Now let us assume that the pair of distinct integers $\left(a_{1}, a_{2}\right)$ is solution of the equation (7) and each a_{i} coincides with a_{1} or a_{2} for $i \in F_{h}$ or $i \in E_{h}$ respectively. Hence, for $h \neq 1, k-1$, the composition $\alpha=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ which has the elements a_{1} and a_{2} in the positions given by (5) and (4) respectively, is h-singular. Lastly, if $h=1, \alpha=\left(a_{1}, a_{2}, a_{1}, \ldots, a_{1}\right)$ is 1 -singular, while if $h=k-1, \alpha=\left(a_{1}, a_{2}, \ldots, a_{2}\right)$ is $(k-1)$-singular.

Example 12. The list of h-singular 9 -compositions with $a_{1}=1$ and $a_{2}=2$ is

1. for $h=1, \alpha_{1}=(1,2,1,1,1,1,1,1,1)$;
2. for $h=2, \alpha_{2}=(1,2,2,1,2,1,2,1,2)$;
3. for $h=4, \alpha_{4}=(1,2,2,2,2,1,2,2,2)$;
4. for $h=5, \alpha_{5}=(1,2,1,1,1,2,1,1,1)$;

5 . for $h=7, \alpha_{7}=(1,2,1,2,1,2,1,2,1)$;
6. for $h=8, \alpha_{8}=(1,2,2,2,2,2,2,2,2)$
where the corresponding integers are $n_{1}=10, n_{2}=14, n_{4}=16, n_{5}=11, n_{7}=13$ and $n_{8}=17$. Note that the compositions α_{5}, α_{7} and α_{8} are obtained from α_{4}, α_{2} and α_{1} respectively, by exchanging 1 with 2 after the first two positions.

Let $\alpha=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ be an h-singular composition. By Proposition 8 , it follows that by exchanging a_{1} and a_{2} after the first two positions, we obtain a ($k-h$)-singular composition. We now prove that by exchanging only the first two elements we obtain again a $(k-h)$ singular composition.

Proposition 13. Let $\alpha=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ be an aperiodic h-singular composition of n, where $1 \leq h \leq k-1$. Then $\alpha^{*}=\left(a_{2}, a_{1}, a_{3}, \ldots, a_{k}\right)$ is a $(k-h)$-singular composition of n, obtained from a by rotation.

Proof. Consider the composition $\alpha^{*}=\left(a_{1}^{*}, a_{2}^{*}, \ldots, a_{k}^{*}\right)=\left(a_{2}, a_{1}, a_{3}, \ldots, a_{k}\right)$ of n. The set E^{*} of indices of the elements equal to a_{2}^{*} in α^{*} satisfies $E^{*}=\left(F_{h} \backslash\{1\}\right) \cup\{2\}=E_{k-h}$ (Proposition 8). The same relation holds for $F^{*}=F_{k-h}$, where F^{*} is the set of indices of the elements equal to a_{1}^{*} in α^{*}. Then α^{*} is a $(k-h)$-singular composition of n. Note that the composition $\alpha^{\prime}=\left(a_{1+h}, a_{2+h}, \ldots, a_{k}, a_{1}, \ldots, a_{h}\right)$ is $(k-h)$-singular and is obtained from α by rotation. Moreover $a_{2}=a_{1+h}$ and $a_{1}=a_{2+h}$. Since the first two elements of α^{*} coincide with the first two of α^{\prime} and both the compositions are $(k-h)$-singular, $E^{*}=E^{\prime}$ and $F^{*}=F^{\prime}$. Thus $\alpha^{*}=\alpha^{\prime}$, and the result follows.

3 Decompositions and extensions

In this section we investigate two decompositions and some extensions of an aperiodic singular composition.

Theorem 14. Let $\alpha=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ be an aperiodic h-singular k-composition of n, where $k=h q+r$ and $1 \leq r<h$. Then $\alpha=\lambda \mu \lambda \cdots \lambda$, where $\lambda=\left(a_{1}, a_{2}, \ldots, a_{h}\right)$, μ is the sequence of the last r elements of λ and q is the multiplicity of λ. Moreover λ is a $(h-r)$-singular h-composition of $a_{1}+\cdots+a_{h}$.

Proof. Since α is h-singular, the sequences $\beta=\left(a_{1}+a_{2}, a_{3}, \ldots, a_{k}\right)$ and $\gamma=\left(a_{1+h}+\right.$ $\left.a_{2+h}, a_{3+h}, \ldots, a_{k+h}\right)$ coincide. In particular this holds for the subsequences β^{\prime} and γ^{\prime} obtained by deleting the first $h-1$ elements of β and γ respectively. If $1 \leq h \leq\left\lfloor\frac{k}{2}\right\rfloor$, by comparing $\beta^{\prime}=\left(a_{1+h}, a_{2+h}, \ldots, a_{k}\right)$ and $\gamma^{\prime}=\left(a_{1+2 h}, a_{2+2 h}, \ldots, a_{k}, a_{1}, \ldots, a_{h}\right)=\left(a_{1+2 h}, \ldots, a_{k}\right) \lambda$, where $\lambda=\left(a_{1}, a_{2}, \ldots, a_{h}\right)$, we obtain that the sequence $\left(a_{k-(h-1)}, \ldots, a_{k}\right)$ formed by the last h elements of β^{\prime} coincides with λ. Then the sequence of length h in γ^{\prime} which precedes the last subsequence λ coincides again with λ. We continue until we find a subsequence μ of length less than h in β^{\prime}, which is formed by the last r elements of λ. Thus $\mu=\left(a_{h-(r-1)}, a_{h-(r-2)}, \ldots, a_{h}\right)$. If $\left\lfloor\frac{k}{2}\right\rfloor<h \leq k-1$, by comparing β^{\prime} and $\gamma^{\prime}=\mu$ we obtain $\alpha=\lambda \mu$. In both cases $\alpha=\lambda \mu \lambda \cdots \lambda$, where λ occurs q times.

Let us assume that $r>1$. Since α is h-singular, the sequence

$$
\left(a_{1}+a_{2}, a_{3}, \ldots, a_{h}, a_{h-(r-1)}, a_{h-(r-2)}, \ldots, a_{h}\right) \lambda^{q-1}
$$

coincides with

$$
\left(a_{h-(r-1)}+a_{h-(r-2)}, a_{h-(r-3)}, \ldots, a_{h}\right) \lambda^{q} .
$$

Therefore the sequences of the first $h-1$ elements coincide

$$
\left(a_{1}+a_{2}, a_{3}, \ldots, a_{h}\right)=\left(a_{h-(r-1)}+a_{h-(r-2)}, a_{h-(r-3)}, \ldots, a_{h}, a_{1}, \ldots, a_{h-r}\right)
$$

Thus the composition λ is $(h-r)$-singular. A similar argument applies in the case $r=1$.
Proposition 15. Let $\alpha=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ be an aperiodic h-singular k-composition of n, where $k=h q+r$ and $1<r<h$. Then $\alpha=\sigma \lambda \cdots \lambda$, where $\lambda=\left(a_{1}, a_{2}, \ldots, a_{h}\right), \sigma=$ $\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ and the multiplicity of λ is q. Moreover λ is $a(h-r)$-singular h-composition of $a_{1}+\cdots+a_{h}$.

Proof. Let $\lambda=\left(a_{1}, a_{2}, \ldots, a_{h}\right)$ and $\sigma=\left(a_{1}, a_{2}, \ldots, a_{r}\right)$. By applying the same argument used in the proof of Theorem 14 to the subsequences obtained by deleting the first $r-1$ elements of β and γ, the result follows.

Corollary 16. In the case of $r=1$, there is not a decomposition $\alpha=\sigma \lambda \lambda \cdots \lambda$.
Proof. In the case of $r=1, \sigma$ is reduced to the element a_{1}. This implies the relation $a_{1}+a_{2}=2 a_{1}$; then $a_{2}=a_{1}$, a contradiction to the assumption that α is aperiodic.

Corollary 17. If $k=h q+r$ and $1<r<h$, then $\sigma \lambda=\lambda \mu$.
Now we investigate an operation which can be considered the inverse of the decomposition; namely we want to determine an extension of a singular composition which turns out to be again a singular composition.

Theorem 18. Let α be an aperiodic h-singular k-composition of n, and let ν denote the sequence formed by the last $k-h$ elements of α. The k^{\prime}-composition $\beta=\alpha \nu \alpha \cdots \alpha$, where $k^{\prime}=k q^{\prime}+k-h$ and q^{\prime} is the multiplicity of α, is k-singular.

Proof. Let $\alpha=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ be an aperiodic h-singular k-composition of n, where $k>2$ and $1 \leq h<k-1$. The composition $\beta=\alpha \nu \alpha \cdots \alpha$, where ν denotes the sequence formed by the last $k-h$ elements of α, is k-singular if

$$
\left(a_{1}+a_{2}, \ldots, a_{k}, a_{1+h}, \ldots, a_{k}\right) \alpha^{q^{\prime}-1}=\left(a_{1+h}+a_{2+h}, \ldots, a_{k}\right) \alpha^{q^{\prime}}
$$

In order to prove the equality, it is sufficient to show that

$$
\begin{equation*}
\left(a_{1}+a_{2}, a_{3}, \ldots, a_{k}, a_{1+h}, \ldots, a_{k}\right)=\left(a_{1+h}+a_{2+h}, \ldots, a_{k}, a_{1}, \ldots, a_{k}\right) \tag{8}
\end{equation*}
$$

Since α is h-singular, $\left(a_{1}+a_{2}, a_{3}, \ldots, a_{k}\right)=\left(a_{1+h}+a_{2+h}, \ldots, a_{k}, a_{1}, \ldots, a_{h}\right)$. Thus the left side of (8) coincides with $\left(a_{1+h}+a_{2+h}, \ldots, a_{k}, a_{1}, \ldots, a_{h}, a_{1+h}, \ldots, a_{k}\right)$ and the result follows. A similar argument applies in the cases $k=2$ and $h=k-1$.

4 Classical integer sequences

Let α be an h-singular k-composition of n. The composition $\beta=\alpha \nu \alpha \cdots \alpha$, where ν is the sequence formed by the last $k-h$ elements of α and α is repeated q times, is called a q extension of α. By consecutive extensions, we determine a sequence of singular compositions and therefore a sequence of integers corresponding to the numbers of their parts.

4.1 Fibonacci sequences

Let us consider the h_{0}-singular k_{0}-composition $\alpha_{0}=(a, b)$, with $a \neq b, k_{0}=2$ and $h_{0}=1$. The 2-extension of α_{0} is the h_{1}-singular k_{1}-composition $\alpha_{1}=\alpha_{0} \nu_{0} \alpha_{0}=(a, b, b, a, b)$, where $k_{1}=k_{0} \cdot 2+1, h_{1}=k_{0}=2$ and ν_{0} is the composition formed by last $\left(k_{0}-h_{0}\right)=1$ element of α_{0}. The consecutive 2-extension is the h_{2}-singular k_{2}-composition $\alpha_{2}=\alpha_{1} \nu_{1} \alpha_{1}=$ $(a, b, b, a, b, b, a, b, a, b, b, a, b)$, where $k_{2}=k_{1} \cdot 2+3, h_{2}=k_{1}$ and ν_{1} is the composition formed by last $\left(k_{1}-h_{1}\right)=3$ elements of α_{1} and so on.

The first values of the sequence of the numbers $\left(k_{n}\right)_{n \geq 0}$ of parts of the 2-extensions of α_{0} are

$$
2,5,13,34,89,233, \ldots
$$

These numbers appear as the first integers, but the first two, in the sequence A001519 [4], which is obtained from the recursive relation

$$
\begin{equation*}
a_{n}=3 a_{n-1}-a_{n-2}, \tag{9}
\end{equation*}
$$

with the initial conditions $a_{0}=1, a_{1}=1$. We prove that the integers k_{n} satisfy the same recursive relation.

Lemma 19. The integers k_{n} of the parts of the 2-extensions of the 1-singular 2-composition (a, b), with $a \neq b$, satisfy the recursive relation:

$$
k_{n}=3 k_{n-1}-k_{n-2}
$$

with the initial conditions $k_{0}=2, k_{1}=5$.
Proof. Recall that, by Theorem 18,

$$
k_{n}=2 k_{n-1}+k_{n-1}-h_{n-1} .
$$

Because $h_{n-1}=k_{n-2}$, the result follows.
The following corollary is straightforward.
Corollary 20. The integers h_{n} associated to the 2-extensions of the 1-singular 2-composition (a, b), with $a \neq b$, satisfy the recursive relation:

$$
h_{n}=3 h_{n-1}-h_{n-2}
$$

with the initial conditions $h_{0}=1, h_{1}=2$.

It is easy to prove that the generating function of the sequence of the integers k_{n} is

$$
\frac{2-x}{1-3 x+x^{2}}
$$

and

$$
k_{n}=\frac{2+\sqrt{5}}{\sqrt{5}}\left(\frac{3+\sqrt{5}}{2}\right)^{n}+\frac{-2+\sqrt{5}}{\sqrt{5}}\left(\frac{3-\sqrt{5}}{2}\right)^{n} .
$$

Proposition 21. The sequence

$$
\begin{equation*}
k_{0}, k_{1}-h_{1}, k_{1}, k_{2}-h_{2}, k_{2}, k_{3}-h_{3}, \ldots \tag{10}
\end{equation*}
$$

coincides with the sequence of Fibonacci numbers F_{n}, with initial conditions $F_{2}=2, F_{3}=3$.
Proof. We have to prove that every element of (10) is the sum of the preceding two elements and the initial conditions coincide. For $i \geq 1, k_{i}=k_{i}-h_{i}+k_{i-1}$, because $h_{i}=k_{i-1}$. Moreover, for $i \geq 2, k_{i}-h_{i}=k_{i-1}+k_{i-1}-h_{i-1}$ by Lemma 19. Because $k_{0}=2, k_{1}=5$ and $h_{1}=2$, the initial conditions are 2 and 3 , which coincide with F_{2} and F_{3} of the Fibonacci sequence A000045.

Another consequence of Proposition 21 is that the elements $k_{i}, i \geq 0$, form a bisection of the Fibonacci sequence; this result turns out to be one of the comments to A001519.

By repeating the previous procedure for $q>2$, we easily obtain a sequence satisfying the recursive relation

$$
a_{n}=(q+1) a_{n-1}-a_{n-2},
$$

with the initial conditions $a_{0}=2, a_{1}=2 q+1$.
In the particular case of $q=3$, we obtain the sequence whose first elements are

$$
2,7,26,97, \ldots
$$

which coincides with A001075, but the first element.
Again, for $q=4$ we obtain a sequence whose first elements are

$$
2,9,43,206, \ldots
$$

which coincides with $\underline{\text { A002310 }}$, but the first element.

4.2 Lucas sequences

The first values of the sequence of the numbers $\left(p_{n}\right)_{n \geq 0}$ of parts of the 2-extensions of the 2 -singular 3 -composition (a, b, b), with $a \neq b$, are

$$
3,7,18,47,123, \ldots
$$

These integers coincide with the first integers, but the first one, of A005248, which is obtained from the recursive relation (9), with the initial conditions $a_{0}=2, a_{1}=3$.

Using the same procedure of Lemma 19, the numbers p_{n} satisfy the same recursive relation with initial conditions $p_{0}=3$ and $p_{1}=7$. Moreover the generating function of the sequence of the integers p_{n} is

$$
\frac{3-2 x}{1-3 x+x^{2}},
$$

and

$$
p_{n}=\left(\frac{3+\sqrt{5}}{2}\right)^{n+1}+\left(\frac{3-\sqrt{5}}{2}\right)^{n+1} .
$$

Proposition 22. The sequence

$$
\begin{equation*}
h_{0}, p_{0}-h_{0}, p_{0}, p_{1}-h_{1}, p_{1}, p_{2}-h_{2}, p_{2}, p_{3}-h_{3}, \ldots \tag{11}
\end{equation*}
$$

coincides with the sequence of Lucas numbers L_{n}, with initial conditions $L_{0}=2, L_{1}=1$.
Another consequence of the previous result is that the elements $p_{i}, i \geq 0$, form a bisection of the Lucas sequence A000032, as noted in a comment to A005248.

4.3 Other integer sequences

We now consider the sequence of the numbers $\left(t_{n}\right)_{n \geq 0}$ of parts of 2-extensions of the 3-singular 4 -compositions (a, b, b, b), with $a \neq b$, that is

$$
4,9,23,60,157, \ldots
$$

This sequence, which is not contained in [4], satisfies the recursive relation (9), with initial conditions $t_{0}=4$ and $t_{1}=9$. The corresponding generating function is

$$
\frac{4-3 x}{1-3 x+x^{2}}
$$

and

$$
t_{n}=\frac{3+2 \sqrt{5}}{\sqrt{5}}\left(\frac{3+\sqrt{5}}{2}\right)^{n}+\frac{-3+2 \sqrt{5}}{\sqrt{5}}\left(\frac{3-\sqrt{5}}{2}\right)^{n} .
$$

By continuing, we may obtain other integer sequences by q-extension, with $q \geq 2$, of the singular composition (a, b, \ldots, b), where b occurs more than three times.

5 Conclusion

The notion of singular composition can be generalized as follows. We call the composition $\alpha=\left(a_{1}, a_{2}, \ldots, a_{k}\right)(h, i, j)$-singular, if

$$
\begin{align*}
& \left(a_{1}, a_{2}, \ldots, a_{i-1}, a_{i}+a_{j}, a_{i+1}, \ldots, a_{j-1}, a_{j+1}, \ldots, a_{k}\right)= \\
& =\left(a_{1+h}, a_{2+h}, \ldots, a_{i-1+h}, a_{i+h}+a_{j+h}, a_{i+1+h}, \ldots, a_{j-1+h}, a_{j+1+h}, \ldots, a_{k+h}\right), \tag{12}
\end{align*}
$$

where $1 \leq h \leq k-1,1 \leq i<j \leq k$ and the indices are modulo k.
This definition leads to compositions which can not be obtained from equation (1). In fact, $(1,1,2,2,2)$ satisfies $\left(a_{1}+a_{3}, a_{2}, a_{4}, a_{5}\right)=\left(a_{1+h}+a_{3+h}, a_{2+h}, a_{4+h}, a_{5+h}\right)$ for $h=4$, but it does not satisfy any equation (1).

Thus this definition poses the problem to find necessary and sufficient conditions based on which a given aperiodic sequence with two distinct elements satisfies (12).

6 Acknowledgments

The authors thank the anonymous referee for his valuable suggestions which led to an improvement of the manuscript.

References

[1] F. Beggas, M. M. Ferrari, and N. Zagaglia Salvi, Combinatorial interpretations and enumeration of particular bijections, Riv. Mat. Univ. Parma 8 (2017). To appear.
[2] A.-V. Kramer, A particular Hamiltonian cycle on middle levels in the De Bruijn digraph, Discrete Math. 312 (2012), 608-613.
[3] J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958.
[4] N. J. A. Sloane, The on-line encyclopedia of integer sequences, 2017. Available at https://oeis.org.

2010 Mathematics Subject Classification: Primary 05A17; Secondary 11B39.
Keywords: ordered partition, composition, singular composition, Fibonacci number, Lucas number.
(Concerned with sequences $\underline{A 000032}, \underline{A 000045, ~} \underline{A 001075, ~} \underline{A 001519, ~} \underline{A 002310}$, and $\underline{A 005248}$.)

Received April 20 2017; revised versions received May 11 2017; August 2 2017. Published in Journal of Integer Sequences, September 52017.

Return to Journal of Integer Sequences home page.

[^0]: * Work partially supported by MIUR (Ministero dell'Istruzione, dell'Università e della Ricerca).

