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Abstract

The Encyclopedia of Integer Sequences includes some sequences that are connected

with the Bell numbers and that have a particular combinatorial meaning. In this article,

we find a general meaning for framing sequences, including the above mentioned ones.

Furthermore, by using Laguerre-type derivatives, we derive the Laguerre-type Bell

numbers of higher order, showing, as a by-product, that it is possible to construct new

integer sequences which are not included in the Encyclopedia.

1 Introduction

The Bell polynomials [3] are a mathematical tool for representing the nth derivative of a
composite function. They are strictly related to partitions [1, 2, 24]. They are also applied
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in many different frameworks such as the Blissard problem [24, p. 46], the representation
of Lucas polynomials of the first and second kind [10], the construction of representation
formulas for the Newton sum rules for the zeros of polynomials [16, 17], the recurrence rela-
tions for a class of Freud-type polynomials [6], the representation formulas for the symmetric
functions of a countable set of numbers generalizing the classical algebraic Newton-Girard
formulas [8]. In particular, Cassisa and Ricci [8] found reduction formulas for the orthogonal
invariants of a strictly positive compact operator, obtaining, as a by-product, the so-called
Robert formulas [25].

Recently Kataria and Vellaisamy [14, 15] obtained connections of Bell polynomials with
another important class of polynomials known as Adomian polynomials.

Some generalized forms of Bell polynomials can be found in the literature, (see e.g.,
[7, 12, 18, 19, 21, 22, 23]). For instance, some papers [7, 22] are concerned with the multi-
dimensional case.

The authors [18] introduced the higher order Bell polynomials and their main prop-
erties and they [21] used some recursion formulas to compute, by means of the program

Mathematica c©, the rth order complete Bell polynomials B
[r]
n (for r = 2, 3, 4, 5) and the

relevant Bell numbers b
[r]
n .

In this article, after briefly recalling this theory, we show how to merge a family of
integer sequences, already known in the Encyclopedia of Integer Sequences [28], into a general
framework.

Furthermore, we construct new sequences of integer numbers, not included in the Ency-
clopedia, related to the Laguerre-type Bell polynomials. To this aim, we recall, in Section 6,
a short introduction to the Laguerre derivative.

2 Recalling the Bell polynomials

By considering the composite function Φ(t) := f(g(t)) of functions x = g(t) and y = f(x),
defined in suitable intervals of the real axis and n times differentiable with respect to the
relevant independent variables and by using the notation

Φh := Dh
t Φ(t), fh := Dh

xf(x)|x=g(t), gh := Dh
t g(t) , (1)

and

([f, g]n) := (f1, g1; f2, g2; . . . ; fn, gn) , (2)

the Bell polynomials are defined as follows:

Yn ([f, g]n) := Φn. (3)

Inductively, by letting
[g]n := (g1, g2, . . . , gn),
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we can write

Yn ([f, g]n) =
n

∑

k=1

An,k([g]n)fk, (4)

where the coefficient An,k, for any k = 1, . . . , n, is a polynomial in g1, g2, . . . , gn, homogeneous
of degree k and isobaric of weight n (i.e., it is a linear combination of monomials gk11 gk22 · · · gknn
whose weight is constantly given by k1 + 2k2 + . . .+ nkn = n).

Proposition 1. The Bell polynomials satisfy the recurrence relation










Y0 ([f, g]0) := f1

Yn+1

(

[f, g]n+1

)

=
n

∑

k=0

(

n

k

)

Yn−k

(

[f1, g]n−k

)

gk+1,
(5)

where

(

[f1, g]n−k

)

:= (f2, g1; f3, g2; . . . ; fn−k+1, gn−k).

The Faà di Bruno formula [11, 26, 27] gives an explicit expression for the Bell polynomials,
however, as this formula makes use of partitions, it is not useful in practice for computing
higher order Bell polynomials, whereas this can be done in a easy way by means of the
following recursion formula for the coefficients An,k in equation (4) which are known as
partial Bell polynomials.

Theorem 2. We have, for all integers n,

An+1,1 = gn+1, An+1,n+1 = gn+1
1 . (6)

Furthermore, for all k = 1, 2, . . . , n − 1, the An,k coefficients can be computed by the
recurrence relation

An+1,k+1([g]n+1) =
n−k
∑

h=0

(

n

h

)

An−h,k([g]n−h)gh+1. (7)

Definition 3. The complete Bell polynomials are defined by

Bn([g]n) = Yn(1, g1; 1, g2; . . . 1, gn) =
n

∑

k=1

An,k([g]n), (8)

and the Bell numbers by

bn = Yn(1, 1; 1, 1; . . . ; 1, 1) =
n

∑

k=1

An,k(1, 1, . . . , 1). (9)
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3 Bell polynomials of order r

Bernardini et al. [7] introduced the multi-dimensional Bell polynomials of higher order. Here,
we briefly recall this extension of the classical Bell polynomials only in the one-dimensional
case.

Consider Φ(t) := f(ϕ(1)(ϕ(2)(· · · (ϕ(r)(t))))), i.e., the composition of functions x(r) =
ϕ(r)(t), . . . , x(2) = ϕ(2)

(

x(3)
)

, x(1) = ϕ(1)
(

x(2)
)

, y = f
(

x(1)
)

defined in suitable intervals of

the real axis, and suppose that the functions ϕ(r), . . . , ϕ(2), ϕ(1), f are n times differentiable
with respect to the relevant independent variables so that, by using the chain rule, Φ(t) can
be differentiated n times with respect to t.

We use the following notation

Φh := Dh
t Φ(t),

fh := Dh
x(1)f |x(1)=ϕ(1)(···(ϕ(r)(t))),

ϕ
(1)
h := Dh

x(2)ϕ
(1)|x(2)=ϕ(2)(···(ϕ(r)(t))), (10)

...

ϕ
(r)
h := Dh

t ϕ
(r)(t),

and
([

f, ϕ(1), . . . , ϕ(r)
]

n

)

:= (f1, ϕ
(1)
1 , . . . , ϕ

(r)
1 ; . . . ; fn, ϕ

(1)
n , . . . , ϕ(r)

n ).

Then the nth derivative of the function Φ allows us to define the one-dimensional Bell
polynomials of order r, Y

[r]
n , as follows:

Y [r]
n

([

f, ϕ(1), . . . , ϕ(r)
]

n

)

:= Φn. (11)

For r = 1 we obtain the ordinary Bell polynomials Y
[1]
n

([

f, ϕ(1)
]

n

)

= Yn

([

f, ϕ(1)
]

n

)

.
The first polynomials have the following explicit expressions

Y
[r]
1

([

f, ϕ(1), . . . , ϕ(r)
]

1

)

= f1ϕ
(1)
1 · · ·ϕ

(r)
1 (12)

Y
[r]
2

([

f, ϕ(1), . . . , ϕ(r)
]

2

)

= f2

(

ϕ
(1)
1 · · ·ϕ

(r)
1

)2

+ f1ϕ
(1)
2

(

ϕ
(2)
1 · · ·ϕ

(r)
1

)2

+f1ϕ
(1)
1 ϕ

(2)
2

(

ϕ
(3)
1 · · ·ϕ

(r)
1

)2

+ f1ϕ
(1)
1 ϕ

(2)
1 · · ·ϕ

(r−1)
1 ϕ

(r)
2 .

In general, we have

Y [r]
n ([f, ϕ(1), . . . , ϕ(r)]n) =

n
∑

k=1

A
[r]
n,k([ϕ

(1), . . . , ϕ(r)]n)fk. (13)

The authors [18] proved the following useful properties for the polynomials Y
[r]
n
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Theorem 4. For every integer n, the polynomials Y
[r]
n are expressed in terms of the Bell

polynomials of lower order, by means of the following equation

Y [r]
n

([

f, ϕ(1), . . . , ϕ(r)
]

n

)

= Yn

([

f, Y [r−1]
([

ϕ(1), . . . , ϕ(r)
])]

n

)

, (14)

where
([

f, Y [r−1]
([

ϕ(1), . . . , ϕ(r)
])]

n

)

:=

(

f1, Y
[r−1]
1

([

ϕ(1), . . . , ϕ(r)
]

1

)

; . . . ; fn, Y
[r−1]
n

([

ϕ(1), . . . , ϕ(r)
]

n

)

)

.

Theorem 5. The following recurrence relation for the Bell polynomials Y
[r]
n holds































Y
[r]
0

([

f, ϕ(1), . . . , ϕ(r)
]

0

)

= f1

Y
[r]
n+1

(

[

f, ϕ(1), . . . , ϕ(r)
]

n+1

)

=
n

∑

k=0

(

n

k

)

Y
[r]
n−k

(

[

f1, ϕ
(1), . . . , ϕ(r)

]

n−k

)

× Y
[r−1]
k+1

(

[

ϕ(1), . . . , ϕ(r)
]

k+1

)

,

(15)

where
(

[

f1, ϕ
(1), . . . , ϕ(r)

]

n−k

)

:=
(

f2, ϕ
(1)
1 , . . . , ϕ

(r)
1 ; . . . ; fn−k+1, ϕ

(1)
n−k, . . . , ϕ

(r)
n−k

)

.

The recurrence relation (6)–(7) can be generalized as follows:

Theorem 6. For all integer n, we have

A
[r]
n+1,1 = Y

[r−1]
n+1

(

[

ϕ(1), . . . , ϕ(r)
]

n+1

)

,

A
[r]
n+1,n+1 =

(

Y
[r−1]
1

([

ϕ(1), . . . , ϕ(r)
]

1

)

)n+1

=
(

ϕ
(1)
1 · · ·ϕ

(r)
1

)n+1

.
(16)

Furthermore, for all k = 1, 2, . . . , n − 1, the rth order partial Bell polynomials A
[r]
n,k satisfy

the recursion

A
[r]
n+1,k+1

(

[

ϕ(1), . . . , ϕ(r)
]

n+1

)

=
n−k
∑

h=0

(

n

h

)

A
[r]
n−h,k

(

[

ϕ(1), . . . , ϕ(r)
]

n−h

)

× Y
[r−1]
h+1

(

[

ϕ(1), . . . , ϕ(r)
]

h+1

)

.

(17)

Definition 7. The complete Bell polynomials of order r, B
[r]
n , are defined by the equation

B
[r]
n

([

ϕ(1), . . . , ϕ(r)
]

n

)

= Y
[r]
n (1, ϕ

(1)
1 , . . . , ϕ

(r)
1 ; . . . ; 1, ϕ

(1)
n , . . . , ϕ

(r)
n )

=
n

∑

k=1

A
[r]
n,k

([

ϕ(1), . . . , ϕ(r)
]

n

)

,
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and the rth order Bell numbers by

b[r]n = Y [r]
n (1, 1, 1; . . . ; 1, 1, 1) =

n
∑

k=1

A
[r]
n,k(1, 1; . . . ; 1, 1).

4 Higher order Bell numbers, for r = 2, 3, 4, 5

The sequences of higher order Bell numbers, which are presented here, appear in the Ency-
clopedia of Integer Sequences [28] under A144150, arising from a problem of combinatorial
analysis and even [4, 13] as the McLaurin coefficients of the functions

exp(exp(exp(x)− 1)− 1),
exp(exp(exp(exp(x)− 1)− 1)− 1),
exp(exp(exp(exp(exp(x)− 1)− 1)− 1)− 1),
exp(exp(exp(exp(exp(exp(x)− 1)− 1)− 1)− 1)− 1),

for the cases r = 2, r = 3, r = 4, r = 5, respectively, and so on for the subsequent values
of r. In our approach they assume a more general meaning, as they are independent of the
functions f, ϕ(1), . . . , ϕ(r).

By using the recurrence relation (16)–(17) and by means of the computer algebra program

Mathematica c©, we find the following sequences for the higher order Bell numbers b
[2]
n , b

[3]
n ,

b
[4]
n , b

[5]
n , (n = 1, 2, . . . , 10):

n b
[2]
n b

[3]
n b

[4]
n b

[5]
n

1 1 1 1 1
2 3 4 5 6
3 12 22 35 51
4 60 154 315 561
5 358 1304 3455 7556
6 2471 12915 44590 120196
7 19302 146115 660665 2201856
8 167894 1855570 11035095 45592666
9 1606137 26097835 204904830 1051951026
10 16733779 402215465 4183174520 26740775306

Table 1: Higher order Bell numbers for n = 1, 2, . . . , 10.

The above table can be extended up to the desired order, as the Mathematica c© program
runs efficiently.
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5 Sequences of integer numbers connected with the

above schemes

Putting, for all integers n, b
[0]
n := 1, b

[1]
n := bn, and reading Table 1 by row, we find the new

array

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

b
[k]
1 1 1 1 1 1 1

b
[k]
2 1 2 3 4 5 6

b
[k]
3 1 5 12 22 35 51

b
[k]
4 1 15 60 154 315 561

b
[k]
5 1 52 358 1304 3455 7556

b
[k]
6 1 203 2471 12915 44590 120196

Table 2: The above sequences to be read by row.

The construction law of the sequence
(

b
[k]
3

)

k≥0
(third row) is

b
[1]
3 = b

[1]
2 + b

[2]
2

b
[2]
3 = b

[2]
2 + b

[3]
2 + b

[4]
2

... (18)

b
[k]
3 = b

[k]
2 + b

[k+1]
2 + · · ·+ b

[2k]
2 .

Deriving a similar law for the subsequent rows is an open problem, since there is no con-

nection between the meaning of the sequences
(

b
[k]
3

)

k≥0
and

(

b
[k]
4

)

k≥0
. In the Encyclopedia

of Integer Sequences, the third row (1, 5, 12, 22, 35, 51, . . .) appears under A000326, and b
[n]
3

is identified, according to the above recursion (18), as the sum of n integers starting from n,
or as the pentagonal number n(3n− 1)/2.

The fourth row (1, 15, 60, 154, 315, 561, . . .) appears under A005945 and b
[n]
4 is the number

of n-step mappings with 4 inputs.
The subsequent rows are not included explicitly in the Encyclopedia, so our approach is

useful in order to merge the above sequences into a general framework.

6 Laguerre-type derivatives

Dattoli and Ricci [9] introduced the Laguerre-type derivatives in connection with a differen-
tial isomorphism denoted by the symbol T := Tx, acting onto the space A := Ax of analytic
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functions of the x variable by means of the correspondence

D :=
d

dx
→ D̂L := DxD; x· → D̂−1

x , (19)

where

D̂−1
x f(x) :=

∫ x

0

f(ξ)dξ,

D̂−n
x f(x) :=

1

(n− 1)!

∫ x

0

(x− ξ)n−1f(ξ)dξ,

and D̂−n
x denotes the n-fold R-L integration, so that

Tx(x
n) = D̂−n

x (1) :=
1

(n− 1)!

∫ x

0

(x− ξ)n−1dξ =
xn

n!
. (20)

According to the isomorphism Tx, the exponential operator e
x is transformed into the first

Laguerre-type exponential e1(x) :=
∑∞

k=0 x
k/(k!)2 which is an eigenfunction of the Laguerre

derivative operator DL := DxD. We have, in fact,

Tx(e
x) =

∞
∑

k=0

Tx(x
k)

k!
=

∞
∑

k=0

xk

(k!)2
= e1(x),

D̂L e1(ax) = ae1(ax), ∀a ∈ C.

This result can be generalized by considering the rth Laguerre-type exponential er(x) :=
∑∞

k=0 x
k/(k!)r+1, the rth Laguerre-type derivative operator DrL := DxDxD · · ·DxD (con-

taining r + 1 ordinary derivatives), and the iterated isomorphism T r, since

T r
x (e

x) =
∞
∑

k=0

Tx(x
k)

(k!)r
=

∞
∑

k=0

xk

(k!)r+1
= er(x),

D̂rL er(ax) = aer(ax), ∀a ∈ C.

Remark 8. The above results show that, for every positive integer r, we can define a Laguerre-
type exponential function er(x), satisfying an eigenfunction property, which is an analog of
the elementary property of the exponential. The Laguerre-type exponential function reduces
to the classical exponential function when r = 0, so that we can put by definition

e0(x) := ex, D̂0L := D.

Obviously, D̂1L := D̂L.
For this reason we will refer to such functions as L-exponential functions, or shortly

L-exponentials.

Bernardini et al. [5] found several applications to the theory of L-exponential functions.
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7 Laguerre-type Bell polynomials and numbers

The problem of constructing Bell polynomials can be extended in the natural way to the
case of the Laguerre-type derivatives.

By using the notation (1)–(2), we introduce the following definition

Definition 9. The nth Laguerre-type Bell polynomial of order r, denoted by rLYn (x; [f, g]n),
represents the nth Laguerre-type derivative of order r of the composite function f(g(t)).

The authors [19] showed that rLYn can be expressed as a polynomial in the independent
variable x, depending on f1, g1; f2, g2; . . . ; fn, gn in terms of the classical Bell polynomials.

According to a general result due to Viskov [29], the Laguerre derivative satisfy

(DL)
n = (DxD)n = DnxnDn, (21)

and furthermore, for any order r, it turns out that

(DrL)
n = (DxDx · · ·DxD)n = DnxnDnxn · · ·DnxnDn. (22)

Therefore, the authors [19] proved the following representation formula for the Laguerre-
type Bell polynomials of the first order, denoted by LYn,

Theorem 10. The LYn polynomials are expressed in terms of the ordinary Bell polynomials
according to the equation

LYn (x; [f, g]n) =
n

∑

k=0

n!

k!

(

n

k

)

xk Yn+k

(

[f, g]n+k

)

. (23)

Definition 11. The 1st order Laguerre-type Bell numbers are defined by

Lbn :=L Yn (1; 1, 1, . . . , 1) =
n

∑

k=0

n!

k!

(

n

k

)

Yn+k (1, 1, . . . , 1) .

The above results can be easily generalized, since

(D2L)
n = (DxDxD)n = Dnxn (DnxnDn) =

=
n

∑

k1=0

n
∑

k2=0

n!

k1!

(n+ k1)!

(k1 + k2)!

(

n

k1

)(

n

k2

)

xk1+k2Dn+k1+k2 ,
(24)

so that the last definition becomes

Definition 12. The 2nd order Laguerre-type Bell numbers are defined by

2Lbn :=2L Yn (1; 1, 1, . . . , 1) =
n

∑

k1=0

n
∑

k2=0

n!

k1!

(n+ k1)!

(k1 + k2)!

(

n

k1

)(

n

k2

)

Yn+k1+k2 (1, 1, . . . , 1)
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and in general, for every integer r,

Definition 13. The rth order Laguerre-type Bell numbers are defined by

rLbn :=rL Yn (1; 1, 1, . . . , 1) =

=
n

∑

k1=0

n
∑

k2=0

· · ·
n

∑

kr=0

n!

k1!

(n+ k1)!

(k1 + k2)!
· · ·

(n+ k1 + k2 + · · ·+ kr−1)!

(k1 + k2 + · · ·+ kr)!

×

(

n

k1

)(

n

k2

)

· · ·

(

n

kr

)

Yn+k1+k2+···+kr (1, 1, . . . , 1) .

(25)

In particular, for r = 1, r = 2 and r = 3, we obtain respectively

Lbn =
n

∑

k=0

(n!)2

(k!)2(n− k)!
bn+k,

2Lbn =
n

∑

k1=0

n
∑

k2=0

(n!)3(n+ k1)!

(k1!)2(k2)!(k1 + k2)!(n− k1)!(n− k2)!
bn+k1+k2 ,

and

3Lbn =
n

∑

k1=0

n
∑

k2=0

n
∑

k3=0

(n!)4(n+ k1)!(n+ k1 + k2)!

(k1!)2(k2)!(k1 + k2!)(k3)!(k1 + k2 + k3)!(n− k1)!(n− k2)!(n− k3)!
bn+k1+k2+k3 .

According to the above definitions, we compute the following integer sequences relevant
to the Laguerre-type Bell numbers of increasing order:

Lb1 = b1 + b2 = 3

Lb2 = 2b2 + 4b3 + b4 = 39

Lb3 = 6b3 + 18b4 + 9b5 + b6 = 971

Lb4 = 24b4 + 96b5 + 72b6 + 16b7 + b8 = 38140

Lb5 = 120b5 + 600b6 + 600b7 + 200b8 + 25b9 + b10 = 2126890

Lb6 = 720b6 + 4320b7 + 5400b8 + 2400b9 + 450b10 + 36b11 + b12 = 157874467

Lb7 = 14928602309

Lb8 = 1741809491235

Lb9 = 244735956424795

Lb10 = 40624759074089022

Table 3: Laguerre-type Bell numbers Lbn, for n = 1, 2, . . . , 10.
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2Lb1 = b1 + 3b2 + b3 = 12

2Lb2 = 4b2 + 32b3 + 38b4 + 12b5 + b6 = 1565

2Lb3 = 36b3 + 540b4 + 1242b5 + 882b6 + 243b7 + 27b8 + b9 = 597948

2Lb4 = 576b4 + 13824b5 + 50688b6 + 59904b7 + 30024b8 + 7200b9+
+856b10 + 48b11 + b12 = 476170277

2Lb5 = 665045751420

2Lb6 = 1466218536786553

2Lb7 = 4751410403456508380

2Lb8 = 21492464638761800105545

2Lb9 = 130485451947856798889765548

2Lb10 = 1031029017676447641584236719317

Table 4: Laguerre-type Bell numbers 2Lbn, for n = 1, 2, . . . , 10

3Lb1 = b1 + 7b2 + 6b3 + b4 = 60

3Lb2 = 8b2 + 208b3 + 652b4 + 576b5 + 188b6 + 24b7 + b8 = 104140

3Lb3 = 216b3 + 13608b4 + 94284b5 + 186876b6 + 149580b7 + 56808b8+
+11025b9 + 1017b10 + 54b11 + b12 = 811796953

3Lb4 = 17520336532435

3Lb5 = 821820979710053847

3Lb6 = 72322447015782400673157

3Lb7 = 10811794473114190401496880596

3Lb8 = 2555589594863343375850080281766604

3Lb9 = 904589617839233661347244697559337192973

3Lb10 = 459477819180446167103818476324632065253323967

Table 5: Laguerre-type Bell numbers 3Lbn, for n = 1, 2, . . . , 10

and so on, for the Laguerre-type Bell numbers of higher order.
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