Journal of Integer Sequences, Vol. 20 (2017), Article 17.4.8

An Explicit Formula for Sums of Powers of Integers in Terms of Stirling Numbers

Diffalah Laissaoui
Dr Yahia Farès University of Médéa
26000 Médéa
Algeria
laissaoui.diffalah74@gmail.com
Mourad Rahmani
Faculty of Mathematics
University of Sciences and Technology Houari Boumediene
P. O. Box 32
El Alia
Bab Ezzouar
16111 Algiers
Algeria
mrahmani@usthb.dz

Abstract

In this note we present an explicit formula for the sum of powers of the first n terms of a general arithmetic sequence in terms of Stirling numbers. We then provide an algorithm for calculating the sum of consecutive powers of integers.

1 Introduction

This paper is concerned with sums of p th powers of the first n terms of a general arithmetic sequence

$$
S_{p,(a, d)}(n)=a^{p}+(a+d)^{p}+\cdots+(a+(n-1) d)^{p}, n \geq 1
$$

where p is a nonnegative integer, and a, d are complex numbers with $d \neq 0$. In particular, we have

$$
S_{p,(1,1)}(n)=1^{p}+2^{p}+3^{p}+\cdots+n^{p}
$$

which has been studied extensively by many authors.
The properties of $S_{p,(a, d)}(n)$ were obtained by Howard [4] via the following generating function

$$
\begin{equation*}
\mathcal{B}_{0}(z):=\sum_{p \geq 0} S_{p,(a, d)}(n) \frac{z^{p}}{p!}=\sum_{k=0}^{n-1} e^{(a+k d) z} \tag{1}
\end{equation*}
$$

For recent articles on this subject, see $[1,6,8]$.
In this note we establish a generalization of the well-known formula $[3,5,9]$

$$
S_{p,(1,1)}(n)=\sum_{k=0}^{p} k!\left\{\begin{array}{l}
p \\
k
\end{array}\right\}\binom{n+1}{k+1}, p \geq 1
$$

for the sums $S_{p,(a, d)}(n)$. Also, we provide an algorithm for calculating the sum of the p th powers of the first n terms of a general arithmetic sequence.

First we present some definitions and notations and some results that will be useful in the rest of the paper. For $x \in \mathbb{C}$, the falling factorial $(x)_{n}$ is defined by $(x)_{0}=1,(x)_{n}=$ $x(x-1) \cdots(x-n+1)$ for $n>0$. The generalized binomial coefficient is defined as follows:

$$
\binom{x}{n}= \begin{cases}\frac{(x)_{n}}{n!}, & \text { if } n \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

The (signed) Stirling numbers of the first kind $s(n, k)$ are the coefficients in the expansion

$$
(x)_{n}=\sum_{k=0}^{n} s(n, k) x^{k}
$$

and satisfy the recurrence relation

$$
\begin{equation*}
s(n+1, k)=s(n, k-1)-n s(n, k) \text { for } 1 \leq k \leq n . \tag{2}
\end{equation*}
$$

The Stirling numbers of the second kind, denoted by $\left\{\begin{array}{l}n \\ k\end{array}\right\}$, are the coefficients in the expansion

$$
x^{n}=\sum_{k=0}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}(x)_{k} .
$$

These numbers count the number of ways to partition a set of n elements into exactly k nonempty subsets.

For any positive integer r, the r-Stirling numbers of the second kind $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{r}$ are obviously generalizations of Stirling numbers of the second kind. These numbers count the number of partitions of a set of n objects into exactly k nonempty, disjoint subsets, such that the first r elements are in distinct subsets. The exponential generating function is given by

$$
\sum_{n \geq k}\left\{\begin{array}{l}
n+r \\
k+r
\end{array}\right\}_{r} \frac{z^{n}}{n!}=\frac{1}{k!} e^{r z}\left(e^{z}-1\right)^{k}
$$

For more details about these numbers see $[2,3]$.

2 Main results

First, we obtain the following result via the generalized Stirling transform method.
Theorem 1. For all $n \geq 1$, non-negative integer p and complex numbers a and $d(d \neq 0)$, we have

$$
S_{p,(a, d)}(n)=d^{p} \sum_{k=0}^{p} k!\left\{\begin{array}{l}
p \tag{3}\\
k
\end{array}\right\}\left(\binom{n+\frac{a}{d}}{k+1}-\binom{\frac{a}{d}}{k+1}\right) .
$$

Proof. Since

$$
S_{p,(a, d)}(n)=d^{p} S_{p,\left(\frac{a}{d}, 1\right)}(n),
$$

we can investigate the sums $S_{p,\left(\frac{a}{d}, 1\right)}(n)$. It follows from (1) and [7, Theorem 4] that

$$
\begin{aligned}
\mathcal{A}_{0}(z) & =\sum_{m \geq 0} a_{0, m} \frac{z^{m}}{m!} \\
& =\mathcal{B}_{0}(\ln (1+z)) \\
& =\sum_{k=0}^{n-1}(1+z)^{\frac{a}{d}+k} \\
& =\sum_{m \geq 0} \frac{z^{m}}{m!} \sum_{k=0}^{n-1}\left(\frac{a}{d}+k\right)_{m} .
\end{aligned}
$$

Since

$$
\sum_{k=0}^{n}(x+k)_{m}:=\frac{(x+n+1)_{m+1}-(x)_{m+1}}{m+1}
$$

we can easily verify that

$$
\begin{align*}
a_{0, m} & =\left[z^{m}\right] \mathcal{A}_{0}(z) \tag{4}\\
& =m!\left(\binom{n+\frac{a}{d}}{m+1}-\binom{\frac{a}{d}}{m+1}\right) \tag{5}
\end{align*}
$$

where $\left[z^{n}\right] f(z)=f_{n}$ denotes the operation of extracting the coefficient of z^{n} in the formal power series $f(z)=\sum_{n} f_{n} \frac{z^{n}}{n!}$.

Now, from [7, Corollary 1] we get

$$
\begin{align*}
\sum_{k=0}^{m} \frac{1}{d^{p+k}} s(m, k) S_{p+k,(a, d)} & (n)= \\
& \sum_{k=0}^{p}\left\{\begin{array}{l}
p+m \\
k+m
\end{array}\right\}_{m}(m+k)!\left(\binom{n+\frac{a}{d}}{m+k+1}-\binom{\frac{a}{d}}{m+k+1}\right) . \tag{6}
\end{align*}
$$

and the proof is completed by letting $m=0$ in the above identity.
Setting $p=0$ in (6), one obtains the following recursive formula for the sum of the p th powers of the first n terms of a general arithmetic sequence involving the Stirling numbers of the first kind:

Corollary 2. We have

$$
\sum_{k=0}^{m} \frac{1}{d^{k}} s(m, k) S_{k,(a, d)}(n)=m!\left(\binom{n+\frac{a}{d}}{m+1}-\binom{\frac{a}{d}}{m+1}\right) .
$$

Thus, for example, when $m=0,1,2,3$, we obtain

$$
\begin{aligned}
S_{0,(a, d)}(n) & =n, \\
S_{1,(a, d)}(n) & =d\left(\binom{n+\frac{a}{d}}{2}-\binom{\frac{a}{d}}{2}\right), \\
-\frac{1}{d} S_{1,(a, d)}(n)+\frac{1}{d^{2}} S_{2,(a, d)}(n) & =2\left(\binom{n+\frac{a}{d}}{3}-\binom{\frac{a}{d}}{3}\right), \\
\frac{2}{d} S_{1,(a, d)}(n)-\frac{3}{d^{2}} S_{2,(a, d)}(n)+\frac{1}{d^{3}} S_{3,(a, d)}(n) & =6\left(\binom{n+\frac{a}{d}}{4}-\binom{\frac{a}{d}}{4}\right) .
\end{aligned}
$$

In the next paragraph, we propose an algorithm based on a three-term recurrence relation for calculating the p th powers of the first n terms of a general arithmetic sequence $S_{p,(a, d)}(n)$. It is convenient to introduce the following sequence $A_{p, m}^{(a, d)}(n)$ with two indices by

$$
\begin{equation*}
A_{p, m}:=A_{p, m}^{(a, d)}(n)=\frac{S_{0,(a, d)}(n)}{a_{0, m}} \sum_{k=0}^{m} \frac{1}{d^{k}} s(m, k) S_{p+k,(a, d)}(n), \tag{7}
\end{equation*}
$$

with $A_{0, m}=n$ and $A_{p, 0}=S_{p,(a, d)}(n)$.
Theorem 3. The sequence $A_{p, m}^{(a, d)}(n)$ satisfies the following three-term recurrence relation

$$
\begin{equation*}
A_{p+1, m}=d \frac{a_{0, m+1}}{a_{0, m}} A_{p, m+1}+d m A_{p, m} \tag{8}
\end{equation*}
$$

with the initial sequence $A_{0, m}=n$, and $a_{0, m}$ is defined by (5).

Proof. From (7) and (2), we have

$$
\begin{aligned}
A_{p, m+1} & =\frac{n+1}{a_{0, m+1}} \sum_{k=0}^{m+1} \frac{1}{d^{k}} s(m+1, k) S_{p+k,(a, d)}(n) \\
& =\frac{n+1}{a_{0, m+1}} \sum_{k=1}^{m+1} \frac{1}{d^{k}}(s(m, k-1)-m s(m, k)) S_{p+k,(a, d)}(n) .
\end{aligned}
$$

After some rearrangement, we get

$$
A_{p, m+1}=\frac{a_{0, m}}{d a_{0, m+1}} A_{p+1, m}-\frac{a_{0, m} m}{a_{0, m+1}} A_{p, m}
$$

This completes the proof.
As an immediate application of (8) we have the following algorithm for evaluating Faulhaber's formula $S_{p,(1,1)}(n)$. Starting with the sequence $R_{0, m}:=n$, as the first row of the matrix $\left(R_{p, m}\right)_{p, m \geq 0}$, each entry is determined recursively by

$$
R_{p+1, m}=m R_{p, m}+\frac{(m+1)\binom{n+1}{m+2}}{\binom{n+1}{m+1}-\delta_{0, m}} R_{p, m+1}
$$

where $\delta_{i, j}$ denotes the Kronecker symbol.
Then $R_{p, 0}:=S_{p,(1,1)}(n)$ is Faulhaber's formula.

3 Acknowledgments

We thank the referee and the editor for helpful comments and suggestions.

References

[1] A. Bazsó and I. Mező, On the coefficients of power sums of arithmetic progressions. J. Number Theory 153 (2015), 117-123.
[2] A. Z. Broder, The r-Stirling numbers. Discrete Math. 49 (1984), 241-259.
[3] R. L. Graham and D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 1994.
[4] F. T. Howard, Sums of powers of integers via generating functions. Fibonacci Quart. 34 (1996), 244-256.
[5] J. Quaintance and H. W. Gould. Combinatorial Identities for Stirling Numbers: The Unpublished Notes of H. W. Gould, World Scientific Publishing, 2016.
[6] M. Merca, An alternative to Faulhaber's formula. Amer. Math. Monthly 122 (2015), 599-601.
[7] M. Rahmani, Generalized Stirling transform. Miskolc Math. Notes 15 (2014), 677-690.
[8] R. Schumacher, An extended version of Faulhaber's formula, J. Integer Sequences 19 (2016), Article 16.4.2.
[9] R. Wituła, K. Kaczmarek, P. Lorenc, E. Hetmaniok and M. Pleszczynski, Jordan numbers, Stirling numbers and sums of powers. Discuss. Math. Gen. Algebra Appl. 34 (2014), 155-166.

2010 Mathematics Subject Classification: Primary 11B73; Secondary 11B37.
Keywords: algorithm, explicit formula, Stirling number, sums of powers of integers.

Received October 26 2016; revised version received February 24 2017. Published in Journal of Integer Sequences, February 242017.

Return to Journal of Integer Sequences home page.

