Jacobsthal and Jacobsthal-Lucas Numbers and Sums Introduced by Jacobsthal and Tverberg

Kritkhajohn Onphaeng and Prapanpong Pongsriiam ${ }^{1}$
Department of Mathematics
Faculty of Science
Silpakorn University
Nakhon Pathom 73000
Thailand
dome3579@gmail.com
prapanpong@gmail.com

Abstract

We study the sums introduced by Jacobsthal and Tverberg and show that the extreme values of the sums are connected with Jacobsthal and Jacobsthal-Lucas numbers.

1 Introduction

Let $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^{+}$. In 1957, Jacobsthal [4] introduced the sums of the form

$$
S_{a, b ; m}(K)=\sum_{k=0}^{K} f_{a, b ; m}(k),
$$

where

$$
\begin{equation*}
f_{a, b ; m}(k)=\left\lfloor\frac{a+b+k}{m}\right\rfloor-\left\lfloor\frac{a+k}{m}\right\rfloor-\left\lfloor\frac{b+k}{m}\right\rfloor+\left\lfloor\frac{k}{m}\right\rfloor . \tag{1}
\end{equation*}
$$

[^0]In the above equation and throughout this article, unless stated otherwise, k is an integer and K is a nonnegative integer. So we can consider $f_{a, b ; m}$ and $S_{a, b ; m}$ as functions of k and K defined on \mathbb{Z} and on $\mathbb{N} \cup\{0\}$, respectively.

These sums are also studied by Carlitz [1, 2], Grimson [3] and recently by Tverberg [6]. In addition, Tverberg [6] extends the definition of $f_{a, b ; m}(k)$ and $S_{a, b ; m}(K)$ to the following form.

Definition 1. Let m and ℓ be positive integers and let C be a multiset of ℓ integers $a_{1}, a_{2}, \ldots, a_{\ell}$, i.e., $a_{i}=a_{j}$ is allowed for some $i \neq j$. Define $f_{C ; m}: \mathbb{Z} \rightarrow \mathbb{Z}$ and $S_{C ; m}$: $\mathbb{N} \cup\{0\} \rightarrow \mathbb{Z}$ by

$$
\begin{gathered}
f_{C ; m}(k)=\sum_{T \subseteq[1, \ell]}(-1)^{\ell-|T|}\left\lfloor\frac{k+\sum_{i \in T} a_{i}}{m}\right\rfloor, \\
S_{C ; m}(K)=\sum_{k=0}^{K} f_{C ; m}(k) .
\end{gathered}
$$

We sometimes write $f_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}(k)$ and $S_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}(K)$ instead of $f_{C ; m}(k)$ and $S_{C ; m}(K)$, respectively. The set $[1, \ell]$ appearing in the sum defining f is $\{1,2,3, \ldots, \ell\}$ and if $T=\emptyset$, then $\sum_{i \in T} a_{i}$ is defined to be zero.

For example, if $C=\{a, b\}$, then $f_{C ; m}(k)$ given in Definition 1 is the same as $f_{a, b ; m}(k)$ given in (1), and if $C=\left\{a_{1}, a_{2}, a_{3}\right\}$, then $f_{C ; m}(k)$ is

$$
\begin{aligned}
f_{a_{1}, a_{2}, a_{3} ; m}(k)= & \left\lfloor\frac{a_{1}+a_{2}+a_{3}+k}{m}\right\rfloor-\left\lfloor\frac{a_{1}+a_{2}+k}{m}\right\rfloor-\left\lfloor\frac{a_{1}+a_{3}+k}{m}\right\rfloor-\left\lfloor\frac{a_{2}+a_{3}+k}{m}\right\rfloor \\
& +\left\lfloor\frac{a_{1}+k}{m}\right\rfloor+\left\lfloor\frac{a_{2}+k}{m}\right\rfloor+\left\lfloor\frac{a_{3}+k}{m}\right\rfloor-\left\lfloor\frac{k}{m}\right\rfloor .
\end{aligned}
$$

Jacobsthal [4] shows that for any $K \in \mathbb{N} \cup\{0\}$, we have

$$
\begin{equation*}
0 \leq S_{a, b ; m}(K) \leq\left\lfloor\frac{m}{2}\right\rfloor \tag{2}
\end{equation*}
$$

which is a sharp inequality, that is, the lower bound 0 is actually the minimum value and the upper bound $\left\lfloor\frac{m}{2}\right\rfloor$ is the maximum value of $S_{a, b ; m}(K)$. Tverberg [6] proves (2) in a different way and he also gives the extreme values of $S_{a_{1}, a_{2}, a_{3} ; m}(K)$ without proof. Nevertheless, the extreme values of $f_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}(k)$ (for $\ell \geq 2$) and $S_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}(K)$ (for $\ell \geq 4$) have not been calculated.

In this article, we calculate the extreme values of $f_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}(k)$ for all $\ell \geq 2$ (see Theorem 8). We also introduce the function g in Definition 2, give its connection with $f_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}(k)$, and obtain its extreme values (see Proposition 3 and Theorem 4). Furthermore, we obtain the minimum value of $S_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}(K)$ when ℓ is odd and the maximum value of $S_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}(K)$ when ℓ is even (see Theorem 9).

The reader will see that the extreme values of the functions g and $f_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}(k)$ are connected with Jacobsthal numbers J_{n} and Jacobsthal-Lucas numbers j_{n} defined, respectively, by the recurrence relations

$$
J_{0}=0, \quad J_{1}=1, \quad J_{n}=J_{n-1}+2 J_{n-2} \quad \text { for } n \geq 2
$$

and

$$
j_{0}=2, \quad j_{1}=1, \quad j_{n}=j_{n-1}+2 j_{n-2} \quad \text { for } n \geq 2
$$

The sequences $\left(J_{n}\right)_{n \geq 0}$ and $\left(j_{n}\right)_{n \geq 0}$ are, respectively, $\underline{\text { A001045 }}$ and $\underline{\text { A014551 }}$ in the OEIS [5]. The function g is defined as follows:
Definition 2. Let $g: \mathbb{R}^{n} \rightarrow \mathbb{Z}$ be given by

$$
\begin{aligned}
& g\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=\sum_{1 \leq i \leq n}\left\lfloor x_{i}\right\rfloor-\sum_{1 \leq i_{1}<i_{2} \leq n}\left\lfloor x_{i_{1}}+x_{i_{2}}\right\rfloor \\
& \quad+\sum_{1 \leq i_{1}<i_{2}<i_{3} \leq n}\left\lfloor x_{i_{1}}+x_{i_{2}}+x_{i_{3}}\right\rfloor-\cdots+(-1)^{n-1}\left\lfloor x_{1}+x_{2}+x_{3}+\cdots+x_{n}\right\rfloor .
\end{aligned}
$$

In other words,

$$
g\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=\sum_{\emptyset \neq T \subseteq[1, n]}(-1)^{|T|-1}\left\lfloor\sum_{i \in T} x_{i}\right\rfloor .
$$

2 Main results

We begin this section by giving a relation between the functions f and g. Then we give the extreme values of g and f and their connection with Jacobsthal and Jacobsthal-Lucas numbers.
Proposition 3. For each $\ell \geq 2$, we have
(i) $f_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}(0)=(-1)^{\ell-1} g\left(\frac{a_{1}}{m}, \frac{a_{2}}{m}, \cdots, \frac{a_{\ell}}{m}\right)$,
(ii) $f_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}(k)=(-1)^{\ell} g\left(\frac{a_{1}}{m}, \frac{a_{2}}{m}, \cdots, \frac{a_{\ell}}{m}, \frac{k}{m}\right)+(-1)^{\ell-1} g\left(\frac{a_{1}}{m}, \frac{a_{2}}{m}, \cdots, \frac{a_{\ell}}{m}\right)$.

Proof. This follows easily from the definitions of f and g but we give a proof for completeness. We have

$$
\begin{aligned}
f_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}(0) & =\sum_{T \subseteq[1, \ell]}(-1)^{\ell-|T|}\left\lfloor\sum_{i \in T}\left(\frac{a_{i}}{m}\right)\right\rfloor \\
& =\sum_{\emptyset \neq T \subseteq[1, \ell]}(-1)^{\ell-|T|}\left\lfloor\sum_{i \in T}\left(\frac{a_{i}}{m}\right)\right\rfloor \\
& =(-1)^{\ell-1} \sum_{\emptyset \neq T \subseteq[1, \ell]}(-1)^{1-|T|}\left\lfloor\sum_{i \in T}\left(\frac{a_{i}}{m}\right)\right\rfloor \\
& =(-1)^{\ell-1} g\left(\frac{a_{1}}{m}, \frac{a_{2}}{m}, \ldots, \frac{a_{\ell}}{m}\right) .
\end{aligned}
$$

Next let $a_{\ell+1}=k$. Then we obtain

$$
\begin{aligned}
& (-1)^{\ell} g\left(\frac{a_{1}}{m}, \frac{a_{2}}{m}, \cdots, \frac{a_{\ell}}{m}, \frac{k}{m}\right)+(-1)^{\ell-1} g\left(\frac{a_{1}}{m}, \frac{a_{2}}{m}, \cdots, \frac{a_{\ell}}{m}\right) \\
= & (-1)^{\ell}\left(\sum_{\emptyset \neq T \subseteq[1, \ell+1]}(-1)^{|T|-1}\left\lfloor\sum_{i \in T}\left(\frac{a_{i}}{m}\right)\right\rfloor-\sum_{\emptyset \neq T \subseteq[1, \ell]}(-1)^{|T|-1}\left\lfloor\sum_{i \in T}\left(\frac{a_{i}}{m}\right)\right\rfloor\right) \\
= & (-1)^{\ell} \sum_{\substack{T \subseteq[1, \ell+1] \\
\ell+1 \in T}}(-1)^{|T|-1}\left\lfloor\sum_{i \in T}\left(\frac{a_{i}}{m}\right)\right\rfloor \\
= & (-1)^{\ell} \sum_{T \subseteq[1, \ell]}(-1)^{|T|}\left\lfloor\frac{k+\sum_{i \in T} a_{i}}{m}\right\rfloor \\
= & f_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}(k) .
\end{aligned}
$$

Theorem 4. For each $n \geq 2$, the function g given in Definition 2 has maximum value $2^{n-2}-1$ and minimum value -2^{n-2}. The minimum occurs at least when $x_{k}=\frac{1}{2}$ for every $1 \leq k \leq n$. The maximum occurs at least when $x_{k}=\frac{1}{2}-\frac{1}{n^{2}}$ for every $1 \leq k \leq n$.
Proof. If $n=2$, then the result is a well-known inequality

$$
\begin{equation*}
-1 \leq\lfloor x\rfloor+\lfloor y\rfloor-\lfloor x+y\rfloor \leq 0 \tag{3}
\end{equation*}
$$

which holds for all $x, y \in \mathbb{R}$. The inequality (3) is sharp: if $x=y=\frac{1}{2}$ the left inequality in (3) becomes equality, and if $x=y=\frac{1}{4}$ the right inequality in (3) becomes equality. The result when $n \geq 3$ is obtained from the case $n=2$ and a careful selection of pairs. For illustration purpose, we first give a proof for the case $n=3$ and $n=4$. Recall that

$$
g\left(x_{1}, x_{2}, x_{3}\right)=\left\lfloor x_{1}\right\rfloor+\left\lfloor x_{2}\right\rfloor+\left\lfloor x_{3}\right\rfloor-\left\lfloor x_{1}+x_{2}\right\rfloor-\left\lfloor x_{1}+x_{3}\right\rfloor-\left\lfloor x_{2}+x_{3}\right\rfloor+\left\lfloor x_{1}+x_{2}+x_{3}\right\rfloor .
$$

We obtain by (3) that

$$
\begin{gather*}
0 \leq\left\lfloor x_{1}+x_{2}+x_{3}\right\rfloor-\left\lfloor x_{1}+x_{2}\right\rfloor-\left\lfloor x_{3}\right\rfloor \leq 1, \tag{4}\\
-1 \leq-\left\lfloor x_{2}+x_{3}\right\rfloor+\left\lfloor x_{2}\right\rfloor+\left\lfloor x_{3}\right\rfloor \leq 0, \tag{5}\\
-1 \leq-\left\lfloor x_{1}+x_{3}\right\rfloor+\left\lfloor x_{1}\right\rfloor+\left\lfloor x_{3}\right\rfloor \leq 0 . \tag{6}
\end{gather*}
$$

Summing (4), (5), and (6), the middle terms give $g\left(x_{1}, x_{2}, x_{3}\right)$. Then $-2 \leq g\left(x_{1}, x_{2}, x_{3}\right) \leq 1$. Next we consider

$$
\begin{aligned}
g\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= & \left\lfloor x_{1}\right\rfloor+\left\lfloor x_{2}\right\rfloor+\left\lfloor x_{3}\right\rfloor+\left\lfloor x_{4}\right\rfloor-\left\lfloor x_{1}+x_{2}\right\rfloor-\left\lfloor x_{1}+x_{3}\right\rfloor-\left\lfloor x_{1}+x_{4}\right\rfloor \\
& -\left\lfloor x_{2}+x_{3}\right\rfloor-\left\lfloor x_{2}+x_{4}\right\rfloor-\left\lfloor x_{3}+x_{4}\right\rfloor+\left\lfloor x_{1}+x_{2}+x_{3}\right\rfloor+\left\lfloor x_{1}+x_{2}+x_{4}\right\rfloor \\
& +\left\lfloor x_{1}+x_{3}+x_{4}\right\rfloor+\left\lfloor x_{2}+x_{3}+x_{4}\right\rfloor-\left\lfloor x_{1}+x_{2}+x_{3}+x_{4}\right\rfloor .
\end{aligned}
$$

Again, we obtain by (3) the following inequalities:

$$
\begin{gather*}
-1 \leq-\left\lfloor x_{1}+x_{2}+x_{3}+x_{4}\right\rfloor+\left\lfloor x_{1}+x_{2}+x_{3}\right\rfloor+\left\lfloor x_{4}\right\rfloor \leq 0 \tag{7}\\
0 \leq\left\lfloor x_{1}+x_{2}+x_{4}\right\rfloor-\left\lfloor x_{1}+x_{2}\right\rfloor-\left\lfloor x_{4}\right\rfloor \leq 1 \tag{8}\\
0 \leq\left\lfloor x_{1}+x_{3}+x_{4}\right\rfloor-\left\lfloor x_{1}+x_{3}\right\rfloor-\left\lfloor x_{4}\right\rfloor \leq 1 \tag{9}\\
0 \leq \tag{10}\\
\quad\left\lfloor x_{2}+x_{3}+x_{4}\right\rfloor-\left\lfloor x_{2}+x_{3}\right\rfloor-\left\lfloor x_{4}\right\rfloor \leq 1 \tag{11}\\
 \tag{12}\\
-1 \leq-\left\lfloor x_{1}+x_{4}\right\rfloor+\left\lfloor x_{1}\right\rfloor+\left\lfloor x_{4}\right\rfloor \leq 0 \tag{13}\\
\\
-1 \leq-\left\lfloor x_{2}+x_{4}\right\rfloor+\left\lfloor x_{2}\right\rfloor+\left\lfloor x_{4}\right\rfloor \leq 0 \\
\\
-1 \leq-\left\lfloor x_{3}+x_{4}\right\rfloor+\left\lfloor x_{3}\right\rfloor+\left\lfloor x_{4}\right\rfloor \leq 0
\end{gather*}
$$

Summing (7) to (13), we see that $-4 \leq g\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \leq 3$.
Next we prove the general case $n \geq 5$. The expression of the form $\left\lfloor x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{k}}\right\rfloor$ will be called a k-bracket. So for each $1 \leq k \leq n$, there are $\binom{n}{k} k$-brackets appearing in the sum defining $g\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. We first pair up the n-bracket with an $(n-1)$-bracket and a 1 -bracket as follows:

$$
\begin{equation*}
s_{1}=(-1)^{n-1}\left\lfloor x_{1}+x_{2}+\cdots+x_{n}\right\rfloor+(-1)^{n-2}\left\lfloor x_{1}+x_{2}+\cdots+x_{n-1}\right\rfloor+(-1)^{n-2}\left\lfloor x_{n}\right\rfloor . \tag{14}
\end{equation*}
$$

Notice that the sign of $\left\lfloor x_{n}\right\rfloor$ in (14) may or may not be the same as that appearing in the sum defining $g\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ but it is the same as the sign of $\left\lfloor x_{1}+x_{2}+\cdots+x_{n-1}\right\rfloor$ so that we can apply (3) to obtain the bound for s_{1}. Next we pair up the remaining ($n-1$)-brackets with ($n-2$)-brackets and 1-brackets as follows:

$$
\begin{equation*}
(-1)^{n-2}\left\lfloor x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{n-1}}\right\rfloor+(-1)^{n-3}\left\lfloor x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{n-2}}\right\rfloor+(-1)^{n-3}\left\lfloor x_{i_{n-1}}\right\rfloor, \tag{15}
\end{equation*}
$$

where $1 \leq i_{1}<i_{2}<\ldots<i_{n-1} \leq n$. We note again that the sign of $\left\lfloor x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{n-1}}\right\rfloor$ and $\left\lfloor x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{n-2}}\right\rfloor$ in (15) are the same as those appearing in the sum defining $g\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ while the sign of $\left\lfloor x_{i_{n-1}}\right\rfloor$ in (15) may or may not be the same, but we can apply (3) to obtain the bound of (15). Since $\left\lfloor x_{1}+x_{2}+\cdots+x_{n-1}\right\rfloor$ appears in (14), the term $x_{i_{n-1}}$ appearing in the $(n-1)$-brackets in (15) is always x_{n}. So in fact (15) is

$$
\begin{equation*}
(-1)^{n-2}\left\lfloor x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{n-2}}+x_{n}\right\rfloor+(-1)^{n-3}\left\lfloor x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{n-2}}\right\rfloor+(-1)^{n-3}\left\lfloor x_{n}\right\rfloor \tag{16}
\end{equation*}
$$

Then we sum (16) over all possibles $1 \leq i_{1}<i_{2}<\ldots<i_{n-2}<n$, and call it s_{2}. That is

$$
\begin{aligned}
s_{2}= & (-1)^{n-2} \sum_{1 \leq i_{1}<i_{2}<\ldots<i_{n-2}<n}\left\lfloor x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{n-2}}+x_{n}\right\rfloor \\
& +(-1)^{n-3} \sum_{1 \leq i_{1}<i_{2}<\ldots<i_{n-2}<n}\left\lfloor x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{n-2}}\right\rfloor+(-1)^{n-3}\binom{n-1}{n-2}\left\lfloor x_{n}\right\rfloor .
\end{aligned}
$$

We continue doing this process as follows. For each $0 \leq \ell \leq n-1$, let c_{ℓ} be the sum of all $\left\lfloor x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{n-\ell}}\right\rfloor$ with $1 \leq i_{1}<i_{2}<\ldots<i_{n-\ell} \leq n, a_{\ell}$ the sum of all such terms with $i_{n-\ell}=n$, and b_{ℓ} the sum of all such terms with $i_{n-\ell}<n$. Therefore $c_{\ell}=a_{\ell}+b_{\ell}$. As usual, the empty sum is defined to be zero, so $b_{0}=0$. The number of $(n-\ell)$-brackets appearing in the sum defining c_{ℓ} is $\binom{n}{n-\ell}$, the number of $(n-\ell)$-brackets appearing in the sum defining a_{ℓ} is $\binom{n-1}{n-\ell-1}$, and the number of $(n-\ell)$-brackets appearing in the sum defining b_{ℓ} is $\binom{n-1}{n-\ell}$. In addition, we have

$$
\begin{aligned}
& s_{1}=(-1)^{n-1} a_{0}+(-1)^{n-2} b_{1}+(-1)^{n-2}\left\lfloor x_{n}\right\rfloor, \\
& s_{2}=(-1)^{n-2} a_{1}+(-1)^{n-3} b_{2}+(-1)^{n-3}\binom{n-1}{n-2}\left\lfloor x_{n}\right\rfloor .
\end{aligned}
$$

In general, for each $1 \leq \ell \leq n-1$, we let

$$
s_{\ell}=(-1)^{n-\ell} a_{\ell-1}+(-1)^{n-\ell-1} b_{\ell}+(-1)^{n-\ell-1}\binom{n-1}{n-\ell}\left\lfloor x_{n}\right\rfloor .
$$

Then

$$
\begin{align*}
\sum_{1 \leq \ell \leq n-1} s_{\ell}= & (-1)^{n-1} a_{0}+\sum_{2 \leq \ell \leq n-1}(-1)^{n-\ell} a_{\ell-1}+\sum_{1 \leq \ell \leq n-2}(-1)^{n-\ell-1} b_{\ell}+b_{n-1} \\
& +\left\lfloor x_{n}\right\rfloor \sum_{1 \leq \ell \leq n-1}(-1)^{n-\ell-1}\binom{n-1}{n-\ell} . \tag{17}
\end{align*}
$$

Recall a well known identity $\sum_{0 \leq \ell \leq n}(-1)^{\ell}\binom{n}{\ell}=0$ for all $n \geq 1$. Therefore the last sum on the right hand side of (17) is

$$
-\sum_{1 \leq \ell \leq n-1}(-1)^{n-\ell}\binom{n-1}{n-\ell}=-\sum_{1 \leq \ell \leq n-1}(-1)^{\ell}\binom{n-1}{\ell}=-\sum_{0 \leq \ell \leq n-1}(-1)^{\ell}\binom{n-1}{\ell}+1=1
$$

Therefore the last term in (17) is $\left\lfloor x_{n}\right\rfloor$. Replacing ℓ by $\ell+1$ in the first sum on the right hand side of (17), we see that

$$
\begin{align*}
\sum_{1 \leq \ell \leq n-1} s_{\ell} & =(-1)^{n-1} a_{0}+\sum_{1 \leq \ell \leq n-2}(-1)^{n-\ell-1}\left(a_{\ell}+b_{\ell}\right)+b_{n-1}+\left\lfloor x_{n}\right\rfloor \\
& =(-1)^{n-1} c_{0}+\sum_{1 \leq \ell \leq n-2}(-1)^{n-\ell-1} c_{\ell}+b_{n-1}+\left\lfloor x_{n}\right\rfloor \\
& =(-1)^{n-1} c_{0}+\sum_{1 \leq \ell \leq n-2}(-1)^{n-\ell-1} c_{\ell}+c_{n-1} \tag{18}\\
& =\sum_{0 \leq \ell \leq n-1}(-1)^{n-\ell-1} c_{\ell} \\
& =g\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{align*}
$$

where (18) can be obtained from the definition of c_{n-1}, b_{n-1}, and a_{n-1} that

$$
\begin{aligned}
c_{n-1} & =\left\lfloor x_{1}\right\rfloor+\left\lfloor x_{2}\right\rfloor+\cdots+\left\lfloor x_{n}\right\rfloor, \\
b_{n-1} & =\left\lfloor x_{1}\right\rfloor+\left\lfloor x_{2}\right\rfloor+\cdots+\left\lfloor x_{n-1}\right\rfloor, \\
a_{n-1} & =\left\lfloor x_{n}\right\rfloor, \quad \text { and } \\
c_{n-1} & =a_{n-1}+b_{n-1} .
\end{aligned}
$$

We apply (3) to (14) to obtain

$$
0 \leq s_{1} \leq 1 \text { if } n \text { is odd, and }-1 \leq s_{1} \leq 0 \text { if } n \text { is even. }
$$

Similarly, applying (3) to (16), we see that such sum lies in $[0,1]$ if n is even, and lies in $[-1,0]$ if n is odd. Therefore

$$
0 \leq s_{2} \leq\binom{ n-1}{n-2} \text { if } n \text { is even, and }-\binom{n-1}{n-2} \leq s_{2} \leq 0 \text { if } n \text { is odd. }
$$

In general, for each $1 \leq \ell \leq n-1$, we have

$$
\begin{gathered}
0 \leq s_{\ell} \leq\binom{ n-1}{n-\ell} \text {, if } n \text { and } \ell \text { have the same parity, } \\
-\binom{n-1}{n-\ell} \leq s_{\ell} \leq 0, \text { if } n \text { and } \ell \text { have a different parity. }
\end{gathered}
$$

Since $g\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{1 \leq \ell \leq n-1} s_{\ell}$, we obtain, for odd n,

$$
-\sum_{\substack{1 \leq \ell \leq n-1 \\ \ell \text { is even }}}\binom{n-1}{n-\ell} \leq g\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq \sum_{\substack{1 \leq \ell \leq n-1 \\ \ell \ell \text { is odd }}}\binom{n-1}{n-\ell}
$$

and for even n,

$$
-\sum_{\substack{1 \leq \ell \leq n-1 \\ \ell \\ \ell \\ \text { is odd }}}\binom{n-1}{n-\ell} \leq g\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq \sum_{\substack{1 \leq \ell \leq n-1 \\ \ell \text { is even }}}\binom{n-1}{n-\ell}
$$

Recall a well known identity

$$
\sum_{\substack{0 \leq k \leq n \\ k \text { is even }}}\binom{n}{k}=\sum_{\substack{0 \leq k \leq n \\ k \text { is odd }}}\binom{n}{k}=2^{n-1}
$$

Therefore if n is odd, then

$$
\begin{gathered}
\sum_{\substack{1 \leq \ell \leq n-1 \\
\ell \text { is odd }}}\binom{n-1}{n-\ell}=\sum_{\substack{1 \leq \ell \leq n-1 \\
\ell \text { is even }}}\binom{n-1}{\ell}=2^{n-2}-1, \text { and } \\
\sum_{\substack{1 \leq \ell \leq n-1 \\
\ell \text { is even }}}\binom{n-1}{n-\ell}=\sum_{\substack{1 \leq \ell \leq n-1 \\
\ell \\
\ell \\
\text { is odd }}}\binom{n-1}{\ell}=\sum_{\substack{0 \leq \ell \leq n-1 \\
\ell \\
\ell \\
\text { is odd }}}\binom{n-1}{\ell}=2^{n-2} .
\end{gathered}
$$

Similarly, if n is even, then

$$
\sum_{\substack{1 \leq \ell \leq n-1 \\ \ell \\ \ell \\ \text { is odd }}}\binom{n-1}{n-\ell}=2^{n-2} \text { and } \sum_{\substack{1 \leq \ell \leq n-1 \\ \ell \text { is even }}}\binom{n-1}{n-\ell}=2^{n-2}-1
$$

Hence $-2^{n-2} \leq g\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq 2^{n-2}-1$, as required. Next we show that the lower bound -2^{n-2} and the upper bound $2^{n-2}-1$ are actually the minimum and the maximum of $g\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, respectively. Recall that the fractional part of a real number x, denoted by $\{x\}$, is defined by $\{x\}=x-\lfloor x\rfloor$. Let $x_{k}=\frac{1}{2}$ for every $k=1,2, \ldots, n$. Then

$$
\begin{align*}
g\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =\sum_{1 \leq k \leq n}(-1)^{k-1}\left\lfloor\frac{k}{2}\right\rfloor\binom{ n}{k} \\
& =\sum_{1 \leq k \leq n}(-1)^{k-1}\left(\frac{k}{2}\right)\binom{n}{k}-\sum_{1 \leq k \leq n}(-1)^{k-1}\left\{\frac{k}{2}\right\}\binom{n}{k} \\
& =\frac{1}{2} \sum_{1 \leq k \leq n}(-1)^{k-1} k\binom{n}{k}-\frac{1}{2} \sum_{\substack{1 \leq k \leq n \\
k \text { is odd }}}\binom{n}{k}, \tag{19}
\end{align*}
$$

where the last equality is obtained from the fact that $\left\{\frac{k}{2}\right\}=0$ if k is even and $\left\{\frac{k}{2}\right\}=\frac{1}{2}$ if k is odd. By differentiating both sides of

$$
\begin{equation*}
(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} \tag{20}
\end{equation*}
$$

and substituting $x=-1$, we obtain a well-known identity

$$
\begin{equation*}
\sum_{k=1}^{n}(-1)^{k-1} k\binom{n}{k}=0, \text { which holds for all } n \geq 2 \tag{21}
\end{equation*}
$$

In addition, we know that

$$
\sum_{\substack{1 \leq k \leq n \\ k \text { is odd }}}\binom{n}{k}=2^{n-1}
$$

Therefore (19) becomes

$$
g\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0-\frac{1}{2}\left(2^{n-1}\right)=-2^{n-2} .
$$

This shows that -2^{n-2} is the minimun value of g. Next let $x_{k}=\frac{1}{2}-\frac{1}{n^{2}}$ for every $k=$ $1,2, \ldots, n$. Then

$$
\begin{equation*}
g\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{1 \leq k \leq n}(-1)^{k-1}\left\lfloor\frac{k}{2}-\frac{k}{n^{2}}\right\rfloor\binom{ n}{k} . \tag{22}
\end{equation*}
$$

If $1 \leq k \leq n$ and k is even, then $\left\lfloor\frac{k}{2}-\frac{k}{n^{2}}\right\rfloor=\frac{k}{2}-1=\left\lfloor\frac{k-1}{2}\right\rfloor$. If $1 \leq k \leq n$ and k is odd, then $\left\lfloor\frac{k}{2}-\frac{k}{n^{2}}\right\rfloor=\left\lfloor\frac{k-1}{2}+\frac{1}{2}-\frac{k}{n^{2}}\right\rfloor=\left\lfloor\frac{k-1}{2}\right\rfloor$. Therefore (22) becomes

$$
\begin{equation*}
g\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{1 \leq k \leq n}(-1)^{k-1}\left\lfloor\frac{k-1}{2}\right\rfloor\binom{ n}{k} . \tag{23}
\end{equation*}
$$

Now we can evaluate the sum (23) by using the same method as in (19). We write $\left\lfloor\frac{k-1}{2}\right\rfloor=$ $\frac{k-1}{2}-\left\{\frac{k-1}{2}\right\}$ and we know that $\left\{\frac{k-1}{2}\right\}=0$ if k is odd and $\left\{\frac{k-1}{2}\right\}=\frac{1}{2}$ if k is even. Then (23) can be written as

$$
g\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{1}{2} \sum_{1 \leq k \leq n}(-1)^{k-1} k\binom{n}{k}-\frac{1}{2} \sum_{1 \leq k \leq n}(-1)^{k-1}\binom{n}{k}+\frac{1}{2} \sum_{\substack{1 \leq k \leq n \\ k \text { is even }}}\binom{n}{k} .
$$

The first sum is zero by (21). The second sum is 1 by substituting $x=-1$ in (20). Therefore

$$
g\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0-\frac{1}{2}+\frac{1}{2}\left(2^{n-1}-1\right)=2^{n-2}-1 .
$$

Recall that the Binet forms of Jacobsthal numbers J_{n} and Jacobsthal-Lucas numbers j_{n} are

$$
\begin{equation*}
J_{n}=\frac{2^{n}-(-1)^{n}}{3} \quad \text { and } \quad j_{n}=2^{n}+(-1)^{n} \tag{24}
\end{equation*}
$$

for every $n \geq 0$. Therefore we obtain the connection between Jacobsthal and JacobsthalLucas numbers and sums introduced by Jacobsthal [4] and Tverberg [6] as follows.

Corollary 5. If n is odd, then the maximum and the minimum value of $g\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$ are j_{n-2} and $-1-j_{n-2}$, respectively. If n is even, then the maximum and the minimum value of $g\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$ are $3 J_{n-2}$ and $1-j_{n-2}$, respectively.

Proof. This follows immediately from (24) and Theorem 4.
Remark 6. From this point on, we will apply the well-known identities which are already recalled without reference.

Next we give the extreme values of $f_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}(k)$. Although we can write $f_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}(k)$ in terms of $g\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ as given in Proposition 3, we do not know the proof which applies Theorem 4 to obtain Theorem 8. Nevertheless, we can use the same idea in the proof of Theorem 4 together with the following lemma to prove Theorem 8.
Lemma 7. The following statements hold.
(i) For each $i \in\{1,2, \ldots, n\}$ and $q \in \mathbb{Z}$, we have

$$
g\left(x_{1}, x_{2}, \ldots, x_{i}+q, \ldots, x_{n}\right)=g\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

In particular, g has period 1 in each variable.
(ii) For each $i \in\{1,2, \ldots, \ell\}$ and $q \in \mathbb{Z}$, we have

$$
f_{a_{1}, a_{2}, \ldots, a_{i}+q m, \ldots, a_{\ell} ; m}(k)=f_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}(k)=f_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}(k+q m) .
$$

In particular, f has period m in each variable $a_{1}, a_{2}, \ldots, a_{\ell}$ and k.
Proof. Since $\lfloor q+x\rfloor=q+\lfloor x\rfloor$ for every $q \in \mathbb{Z}$ and $x \in \mathbb{R}$, we see that

$$
\begin{aligned}
g\left(x_{1}, x_{2}, \ldots, x_{i}+q, \ldots, x_{n}\right)= & \left(q+\sum_{i=1}^{n}\left\lfloor x_{i}\right\rfloor\right)-\left(\binom{n-1}{1} q+\sum_{1 \leq i_{1}<i_{2} \leq n}\left\lfloor x_{i_{1}}+x_{i_{2}}\right\rfloor\right) \\
& +\left(\binom{n-1}{2} q+\sum_{1 \leq i_{1}<i_{2}<i_{3} \leq n}\left\lfloor x_{i_{1}}+x_{i_{2}}+x_{i_{3}}\right\rfloor\right) \\
& -\cdots+(-1)^{n-1}\left(\binom{n-1}{n-1} q+\left\lfloor x_{1}+x_{2}+\cdots+x_{n}\right\rfloor\right) \\
= & g\left(x_{1}, x_{2}, \ldots, x_{n}\right)+q \sum_{0 \leq k \leq n-1}(-1)^{k}\binom{n-1}{k} \\
= & g\left(x_{1}, x_{2}, \ldots, x_{n}\right) .
\end{aligned}
$$

This proves (i). Next we prove (ii). By Proposition 3 and by (i), we obtain

$$
\begin{aligned}
f_{a_{1}, a_{2}, \ldots, a_{i}+q m, \ldots, a_{\ell} ; m}(k)= & (-1)^{\ell} g\left(\frac{a_{1}}{m}, \frac{a_{2}}{m}, \ldots, \frac{a_{i}}{m}+q, \ldots, \frac{a_{\ell}}{m}, \frac{k}{m}\right) \\
& +(-1)^{\ell-1} g\left(\frac{a_{1}}{m}, \frac{a_{2}}{m}, \ldots, \frac{a_{i}}{m}+q, \ldots, \frac{a_{\ell}}{m}\right) \\
= & (-1)^{\ell} g\left(\frac{a_{1}}{m}, \frac{a_{2}}{m}, \ldots, \frac{a_{\ell}}{m}, \frac{k}{m}\right)+(-1)^{\ell-1} g\left(\frac{a_{1}}{m}, \frac{a_{2}}{m}, \ldots, \frac{a_{\ell}}{m}\right) \\
= & f_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}(k) .
\end{aligned}
$$

Similarly, $f_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}(k+q m)=f_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}(k)$. This completes the proof.

Theorem 8. For each $\ell \geq 2, a_{1}, a_{2}, \ldots, a_{\ell}, k \in \mathbb{Z}$ and $m \geq 1$, we have

$$
-2^{\ell-2} \leq f_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}(k) \leq 2^{\ell-2}
$$

Moreover, $-2^{\ell-2}$ and $2^{\ell-2}$ are best possible in the sense that there are $a_{1}, a_{2}, \ldots, a_{\ell}, m, k$ which make the inequality becomes equality. More precisely the following statements hold.
(i) If ℓ is odd, m is even, and $a_{i}=\frac{m}{2}$ for every $i=1,2, \ldots, \ell$, then $f_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}(0)=-2^{\ell-2}$ and $f_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}\left(\frac{m}{2}\right)=2^{\ell-2}$.
(ii) If ℓ is even, m is even, and $a_{i}=\frac{m}{2}$ for every $i=1,2, \ldots, \ell$, then $f_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}(0)=2^{\ell-2}$ and $f_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}\left(\frac{m}{2}\right)=-2^{\ell-2}$.

Proof. By Lemma 7, we can assume that $a_{i} \in[0, m-1]$ for every $1 \leq i \leq \ell$. Therefore

$$
\begin{equation*}
\left\lfloor\frac{a_{i}}{m}\right\rfloor=0 \text { for every } i \in\{1,2, \ldots, \ell\} \tag{25}
\end{equation*}
$$

If $\ell=2$, then the result follows from (25) and (3), and we have

$$
\begin{equation*}
0 \leq\left\lfloor\frac{a_{1}+a_{2}+k}{m}\right\rfloor-\left\lfloor\frac{a_{1}+k}{m}\right\rfloor \leq 1, \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
-1 \leq-\left\lfloor\frac{a_{2}+k}{m}\right\rfloor+\left\lfloor\frac{k}{m}\right\rfloor \leq 0 \tag{27}
\end{equation*}
$$

Summing (26) and (27), we obtain $-1 \leq f_{a_{1}, a_{2} ; m}(k) \leq 1$. The result when $\ell \geq 3$ is based on a careful selection of pairs and the case $\ell=2$. For illustration purpose, we first give a proof for the case $\ell=3$ and $\ell=4$. Recall that

$$
\begin{aligned}
f_{a_{1}, a_{2}, a_{3} ; m}(k)= & \left\lfloor\frac{a_{1}+a_{2}+a_{3}+k}{m}\right\rfloor-\left\lfloor\frac{a_{1}+a_{2}+k}{m}\right\rfloor-\left\lfloor\frac{a_{1}+a_{3}+k}{m}\right\rfloor-\left\lfloor\frac{a_{2}+a_{3}+k}{m}\right\rfloor \\
& +\left\lfloor\frac{a_{1}+k}{m}\right\rfloor+\left\lfloor\frac{a_{2}+k}{m}\right\rfloor+\left\lfloor\frac{a_{3}+k}{m}\right\rfloor-\left\lfloor\frac{k}{m}\right\rfloor
\end{aligned}
$$

We obtain by (3) and (25) that

$$
\begin{gather*}
0 \leq\left\lfloor\frac{a_{1}+a_{2}+a_{3}+k}{m}\right\rfloor-\left\lfloor\frac{a_{1}+a_{2}+k}{m}\right\rfloor \leq 1 \tag{28}\\
-1 \leq-\left\lfloor\frac{a_{1}+a_{3}+k}{m}\right\rfloor+\left\lfloor\frac{a_{1}+k}{m}\right\rfloor \leq 0 \tag{29}\\
-1 \leq-\left\lfloor\frac{a_{2}+a_{3}+k}{m}\right\rfloor+\left\lfloor\frac{a_{2}+k}{m}\right\rfloor \leq 0 \tag{30}
\end{gather*}
$$

$$
\begin{equation*}
0 \leq\left\lfloor\frac{a_{3}+k}{m}\right\rfloor-\left\lfloor\frac{k}{m}\right\rfloor \leq 1 \tag{31}
\end{equation*}
$$

Summing (28), (29), (30), and (31), we see that the middle term is $f_{a_{1}, a_{2}, a_{3}, m}(k)$. Therefore $-2 \leq f_{a_{1}, a_{2}, a_{3} ; m}(k) \leq 2$. Next we consider

$$
\begin{aligned}
f_{a_{1}, a_{2}, a_{3}, a_{4} ; m}(k)= & \left\lfloor\frac{a_{1}+a_{2}+a_{3}+a_{4}+k}{m}\right\rfloor-\left\lfloor\frac{a_{1}+a_{2}+a_{3}+k}{m}\right\rfloor-\left\lfloor\frac{a_{1}+a_{2}+a_{4}+k}{m}\right\rfloor \\
& -\left\lfloor\frac{a_{1}+a_{3}+a_{4}+k}{m}\right\rfloor-\left\lfloor\frac{a_{2}+a_{3}+a_{4}+k}{m}\right\rfloor+\left\lfloor\frac{a_{1}+a_{2}+k}{m}\right\rfloor \\
& +\left\lfloor\frac{a_{1}+a_{3}+k}{m}\right\rfloor+\left\lfloor\frac{a_{1}+a_{4}+k}{m}\right\rfloor+\left\lfloor\frac{a_{2}+a_{3}+k}{m}\right\rfloor+\left\lfloor\frac{a_{2}+a_{4}+k}{m}\right\rfloor \\
& +\left\lfloor\frac{a_{3}+a_{4}+k}{m}\right\rfloor-\left\lfloor\frac{a_{1}+k}{m}\right\rfloor-\left\lfloor\frac{a_{2}+k}{m}\right\rfloor-\left\lfloor\frac{a_{3}+k}{m}\right\rfloor-\left\lfloor\frac{a_{4}+k}{m}\right\rfloor+\left\lfloor\frac{k}{m}\right\rfloor .
\end{aligned}
$$

Again, we obtain by (3) and (25) the following inequalities:

$$
\begin{gather*}
0 \leq\left\lfloor\frac{a_{1}+a_{2}+a_{3}+a_{4}+k}{m}\right\rfloor-\left\lfloor\frac{a_{1}+a_{2}+a_{3}+k}{m}\right\rfloor \leq 1 \tag{32}\\
-1 \leq-\left\lfloor\frac{a_{1}+a_{2}+a_{4}+k}{m}\right\rfloor+\left\lfloor\frac{a_{1}+a_{2}+k}{m}\right\rfloor \leq 0 \tag{33}\\
-1 \leq-\left\lfloor\frac{a_{1}+a_{3}+a_{4}+k}{m}\right\rfloor+\left\lfloor\frac{a_{1}+a_{3}+k}{m}\right\rfloor \leq 0 \tag{34}\\
-1 \leq-\left\lfloor\frac{a_{2}+a_{3}+a_{4}+k}{m}\right\rfloor+\left\lfloor\frac{a_{2}+a_{3}+k}{m}\right\rfloor \leq 0, \tag{35}\\
0 \leq\left\lfloor\frac{a_{1}+a_{4}+k}{m}\right\rfloor-\left\lfloor\frac{a_{1}+k}{m}\right\rfloor \leq 1 \tag{36}\\
0 \leq\left\lfloor\frac{a_{2}+a_{4}+k}{m}\right\rfloor-\left\lfloor\frac{a_{2}+k}{m}\right\rfloor \leq 1 \tag{37}\\
0 \leq\left\lfloor\frac{a_{3}+a_{4}+k}{m}\right\rfloor-\left\lfloor\frac{a_{3}+k}{m}\right\rfloor \leq 1 \tag{38}\\
 \tag{39}\\
\quad-1 \leq-\left\lfloor\frac{a_{4}+k}{m}\right\rfloor+\left\lfloor\frac{k}{m}\right\rfloor \leq 0
\end{gather*}
$$

Summing (32) to (39), we see that $-4 \leq f_{a_{1}, a_{2}, a_{3}, a_{4}, m}(k) \leq 4$.
Next we prove the general case $\ell \geq 5$. The expression of the form $\left\lfloor\frac{a_{i_{1}}+a_{i_{2}}+\cdots+a_{i_{r}}+k}{m}\right\rfloor$ will be called an r-bracket. So for each $1 \leq r \leq \ell$, there are $\binom{\ell}{r} r$-brackets appearing in the sum
defining $f_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}(k)$. We follow closely the method used in the proof of Theorem 4. So we first pair up the ℓ-bracket with an $(\ell-1)$-bracket as follows:

$$
\begin{equation*}
s_{1}=\left\lfloor\frac{a_{1}+a_{2}+\cdots+a_{\ell}+k}{m}\right\rfloor-\left\lfloor\frac{a_{1}+a_{2}+\cdots+a_{\ell-1}+k}{m}\right\rfloor, \tag{40}
\end{equation*}
$$

and we can apply (3) and (25) to obtain the bound for s_{1}. Next we pair up the remaining ($\ell-1$)-brackets with $(\ell-2)$-brackets as follows:

$$
\begin{equation*}
-\left\lfloor\frac{a_{i_{1}}+a_{i_{2}}+\cdots+a_{i_{\ell-1}}+k}{m}\right\rfloor+\left\lfloor\frac{a_{i_{1}}+a_{i_{2}}+\cdots+a_{i_{\ell-2}}+k}{m}\right\rfloor, \tag{41}
\end{equation*}
$$

and we sum (41) over all $1 \leq i_{1}<i_{2}<\ldots<i_{\ell-1} \leq \ell$ and call it s_{2}. Since a_{ℓ} does not appear in the second term on the right hand side of (40), the term $a_{i_{-1}}$ appearing in (41) is always a_{ℓ}. So in fact

$$
\begin{aligned}
s_{2}= & -\sum_{1 \leq i_{1}<i_{2}<\ldots<i_{\ell-2}<\ell}\left\lfloor\frac{a_{i_{1}}+a_{i_{2}}+\cdots+a_{i_{\ell-2}}+a_{\ell}+k}{m}\right\rfloor \\
& +\sum_{1 \leq i_{1}<i_{2}<\ldots<i_{\ell-2}<\ell}\left\lfloor\frac{a_{i_{1}}+a_{i_{2}}+\cdots+a_{i_{\ell-2}}+k}{m}\right\rfloor .
\end{aligned}
$$

We continue doing this process as follows. For each $1 \leq r \leq \ell$, let c_{r} be the sum of all $\left\lfloor\frac{a_{i_{1}}+a_{i_{2}}+\cdots+a_{i_{r}}+k}{m}\right\rfloor$ with $1 \leq i_{1}<i_{2}<\cdots<i_{r} \leq \ell, a_{r}$ the sum of all such terms with $i_{r}=\ell$, and b_{r} the sum of all such terms with $i_{r}<\ell$. Therefore $c_{r}=a_{r}+b_{r}$, the number of summands of c_{r} is $\binom{\ell}{r}$, the number of summands of a_{r} is $\binom{\ell-1}{r-1}$, and the number of summands of b_{r} is $\binom{\ell-1}{r}$. As usual, the empty sum is defined to be zero, so $b_{\ell}=0$. We have $s_{1}=a_{\ell}-b_{\ell-1}$ and $s_{2}=-a_{\ell-1}+b_{\ell-2}$. In general, for each $1 \leq r \leq \ell-1$, we let

$$
s_{r}=(-1)^{r+1} a_{\ell-r+1}+(-1)^{r} b_{\ell-r} \text { and } s_{\ell}=(-1)^{\ell+1} a_{1}+(-1)^{\ell}\left\lfloor\frac{k}{m}\right\rfloor
$$

Then

$$
0 \leq s_{r} \leq\binom{\ell-1}{\ell-r} \text { if } r \text { is odd, and }-\binom{\ell-1}{\ell-r} \leq s_{r} \leq 0 \text { if } r \text { is even, }
$$

$$
\begin{aligned}
\sum_{1 \leq r \leq \ell} s_{r} & =a_{\ell}+\sum_{2 \leq r \leq \ell-1}(-1)^{r+1} a_{\ell-r+1}+\sum_{1 \leq r \leq \ell-2}(-1)^{r} b_{\ell-r}+(-1)^{\ell-1} b_{1}+s_{\ell} \\
& =a_{\ell}+\sum_{1 \leq r \leq \ell-2}(-1)^{r}\left(a_{\ell-r}+b_{\ell-r}\right)+(-1)^{\ell-1} b_{1}+(-1)^{\ell+1} a_{1}+\left\lfloor\frac{k}{m}\right\rfloor \\
& =c_{\ell}+\sum_{1 \leq r \leq \ell-2}(-1)^{r} c_{\ell-r}+(-1)^{\ell-1} c_{1}+\left\lfloor\frac{k}{m}\right\rfloor \\
& =\sum_{0 \leq r \leq \ell-1}(-1)^{r} c_{\ell-r}+\left\lfloor\frac{k}{m}\right\rfloor \\
& =f_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}(k) .
\end{aligned}
$$

Therefore

$$
-\sum_{\substack{1 \leq r \leq \ell \\ r \text { is even }}}\binom{\ell-1}{\ell-r} \leq f_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}(k) \leq \sum_{\substack{1 \leq r \leq \ell \\ r \text { is odd }}}\binom{\ell-1}{\ell-r}
$$

Replacing r by $r+1$, we see that

$$
\sum_{\substack{1 \leq r \leq \ell \\ r \text { is odd }}}\binom{\ell-1}{\ell-r}=\sum_{\substack{0 \leq r \leq \ell-1 \\ r \text { is even }}}\binom{\ell-1}{\ell-1-r}=2^{\ell-2} .
$$

Similarly,

$$
-\sum_{\substack{1 \leq r \leq \ell \\ r \text { is even }}}\binom{\ell-1}{\ell-r}=-2^{\ell-2}
$$

Therefore

$$
\begin{equation*}
-2^{\ell-2} \leq f_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}(k) \leq 2^{\ell-2} \tag{42}
\end{equation*}
$$

as required. If ℓ is odd, m is even, and $a_{i}=\frac{m}{2}$ for every $1 \leq i \leq \ell$, we obtain by Proposition 3 and Theorem 4 that $f_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}(0)=g\left(\frac{1}{2}, \frac{1}{2}, \ldots, \frac{1}{2}\right)=-2^{\ell-2}$ and $f_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}\left(\frac{m}{2}\right)=$ $(-1)^{\ell} g\left(\frac{1}{2}, \frac{1}{2}, \ldots, \frac{1}{2}\right)+(-1)^{\ell-1} g\left(\frac{1}{2}, \frac{1}{2}, \ldots, \frac{1}{2}\right)=2^{\ell-2}$. If ℓ is even, m is even, and $a_{i}=\frac{m}{2}$ for every $1 \leq i \leq \ell$, we obtain similarly that $f_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}(0)=2^{\ell-2}$ and $f_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}\left(\frac{m}{2}\right)=-2^{\ell-2}$. So $2^{\ell-2}$ and $-2^{\ell-2}$ in (42) cannot be improved. This completes The proof.

We obtain the extreme values of $S_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}$ for some cases $\ell \geq 4$ as well. More precisely, we have the following result.

Theorem 9. For each $\ell \geq 2, a_{1}, a_{2}, \ldots, a_{\ell} \in \mathbb{Z}, m \in \mathbb{N}$, and $K \in \mathbb{N} \cup\{0\}$, we have

$$
\begin{equation*}
-2^{\ell-2}\left\lfloor\frac{m}{2}\right\rfloor \leq S_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}(K) \leq 2^{\ell-2}\left\lfloor\frac{m}{2}\right\rfloor . \tag{43}
\end{equation*}
$$

Moreover, If ℓ is odd, then the lower bound $-2^{\ell-2}\left\lfloor\frac{m}{2}\right\rfloor$ is sharp and if ℓ is even, then the upper bound $2^{\ell-2}\left\lfloor\frac{m}{2}\right\rfloor$ is sharp in the sense that there are $a_{1}, a_{2}, \ldots, a_{\ell}, m, k$ which make the inequality becomes equality. More precisely, the following statements hold.
(i) If ℓ is odd, m is even, and $a_{i}=\frac{m}{2}$ for every $i=1,2, \ldots, \ell$, then $S_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}(K)=$ $-2^{\ell-2\left\lfloor\frac{m}{2}\right\rfloor .}$
(ii) If ℓ is even, m is even, and $a_{i}=\frac{m}{2}$ for every $i=1,2, \ldots, \ell$, then $S_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}(K)=$ $2^{\ell-2}\left\lfloor\frac{m}{2}\right\rfloor$.
Proof. If $\ell=2$, then the result is already proved by Jacobsthal [4]. See also another proof by Tverberg [6]. We recall the result when $\ell=2$ for easy reference as follows:

$$
\begin{equation*}
0 \leq S_{a, b ; m}(K) \leq\left\lfloor\frac{m}{2}\right\rfloor \tag{44}
\end{equation*}
$$

As before the result when $\ell \geq 3$ is based on the case $\ell=2$ and a careful selection of pairs, and we first illustrate the idea by giving the proof for the case $\ell=3$ and $\ell=4$. Recall that

$$
\begin{aligned}
f_{a_{1}, a_{2}, a_{3} ; m}(k)= & \left\lfloor\frac{a_{1}+a_{2}+a_{3}+k}{m}\right\rfloor-\left\lfloor\frac{a_{1}+a_{2}+k}{m}\right\rfloor-\left\lfloor\frac{a_{1}+a_{3}+k}{m}\right\rfloor-\left\lfloor\frac{a_{2}+a_{3}+k}{m}\right\rfloor \\
& +\left\lfloor\frac{a_{1}+k}{m}\right\rfloor+\left\lfloor\frac{a_{2}+k}{m}\right\rfloor+\left\lfloor\frac{a_{3}+k}{m}\right\rfloor-\left\lfloor\frac{k}{m}\right\rfloor .
\end{aligned}
$$

We have

$$
\begin{gather*}
f_{a_{1}+a_{2}, a_{3} ; m}(k)=\left\lfloor\frac{a_{1}+a_{2}+a_{3}+k}{m}\right\rfloor-\left\lfloor\frac{a_{1}+a_{2}+k}{m}\right\rfloor-\left\lfloor\frac{a_{3}+k}{m}\right\rfloor+\left\lfloor\frac{k}{m}\right\rfloor, \tag{45}\\
-f_{a_{1}, a_{3} ; m}(k)=-\left\lfloor\frac{a_{1}+a_{3}+k}{m}\right\rfloor+\left\lfloor\frac{a_{1}+k}{m}\right\rfloor+\left\lfloor\frac{a_{3}+k}{m}\right\rfloor-\left\lfloor\frac{k}{m}\right\rfloor \tag{46}\\
-f_{a_{2}, a_{3} ; m}(k)=-\left\lfloor\frac{a_{2}+a_{3}+k}{m}\right\rfloor+\left\lfloor\frac{a_{2}+k}{m}\right\rfloor+\left\lfloor\frac{a_{3}+k}{m}\right\rfloor-\left\lfloor\frac{k}{m}\right\rfloor . \tag{47}
\end{gather*}
$$

Summing (45), (46), and (47), we see that

$$
\begin{equation*}
f_{a_{1}, a_{2}, a_{3} ; m}(k)=f_{a_{1}+a_{2}, a_{3} ; m}(k)-f_{a_{1}, a_{3} ; m}(k)-f_{a_{2}, a_{3} ; m}(k) . \tag{48}
\end{equation*}
$$

By the definition of $S_{a_{1}, a_{2}, a_{3} ; m}(K)$, (48), and (44), we obtain

$$
\begin{aligned}
S_{a_{1}, a_{2}, a_{3} ; m}(K) & =\sum_{k=0}^{K} f_{a_{1}, a_{2}, a_{3} ; m}(k) \\
& =\sum_{k=0}^{K} f_{a_{1}+a_{2}, a_{3} ; m}(k)-\sum_{k=0}^{K} f_{a_{1}, a_{3} ; m}(k)-\sum_{k=0}^{K} f_{a_{2}, a_{3} ; m}(k) \\
& =S_{a_{1}+a_{2}, a_{3} ; m}(K)-S_{a_{1}, a_{3} ; m}(K)-S_{a_{2}, a_{3} ; m}(K) \\
& \geq 0-\left\lfloor\frac{m}{2}\right\rfloor-\left\lfloor\frac{m}{2}\right\rfloor=-2\left\lfloor\frac{m}{2}\right\rfloor .
\end{aligned}
$$

Similarly,

$$
S_{a_{1}, a_{2}, a_{3} ; m}(K) \leq\left\lfloor\frac{m}{2}\right\rfloor-0-0=\left\lfloor\frac{m}{2}\right\rfloor \leq 2\left\lfloor\frac{m}{2}\right\rfloor
$$

Similarly, we have the following equalities:

$$
\begin{gather*}
f_{a_{1}+a_{2}+a_{3}, a_{4} ; m}(k)=\left\lfloor\frac{a_{1}+a_{2}+a_{3}+a_{4}+k}{m}\right\rfloor-\left\lfloor\frac{a_{1}+a_{2}+a_{3}+k}{m}\right\rfloor-\left\lfloor\frac{a_{4}+k}{m}\right\rfloor+\left\lfloor\frac{k}{m}\right\rfloor, \tag{49}\\
-f_{a_{1}+a_{2}, a_{4} ; m}(k)=-\left\lfloor\frac{a_{1}+a_{2}+a_{4}+k}{m}\right\rfloor+\left\lfloor\frac{a_{1}+a_{2}+k}{m}\right\rfloor+\left\lfloor\frac{a_{4}+k}{m}\right\rfloor-\left\lfloor\frac{k}{m}\right\rfloor, \tag{50}\\
-f_{a_{1}+a_{3}, a_{4} ; m}(k)=-\left\lfloor\frac{a_{1}+a_{3}+a_{4}+k}{m}\right\rfloor+\left\lfloor\frac{a_{1}+a_{3}+k}{m}\right\rfloor+\left\lfloor\frac{a_{4}+k}{m}\right\rfloor-\left\lfloor\frac{k}{m}\right\rfloor, \tag{51}\\
-f_{a_{2}+a_{3}, a_{4} ; m}(k)=-\left\lfloor\frac{a_{2}+a_{3}+a_{4}+k}{m}\right\rfloor+\left\lfloor\frac{a_{2}+a_{3}+k}{m}\right\rfloor+\left\lfloor\frac{a_{4}+k}{m}\right\rfloor-\left\lfloor\frac{k}{m}\right\rfloor, \tag{52}\\
f_{a_{1}, a_{4} ; m}(k)=\left\lfloor\frac{a_{1}+a_{4}+k}{m}\right\rfloor-\left\lfloor\frac{a_{1}+k}{m}\right\rfloor-\left\lfloor\frac{a_{4}+k}{m}\right\rfloor+\left\lfloor\frac{k}{m}\right\rfloor, \tag{53}\\
f_{a_{2}, a_{4} ; m}(k)=\left\lfloor\frac{a_{2}+a_{4}+k}{m}\right\rfloor-\left\lfloor\frac{a_{2}+k}{m}\right\rfloor-\left\lfloor\frac{a_{4}+k}{m}\right\rfloor+\left\lfloor\frac{k}{m}\right\rfloor, \tag{54}\\
f_{a_{3}, a_{4} ; m}(k)=\left\lfloor\frac{a_{3}+a_{4}+k}{m}\right\rfloor-\left\lfloor\frac{a_{3}+k}{m}\right\rfloor-\left\lfloor\frac{a_{4}+k}{m}\right\rfloor+\left\lfloor\frac{k}{m}\right\rfloor \tag{55}
\end{gather*}
$$

Summing (49) to (55) and recalling the definition of $f_{a_{1}, a_{2}, a_{3}, a_{4} ; m}(k)$, we see that

$$
\begin{align*}
f_{a_{1}, a_{2}, a_{3}, a_{4} ; m}(k)= & f_{a_{1}+a_{2}+a_{3}, a_{4} ; m}(k)-f_{a_{1}+a_{2}, a_{4} ; m}(k)-f_{a_{1}+a_{3}, a_{4} ; m}(k)-f_{a_{2}+a_{3}, a_{4} ; m}(k) \\
& +f_{a_{1}, a_{4} ; m}(k)+f_{a_{2}, a_{4} ; m}(k)+f_{a_{3}, a_{4} ; m}(k) . \tag{56}
\end{align*}
$$

Then we obtain from (56) and (44) that

$$
\begin{aligned}
& S_{a_{1}, a_{2}, a_{3}, a_{4} ; m}(K)= S_{a_{1}+a_{2}+a_{3}, a_{4} ; m}(K)-S_{a_{1}+a_{2}, a_{4} ; m}(K)-S_{a_{1}+a_{3}, a_{4} ; m}(K)-S_{a_{2}+a_{3}, a_{4} ; m}(K) \\
&+S_{a_{1}, a_{4} ; m}(K)+S_{a_{2}, a_{4} ; m}(K)+S_{a_{3}, a_{4} ; m}(K) \\
& \leq\left\lfloor\left\lfloor\frac{m}{2}\right\rfloor-0-0-0+\left\lfloor\frac{m}{2}\right\rfloor+\left\lfloor\frac{m}{2}\right\rfloor+\left\lfloor\frac{m}{2}\right\rfloor=4\left\lfloor\frac{m}{2}\right\rfloor\right.
\end{aligned}
$$

Similarly, $S_{a_{1}, a_{2}, a_{3}, a_{4} ; m}(K) \geq-4\left\lfloor\frac{m}{2}\right\rfloor$. Next we prove the general case $\ell \geq 5$. The expression of the form $\left\lfloor\frac{a_{i_{1}}+a_{i_{2}}+\cdots+a_{i_{r}}+k}{m}\right\rfloor$ will be called an r-bracket. So for each $0 \leq r \leq \ell$, there are $\binom{\ell}{r} r$-brackets appearing in the sum defining $f_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}(k)$. We first pair up the ℓ-bracket with an $(\ell-1)$-bracket, a 1 -bracket and a 0 -bracket as follows:

$$
\begin{equation*}
s_{1}(k)=\left\lfloor\frac{a_{1}+a_{2}+\cdots+a_{\ell}+k}{m}\right\rfloor-\left\lfloor\frac{a_{1}+a_{2}+\cdots+a_{\ell-1}+k}{m}\right\rfloor-\left\lfloor\frac{a_{\ell}+k}{m}\right\rfloor+\left\lfloor\frac{k}{m}\right\rfloor . \tag{57}
\end{equation*}
$$

So $s_{1}(k)$ is in fact $f_{a_{1}+a_{2}+\cdots+a_{\ell-1}, a_{\ell} ; m}(k)$ and we can apply (44) to obtain the inequality

$$
0 \leq S_{a_{1}+a_{2}+\cdots+a_{\ell-1}, a_{\ell} ; m}(K)=\sum_{k=0}^{K} s_{1}(k) \leq\left\lfloor\frac{m}{2}\right\rfloor
$$

Next we pair up the remaining $(\ell-1)$-brackets with $(\ell-2)$-brackets, 1 -brackets and 0 -brackets as follows:

$$
\begin{equation*}
-\left\lfloor\frac{a_{i_{1}}+a_{i_{2}}+\cdots+a_{i_{\ell-1}}+k}{m}\right\rfloor+\left\lfloor\frac{a_{i_{1}}+a_{i_{2}}+\cdots+a_{i_{\ell-2}}+k}{m}\right\rfloor+\left\lfloor\frac{a_{i_{\ell-1}}+k}{m}\right\rfloor-\left\lfloor\frac{k}{m}\right\rfloor, \tag{58}
\end{equation*}
$$

and we sum (58) over all $1 \leq i_{1}<i_{2}<\cdots<i_{\ell-1} \leq \ell$ and call it $s_{2}(k)$. Since a_{ℓ} does not appear in the second term on the right hand side of (57), the term $a_{i_{\ell-1}}$ appearing in (58) is always a_{ℓ}. So in fact (58) is $-f_{a_{i_{1}}+a_{i_{2}}+\cdots+a_{i_{\ell-2}}, a_{\ell} ; m}(k)$ and

$$
s_{2}(k)=-\sum_{1 \leq i_{1}<i_{2}<\ldots<i_{\ell-2}<\ell} f_{a_{i_{1}}+a_{i_{2}}+\cdots+a_{i_{\ell-2}}, a_{\ell} ; m}(k)
$$

Furthermore,

$$
\sum_{k=0}^{K} s_{2}(k)=-\sum_{1 \leq i_{1}<i_{2}<\ldots<i_{\ell-2}<\ell} S_{a_{i_{1}}+a_{i_{2}}+\cdots+a_{i_{\ell-2}}, a_{\ell} ; m}(K) \leq 0
$$

where the last inequality is obtained from (44). We continue doing this process and follow closely the method used in the proof of Theorems 4 and 8. The well-known identities previously recalled will be applied without reference. For each $1 \leq r \leq \ell$, let $c_{r}(k)$ be the sum of all $\left\lfloor\frac{a_{i_{1}}+a_{i_{2}}+\cdots+a_{i_{r}}+k}{m}\right\rfloor$ with $1 \leq i_{1}<i_{2}<\cdots<i_{r} \leq \ell, a_{r}(k)$ the sum of all such terms with $i_{r}=\ell$, and $b_{r}(k)$ the sum of all such terms with $i_{r}<\ell$. Therefore $c_{r}(k)=a_{r}(k)+b_{r}(k)$, the number of r-brackets appearing in the sum defining $c_{r}(k)$ is $\binom{\ell}{r}$, the number of r-brackets appearing in the sum defining $a_{r}(k)$ is $\binom{\ell-1}{r-1}$, and the number of r-brackets appearing in the sum defining $b_{r}(k)$ is $\binom{\ell-1}{r}$. As usual, the empty sum is defined to be zero, so $b_{\ell}(k)=0$. We have $s_{1}(k)=a_{\ell}(k)-b_{\ell-1}(k)-a_{1}(k)+\left\lfloor\frac{k}{m}\right\rfloor$ and $s_{2}(k)=-a_{\ell-1}(k)+b_{\ell-2}(k)+\binom{\ell-1}{\ell-2} a_{1}(k)-\binom{\ell-1}{\ell-2}\left\lfloor\frac{k}{m}\right\rfloor$. In general, for each $1 \leq r \leq \ell-1$, we let

$$
\begin{aligned}
s_{r}(k) & =(-1)^{r+1} a_{\ell-r+1}(k)+(-1)^{r} b_{\ell-r}(k)+(-1)^{r}\binom{\ell-1}{\ell-r} a_{1}(k)+(-1)^{r+1}\binom{\ell-1}{\ell-r}\left\lfloor\frac{k}{m}\right\rfloor \\
& =(-1)^{r+1} \sum_{1 \leq i_{1}<i_{2}<\ldots<i_{\ell-r}<\ell} f_{a_{i_{1}}+a_{i_{2}}+\cdots+a_{i_{\ell-r}, a_{\ell} ; m}(k) .}
\end{aligned}
$$

Then

$$
\sum_{k=0}^{K} s_{r}(k)=(-1)^{r+1} \sum_{1 \leq i_{1}<i_{2}<\ldots<i_{\ell-r}<\ell} S_{a_{i_{1}}+a_{i_{2}}+\cdots+a_{i_{\ell-r},}, a_{\ell} ; m}(K) .
$$

So by (44), we see that
$0 \leq \sum_{k=0}^{K} s_{r}(k) \leq\binom{\ell-1}{\ell-r}\left\lfloor\frac{m}{2}\right\rfloor$ if r is odd, and $-\binom{\ell-1}{\ell-r}\left\lfloor\frac{m}{2}\right\rfloor \leq \sum_{k=0}^{K} s_{r}(k) \leq 0$ if r is even.
Similar to the proof of Theorems 4 and 8, we obtain

$$
\begin{aligned}
\sum_{1 \leq r \leq \ell-1} s_{r}(k)= & a_{\ell}+\sum_{2 \leq r \leq \ell-1}(-1)^{r+1} a_{\ell-r+1}+\sum_{1 \leq r \leq \ell-2}(-1)^{r} b_{\ell-r}+(-1)^{\ell-1} b_{1} \\
& +(-1)^{\ell+1} a_{1}+(-1)^{\ell}\left\lfloor\frac{k}{m}\right\rfloor \\
= & a_{\ell}+\sum_{1 \leq r \leq \ell-2}(-1)^{r}\left(a_{\ell-r}+b_{\ell-r}\right)+(-1)^{\ell-1} b_{1}+(-1)^{\ell+1} a_{1}+(-1)^{\ell}\left\lfloor\frac{k}{m}\right\rfloor \\
= & c_{\ell}+\sum_{1 \leq r \leq \ell-2}(-1)^{r} c_{\ell-r}+(-1)^{\ell-1} c_{1}+(-1)^{\ell}\left\lfloor\frac{k}{m}\right\rfloor \\
= & \sum_{0 \leq r \leq \ell-1}(-1)^{r} c_{\ell-r}+(-1)^{\ell}\left\lfloor\frac{k}{m}\right\rfloor \\
= & f_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}(k) .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
-\sum_{\substack{1 \leq r \leq \ell-1 \\ r \text { is even }}}\binom{\ell-1}{\ell-r}\left\lfloor\frac{m}{2}\right\rfloor \leq \sum_{k=0}^{K} f_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}(k) \leq \sum_{\substack{1 \leq r \leq \ell-1 \\ r \text { is odd }}}\binom{\ell-1}{\ell-r}\left\lfloor\frac{m}{2}\right\rfloor \tag{59}
\end{equation*}
$$

The middle term in (59) is $S_{a_{1}, a_{2}, \ldots, a_{\ell} ; m}(K)$. The left and right most terms in (59) are, respectively, equal to $-2^{\ell-2}\left\lfloor\frac{m}{2}\right\rfloor$ and $2^{\ell-2}\left\lfloor\frac{m}{2}\right\rfloor$ which can be evaluated by the well-known identity previously recalled. This proves the first part of the theorem. Next we show that one of the upper bound or lower bound is sharp. Let $C=\left\{a_{1}, a_{2}, \ldots, a_{\ell}\right\}$. Suppose ℓ is odd, m is even, and $a_{i}=\frac{m}{2}$ for every $1 \leq i \leq \ell$. Then we obtain by Proposition 3 and Theorem 4 that $f_{C ; m}(0)=g\left(\frac{1}{2}, \frac{1}{2}, \ldots, \frac{1}{2}\right)=-2^{\ell-2}$. Let $0<k<\frac{m}{2}$. By the definition of $f_{C ; m}(k)$, we see that

$$
\begin{align*}
f_{C ; m}(k) & =\sum_{T \subseteq\lfloor 1, \ell]}(-1)^{\ell-|T|}\left\lfloor\frac{k}{m}+\frac{|T|}{2}\right\rfloor \\
& =\sum_{r=0}^{\ell}(-1)^{\ell-r}\binom{\ell}{r}\left\lfloor\frac{k}{m}+\frac{r}{2}\right\rfloor \tag{60}
\end{align*}
$$

Since $0<k<\frac{m}{2}$, we have $\frac{r}{2}<\frac{k}{m}+\frac{r}{2}<\frac{r+1}{2}$. So if r is even, then $\left\lfloor\frac{k}{m}+\frac{r}{2}\right\rfloor=\frac{r}{2}=\left\lfloor\frac{r}{2}\right\rfloor$ and if r is odd, then $\left\lfloor\frac{k}{m}+\frac{r}{2}\right\rfloor=\frac{r-1}{2}=\left\lfloor\frac{r}{2}\right\rfloor$. In any case, $\left\lfloor\frac{k}{m}+\frac{r}{2}\right\rfloor=\frac{r}{2}=\left\lfloor\frac{0}{m}+\frac{r}{2}\right\rfloor$. This implies
that $f_{C ; m}(k)=f_{C ; m}(0)$ for every $k=0,1,2, \ldots, \frac{m}{2}-1$. Then

$$
S_{C ; m}\left(\frac{m}{2}-1\right)=\sum_{k=0}^{\frac{m}{2}-1} f_{C ; m}(k)=\frac{m}{2} f_{C ; m}(0)=-2^{\ell-2}\left\lfloor\frac{m}{2}\right\rfloor
$$

So $-2^{\ell-2}\left\lfloor\frac{m}{2}\right\rfloor$ in (43) cannot be improved when ℓ is odd. Next suppose ℓ is even, m is even, and $a_{i}=\frac{m}{2}$ for every $1 \leq i \leq \ell$. Then we obtain similarly that $f_{C ; m}(k)=f_{C ; m}(0)=2^{\ell-2}$ for every $k=0,1,2, \ldots, \frac{m}{2}-1$. Then $S_{C ; m}\left(\frac{m}{2}-1\right)=2^{\ell-2}\left\lfloor\frac{m}{2}\right\rfloor$. So $2^{\ell-2}\left\lfloor\frac{m}{2}\right\rfloor$ in (43) cannot be improved when ℓ is even. This completes the proof.

3 Acknowledgments

Kritkhajohn Onphaeng wishes to thank DPST (Development and Promotion of Science and Technology Talents) for giving him a scholarship. Prapanpong Pongsriiam receives financial support jointly from The Thailand Research Fund and Faculty of Science, Silpakorn University, grant number RSA5980040. Correspondence should be addressed to Prapanpong Pongsriiam: prapanpong@gmail.com.

References

[1] L. Carlitz, An arithmetic sum connected with the greatest integer function, Norske Vid. Selsk. Forh. Trondheim 32 (1959), 24-30.
[2] L. Carlitz, Some arithmetic sums connected with the greatest integer function, Math Scand. 8 (1960), 59-64.
[3] R. C. Grimson, The evaluation of a sum of Jacobsthal, Norske Vid. Selsk. Skr. Trondheim (1974), No. 4.
[4] E. Jacobsthal, Über eine zahlentheoretische Summe, Norske Vid. Selsk. Forh. Trondheim 30 (1957), 35-41.
[5] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, https://oeis.org.
[6] H. Tverberg, On some number-theoretic sums introduced by Jacobsthal, Acta Arith. 155 (2012), 349-351.

2010 Mathematics Subject Classification: Primary 11A25; Secondary 11B37.
Keywords: Jacobsthal sum, Jacobsthal number, Jacobsthal-Lucas number, floor function, sum.
(Concerned with sequences $\underline{\text { A001045 }}$ and A014551.)

Received September 28 2016; revised version received January 4 2017. Published in Journal of Integer Sequences, January 142017.

Return to Journal of Integer Sequences home page.

[^0]: ${ }^{1}$ Prapanpong Pongsriiam receives financial support jointly from Faculty of Science Silpakorn University, and The Thailand Research Fund, grant number RSA5980040. Correspondence should be addressed to Prapanpong Pongsriiam: prapanpong@gmail.com.

