

Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.6

Jacobsthal and Jacobsthal-Lucas Numbers and Sums Introduced by Jacobsthal and Tverberg

Kritkhajohn Onphaeng and Prapanpong Pongsriiam¹ Department of Mathematics Faculty of Science Silpakorn University Nakhon Pathom 73000 Thailand dome35790gmail.com prapanpong@gmail.com

Abstract

We study the sums introduced by Jacobsthal and Tverberg and show that the extreme values of the sums are connected with Jacobsthal and Jacobsthal-Lucas numbers.

1 Introduction

Let $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$. In 1957, Jacobsthal [4] introduced the sums of the form

$$S_{a,b;m}(K) = \sum_{k=0}^{K} f_{a,b;m}(k),$$

where

$$f_{a,b;m}(k) = \left\lfloor \frac{a+b+k}{m} \right\rfloor - \left\lfloor \frac{a+k}{m} \right\rfloor - \left\lfloor \frac{b+k}{m} \right\rfloor + \left\lfloor \frac{k}{m} \right\rfloor.$$
(1)

¹Prapanpong Pongsriiam receives financial support jointly from Faculty of Science Silpakorn University, and The Thailand Research Fund, grant number RSA5980040. Correspondence should be addressed to Prapanpong Pongsriiam: prapanpong@gmail.com.

In the above equation and throughout this article, unless stated otherwise, k is an integer and K is a nonnegative integer. So we can consider $f_{a,b;m}$ and $S_{a,b;m}$ as functions of k and K defined on Z and on $\mathbb{N} \cup \{0\}$, respectively.

These sums are also studied by Carlitz [1, 2], Grimson [3] and recently by Tverberg [6]. In addition, Tverberg [6] extends the definition of $f_{a,b;m}(k)$ and $S_{a,b;m}(K)$ to the following form.

Definition 1. Let m and ℓ be positive integers and let C be a multiset of ℓ integers a_1, a_2, \ldots, a_ℓ , i.e., $a_i = a_j$ is allowed for some $i \neq j$. Define $f_{C;m} : \mathbb{Z} \to \mathbb{Z}$ and $S_{C;m} : \mathbb{N} \cup \{0\} \to \mathbb{Z}$ by

$$f_{C;m}(k) = \sum_{T \subseteq [1,\ell]} (-1)^{\ell - |T|} \left\lfloor \frac{k + \sum_{i \in T} a_i}{m} \right\rfloor,$$
$$S_{C;m}(K) = \sum_{k=0}^{K} f_{C;m}(k).$$

We sometimes write $f_{a_1,a_2,\ldots,a_\ell;m}(k)$ and $S_{a_1,a_2,\ldots,a_\ell;m}(K)$ instead of $f_{C;m}(k)$ and $S_{C;m}(K)$, respectively. The set $[1,\ell]$ appearing in the sum defining f is $\{1,2,3,\ldots,\ell\}$ and if $T = \emptyset$, then $\sum_{i\in T} a_i$ is defined to be zero.

For example, if $C = \{a, b\}$, then $f_{C;m}(k)$ given in Definition 1 is the same as $f_{a,b;m}(k)$ given in (1), and if $C = \{a_1, a_2, a_3\}$, then $f_{C;m}(k)$ is

$$f_{a_1,a_2,a_3;m}(k) = \left\lfloor \frac{a_1 + a_2 + a_3 + k}{m} \right\rfloor - \left\lfloor \frac{a_1 + a_2 + k}{m} \right\rfloor - \left\lfloor \frac{a_1 + a_3 + k}{m} \right\rfloor - \left\lfloor \frac{a_2 + a_3 + k}{m} \right\rfloor + \left\lfloor \frac{a_1 + k}{m} \right\rfloor + \left\lfloor \frac{a_2 + k}{m} \right\rfloor + \left\lfloor \frac{a_3 + k}{m} \right\rfloor - \left\lfloor \frac{k}{m} \right\rfloor.$$

Jacobsthal [4] shows that for any $K \in \mathbb{N} \cup \{0\}$, we have

$$0 \le S_{a,b;m}(K) \le \left\lfloor \frac{m}{2} \right\rfloor,\tag{2}$$

which is a sharp inequality, that is, the lower bound 0 is actually the minimum value and the upper bound $\lfloor \frac{m}{2} \rfloor$ is the maximum value of $S_{a,b;m}(K)$. Tverberg [6] proves (2) in a different way and he also gives the extreme values of $S_{a_1,a_2,a_3;m}(K)$ without proof. Nevertheless, the extreme values of $f_{a_1,a_2,\dots,a_\ell;m}(k)$ (for $\ell \geq 2$) and $S_{a_1,a_2,\dots,a_\ell;m}(K)$ (for $\ell \geq 4$) have not been calculated.

In this article, we calculate the extreme values of $f_{a_1,a_2,...,a_\ell;m}(k)$ for all $\ell \geq 2$ (see Theorem 8). We also introduce the function g in Definition 2, give its connection with $f_{a_1,a_2,...,a_\ell;m}(k)$, and obtain its extreme values (see Proposition 3 and Theorem 4). Furthermore, we obtain the minimum value of $S_{a_1,a_2,...,a_\ell;m}(K)$ when ℓ is odd and the maximum value of $S_{a_1,a_2,...,a_\ell;m}(K)$ when ℓ is even (see Theorem 9).

The reader will see that the extreme values of the functions g and $f_{a_1,a_2,...,a_\ell;m}(k)$ are connected with Jacobsthal numbers J_n and Jacobsthal-Lucas numbers j_n defined, respectively, by the recurrence relations

$$J_0 = 0$$
, $J_1 = 1$, $J_n = J_{n-1} + 2J_{n-2}$ for $n \ge 2$,

and

$$j_0 = 2$$
, $j_1 = 1$, $j_n = j_{n-1} + 2j_{n-2}$ for $n \ge 2$.

The sequences $(J_n)_{n\geq 0}$ and $(j_n)_{n\geq 0}$ are, respectively, <u>A001045</u> and <u>A014551</u> in the OEIS [5]. The function g is defined as follows:

Definition 2. Let $g : \mathbb{R}^n \to \mathbb{Z}$ be given by

$$g(x_1, x_2, x_3, \dots, x_n) = \sum_{1 \le i \le n} \lfloor x_i \rfloor - \sum_{1 \le i_1 < i_2 \le n} \lfloor x_{i_1} + x_{i_2} \rfloor + \sum_{1 \le i_1 < i_2 < i_3 \le n} \lfloor x_{i_1} + x_{i_2} + x_{i_3} \rfloor - \dots + (-1)^{n-1} \lfloor x_1 + x_2 + x_3 + \dots + x_n \rfloor.$$

In other words,

$$g(x_1, x_2, x_3, \dots, x_n) = \sum_{\emptyset \neq T \subseteq [1,n]} (-1)^{|T|-1} \left[\sum_{i \in T} x_i \right].$$

2 Main results

We begin this section by giving a relation between the functions f and g. Then we give the extreme values of g and f and their connection with Jacobsthal and Jacobsthal-Lucas numbers.

Proposition 3. For each $\ell \geq 2$, we have

(i) $f_{a_1,a_2,\dots,a_\ell;m}(0) = (-1)^{\ell-1}g\left(\frac{a_1}{m}, \frac{a_2}{m}, \cdots, \frac{a_\ell}{m}\right),$

(ii) $f_{a_1,a_2,\ldots,a_\ell;m}(k) = (-1)^\ell g\left(\frac{a_1}{m},\frac{a_2}{m},\cdots,\frac{a_\ell}{m},\frac{k}{m}\right) + (-1)^{\ell-1} g\left(\frac{a_1}{m},\frac{a_2}{m},\cdots,\frac{a_\ell}{m}\right).$

Proof. This follows easily from the definitions of f and g but we give a proof for completeness. We have

$$f_{a_{1},a_{2},...,a_{\ell};m}(0) = \sum_{T \subseteq [1,\ell]} (-1)^{\ell-|T|} \left[\sum_{i \in T} \left(\frac{a_{i}}{m}\right) \right]$$
$$= \sum_{\emptyset \neq T \subseteq [1,\ell]} (-1)^{\ell-|T|} \left[\sum_{i \in T} \left(\frac{a_{i}}{m}\right) \right]$$
$$= (-1)^{\ell-1} \sum_{\emptyset \neq T \subseteq [1,\ell]} (-1)^{1-|T|} \left[\sum_{i \in T} \left(\frac{a_{i}}{m}\right) \right]$$
$$= (-1)^{\ell-1} g\left(\frac{a_{1}}{m}, \frac{a_{2}}{m}, \dots, \frac{a_{\ell}}{m}\right).$$

Next let $a_{\ell+1} = k$. Then we obtain

$$(-1)^{\ell}g\left(\frac{a_{1}}{m}, \frac{a_{2}}{m}, \cdots, \frac{a_{\ell}}{m}, \frac{k}{m}\right) + (-1)^{\ell-1}g\left(\frac{a_{1}}{m}, \frac{a_{2}}{m}, \cdots, \frac{a_{\ell}}{m}\right)$$

$$= (-1)^{\ell}\left(\sum_{\emptyset \neq T \subseteq [1, \ell+1]} (-1)^{|T|-1} \left\lfloor \sum_{i \in T} \left(\frac{a_{i}}{m}\right) \right\rfloor - \sum_{\emptyset \neq T \subseteq [1, \ell]} (-1)^{|T|-1} \left\lfloor \sum_{i \in T} \left(\frac{a_{i}}{m}\right) \right\rfloor\right)$$

$$= (-1)^{\ell} \sum_{T \subseteq [1, \ell]} (-1)^{|T|-1} \left\lfloor \sum_{i \in T} \left(\frac{a_{i}}{m}\right) \right\rfloor$$

$$= (-1)^{\ell} \sum_{T \subseteq [1, \ell]} (-1)^{|T|} \left\lfloor \frac{k + \sum_{i \in T} a_{i}}{m} \right\rfloor$$

$$= f_{a_{1}, a_{2}, \dots, a_{\ell}; m}(k).$$

Theorem 4. For each $n \ge 2$, the function g given in Definition 2 has maximum value $2^{n-2} - 1$ and minimum value -2^{n-2} . The minimum occurs at least when $x_k = \frac{1}{2}$ for every $1 \le k \le n$. The maximum occurs at least when $x_k = \frac{1}{2} - \frac{1}{n^2}$ for every $1 \le k \le n$.

Proof. If n = 2, then the result is a well-known inequality

$$-1 \le \lfloor x \rfloor + \lfloor y \rfloor - \lfloor x + y \rfloor \le 0, \tag{3}$$

which holds for all $x, y \in \mathbb{R}$. The inequality (3) is sharp: if $x = y = \frac{1}{2}$ the left inequality in (3) becomes equality, and if $x = y = \frac{1}{4}$ the right inequality in (3) becomes equality. The result when $n \ge 3$ is obtained from the case n = 2 and a careful selection of pairs. For illustration purpose, we first give a proof for the case n = 3 and n = 4. Recall that

$$g(x_1, x_2, x_3) = \lfloor x_1 \rfloor + \lfloor x_2 \rfloor + \lfloor x_3 \rfloor - \lfloor x_1 + x_2 \rfloor - \lfloor x_1 + x_3 \rfloor - \lfloor x_2 + x_3 \rfloor + \lfloor x_1 + x_2 + x_3 \rfloor.$$

We obtain by (3) that

$$0 \le \lfloor x_1 + x_2 + x_3 \rfloor - \lfloor x_1 + x_2 \rfloor - \lfloor x_3 \rfloor \le 1, \tag{4}$$

$$-1 \le -\lfloor x_2 + x_3 \rfloor + \lfloor x_2 \rfloor + \lfloor x_3 \rfloor \le 0, \tag{5}$$

$$-1 \le -\lfloor x_1 + x_3 \rfloor + \lfloor x_1 \rfloor + \lfloor x_3 \rfloor \le 0.$$
(6)

Summing (4), (5), and (6), the middle terms give $g(x_1, x_2, x_3)$. Then $-2 \leq g(x_1, x_2, x_3) \leq 1$. Next we consider

$$g(x_1, x_2, x_3, x_4) = \lfloor x_1 \rfloor + \lfloor x_2 \rfloor + \lfloor x_3 \rfloor + \lfloor x_4 \rfloor - \lfloor x_1 + x_2 \rfloor - \lfloor x_1 + x_3 \rfloor - \lfloor x_1 + x_4 \rfloor - \lfloor x_2 + x_3 \rfloor - \lfloor x_2 + x_4 \rfloor - \lfloor x_3 + x_4 \rfloor + \lfloor x_1 + x_2 + x_3 \rfloor + \lfloor x_1 + x_2 + x_4 \rfloor + \lfloor x_1 + x_3 + x_4 \rfloor + \lfloor x_2 + x_3 + x_4 \rfloor - \lfloor x_1 + x_2 + x_3 + x_4 \rfloor.$$

Again, we obtain by (3) the following inequalities:

$$-1 \le -\lfloor x_1 + x_2 + x_3 + x_4 \rfloor + \lfloor x_1 + x_2 + x_3 \rfloor + \lfloor x_4 \rfloor \le 0, \tag{7}$$

$$0 \le \lfloor x_1 + x_2 + x_4 \rfloor - \lfloor x_1 + x_2 \rfloor - \lfloor x_4 \rfloor \le 1,$$
(8)

$$0 \le \lfloor x_1 + x_3 + x_4 \rfloor - \lfloor x_1 + x_3 \rfloor - \lfloor x_4 \rfloor \le 1,$$
(9)

$$0 \le \lfloor x_2 + x_3 + x_4 \rfloor - \lfloor x_2 + x_3 \rfloor - \lfloor x_4 \rfloor \le 1,$$
(10)

$$-1 \le -\lfloor x_1 + x_4 \rfloor + \lfloor x_1 \rfloor + \lfloor x_4 \rfloor \le 0, \tag{11}$$

$$-1 \le -\lfloor x_2 + x_4 \rfloor + \lfloor x_2 \rfloor + \lfloor x_4 \rfloor \le 0, \tag{12}$$

$$-1 \le -\lfloor x_3 + x_4 \rfloor + \lfloor x_3 \rfloor + \lfloor x_4 \rfloor \le 0.$$
(13)

Summing (7) to (13), we see that $-4 \le g(x_1, x_2, x_3, x_4) \le 3$.

Next we prove the general case $n \ge 5$. The expression of the form $\lfloor x_{i_1} + x_{i_2} + \cdots + x_{i_k} \rfloor$ will be called a *k*-bracket. So for each $1 \le k \le n$, there are $\binom{n}{k}$ *k*-brackets appearing in the sum defining $g(x_1, x_2, \ldots, x_n)$. We first pair up the *n*-bracket with an (n-1)-bracket and a 1-bracket as follows:

$$s_1 = (-1)^{n-1} \lfloor x_1 + x_2 + \dots + x_n \rfloor + (-1)^{n-2} \lfloor x_1 + x_2 + \dots + x_{n-1} \rfloor + (-1)^{n-2} \lfloor x_n \rfloor.$$
(14)

Notice that the sign of $\lfloor x_n \rfloor$ in (14) may or may not be the same as that appearing in the sum defining $g(x_1, x_2, \ldots, x_n)$ but it is the same as the sign of $\lfloor x_1 + x_2 + \cdots + x_{n-1} \rfloor$ so that we can apply (3) to obtain the bound for s_1 . Next we pair up the remaining (n-1)-brackets with (n-2)-brackets and 1-brackets as follows:

$$(-1)^{n-2} \lfloor x_{i_1} + x_{i_2} + \dots + x_{i_{n-1}} \rfloor + (-1)^{n-3} \lfloor x_{i_1} + x_{i_2} + \dots + x_{i_{n-2}} \rfloor + (-1)^{n-3} \lfloor x_{i_{n-1}} \rfloor, \quad (15)$$

where $1 \leq i_1 < i_2 < \ldots < i_{n-1} \leq n$. We note again that the sign of $\lfloor x_{i_1} + x_{i_2} + \cdots + x_{i_{n-1}} \rfloor$ and $\lfloor x_{i_1} + x_{i_2} + \cdots + x_{i_{n-2}} \rfloor$ in (15) are the same as those appearing in the sum defining $g(x_1, x_2, \ldots, x_n)$ while the sign of $\lfloor x_{i_{n-1}} \rfloor$ in (15) may or may not be the same, but we can apply (3) to obtain the bound of (15). Since $\lfloor x_1 + x_2 + \cdots + x_{n-1} \rfloor$ appears in (14), the term $x_{i_{n-1}}$ appearing in the (n-1)-brackets in (15) is always x_n . So in fact (15) is

$$(-1)^{n-2} \lfloor x_{i_1} + x_{i_2} + \dots + x_{i_{n-2}} + x_n \rfloor + (-1)^{n-3} \lfloor x_{i_1} + x_{i_2} + \dots + x_{i_{n-2}} \rfloor + (-1)^{n-3} \lfloor x_n \rfloor.$$
(16)

Then we sum (16) over all possibles $1 \le i_1 < i_2 < \ldots < i_{n-2} < n$, and call it s_2 . That is

$$s_{2} = (-1)^{n-2} \sum_{1 \le i_{1} < i_{2} < \dots < i_{n-2} < n} \lfloor x_{i_{1}} + x_{i_{2}} + \dots + x_{i_{n-2}} + x_{n} \rfloor + (-1)^{n-3} \sum_{1 \le i_{1} < i_{2} < \dots < i_{n-2} < n} \lfloor x_{i_{1}} + x_{i_{2}} + \dots + x_{i_{n-2}} \rfloor + (-1)^{n-3} \binom{n-1}{n-2} \lfloor x_{n} \rfloor.$$

We continue doing this process as follows. For each $0 \leq \ell \leq n-1$, let c_{ℓ} be the sum of all $\lfloor x_{i_1} + x_{i_2} + \cdots + x_{i_{n-\ell}} \rfloor$ with $1 \leq i_1 < i_2 < \ldots < i_{n-\ell} \leq n$, a_{ℓ} the sum of all such terms with $i_{n-\ell} = n$, and b_{ℓ} the sum of all such terms with $i_{n-\ell} < n$. Therefore $c_{\ell} = a_{\ell} + b_{\ell}$. As usual, the empty sum is defined to be zero, so $b_0 = 0$. The number of $(n-\ell)$ -brackets appearing in the sum defining c_{ℓ} is $\binom{n}{n-\ell}$, the number of $(n-\ell)$ -brackets appearing in the sum defining a_{ℓ} is $\binom{n-1}{n-\ell-1}$, and the number of $(n-\ell)$ -brackets appearing in the sum defining b_{ℓ} is $\binom{n-1}{n-\ell}$. In addition, we have

$$s_{1} = (-1)^{n-1}a_{0} + (-1)^{n-2}b_{1} + (-1)^{n-2}\lfloor x_{n} \rfloor,$$

$$s_{2} = (-1)^{n-2}a_{1} + (-1)^{n-3}b_{2} + (-1)^{n-3}\binom{n-1}{n-2}\lfloor x_{n} \rfloor.$$

In general, for each $1 \leq \ell \leq n-1$, we let

$$s_{\ell} = (-1)^{n-\ell} a_{\ell-1} + (-1)^{n-\ell-1} b_{\ell} + (-1)^{n-\ell-1} \binom{n-1}{n-\ell} \lfloor x_n \rfloor.$$

Then

$$\sum_{1 \le \ell \le n-1} s_{\ell} = (-1)^{n-1} a_0 + \sum_{2 \le \ell \le n-1} (-1)^{n-\ell} a_{\ell-1} + \sum_{1 \le \ell \le n-2} (-1)^{n-\ell-1} b_{\ell} + b_{n-1} + \lfloor x_n \rfloor \sum_{1 \le \ell \le n-1} (-1)^{n-\ell-1} \binom{n-1}{n-\ell}.$$
(17)

Recall a well known identity $\sum_{0 \le \ell \le n} (-1)^{\ell} {n \choose \ell} = 0$ for all $n \ge 1$. Therefore the last sum on the right hand side of (17) is

$$-\sum_{1 \le \ell \le n-1} (-1)^{n-\ell} \binom{n-1}{n-\ell} = -\sum_{1 \le \ell \le n-1} (-1)^{\ell} \binom{n-1}{\ell} = -\sum_{0 \le \ell \le n-1} (-1)^{\ell} \binom{n-1}{\ell} + 1 = 1.$$

Therefore the last term in (17) is $\lfloor x_n \rfloor$. Replacing ℓ by $\ell + 1$ in the first sum on the right hand side of (17), we see that

$$\sum_{1 \le \ell \le n-1} s_{\ell} = (-1)^{n-1} a_0 + \sum_{1 \le \ell \le n-2} (-1)^{n-\ell-1} (a_{\ell} + b_{\ell}) + b_{n-1} + \lfloor x_n \rfloor$$
$$= (-1)^{n-1} c_0 + \sum_{1 \le \ell \le n-2} (-1)^{n-\ell-1} c_{\ell} + b_{n-1} + \lfloor x_n \rfloor$$
$$= (-1)^{n-1} c_0 + \sum_{1 \le \ell \le n-2} (-1)^{n-\ell-1} c_{\ell} + c_{n-1}$$
$$= \sum_{0 \le \ell \le n-1} (-1)^{n-\ell-1} c_{\ell}$$
$$= g(x_1, x_2, \dots, x_n),$$
(18)

where (18) can be obtained from the definition of c_{n-1} , b_{n-1} , and a_{n-1} that

$$c_{n-1} = \lfloor x_1 \rfloor + \lfloor x_2 \rfloor + \dots + \lfloor x_n \rfloor,$$

$$b_{n-1} = \lfloor x_1 \rfloor + \lfloor x_2 \rfloor + \dots + \lfloor x_{n-1} \rfloor,$$

$$a_{n-1} = \lfloor x_n \rfloor, \text{ and}$$

$$c_{n-1} = a_{n-1} + b_{n-1}.$$

We apply (3) to (14) to obtain

$$0 \le s_1 \le 1$$
 if n is odd, and $-1 \le s_1 \le 0$ if n is even.

Similarly, applying (3) to (16), we see that such sum lies in [0,1] if n is even, and lies in [-1,0] if n is odd. Therefore

$$0 \le s_2 \le {\binom{n-1}{n-2}}$$
 if *n* is even, and $-{\binom{n-1}{n-2}} \le s_2 \le 0$ if *n* is odd.

In general, for each $1 \le \ell \le n-1$, we have

$$0 \le s_{\ell} \le \binom{n-1}{n-\ell}, \text{ if } n \text{ and } \ell \text{ have the same parity,} \\ -\binom{n-1}{n-\ell} \le s_{\ell} \le 0, \text{ if } n \text{ and } \ell \text{ have a different parity.}$$

Since $g(x_1, x_2, ..., x_n) = \sum_{1 \le \ell \le n-1} s_\ell$, we obtain, for odd n,

$$-\sum_{\substack{1\leq\ell\leq n-1\\\ell \text{ is even}}} \binom{n-1}{n-\ell} \leq g(x_1, x_2, \dots, x_n) \leq \sum_{\substack{1\leq\ell\leq n-1\\\ell \text{ is odd}}} \binom{n-1}{n-\ell},$$

and for even n,

$$-\sum_{\substack{1\leq\ell\leq n-1\\\ell\text{ is odd}}} \binom{n-1}{n-\ell} \leq g(x_1, x_2, \dots, x_n) \leq \sum_{\substack{1\leq\ell\leq n-1\\\ell\text{ is even}}} \binom{n-1}{n-\ell}.$$

Recall a well known identity

$$\sum_{\substack{0 \le k \le n \\ k \text{ is even}}} \binom{n}{k} = \sum_{\substack{0 \le k \le n \\ k \text{ is odd}}} \binom{n}{k} = 2^{n-1}.$$

Therefore if n is odd, then

$$\sum_{\substack{1 \le \ell \le n-1\\\ell \text{ is odd}}} \binom{n-1}{n-\ell} = \sum_{\substack{1 \le \ell \le n-1\\\ell \text{ is even}}} \binom{n-1}{\ell} = 2^{n-2} - 1, \text{ and}$$
$$\sum_{\substack{1 \le \ell \le n-1\\\ell \text{ is even}}} \binom{n-1}{n-\ell} = \sum_{\substack{1 \le \ell \le n-1\\\ell \text{ is odd}}} \binom{n-1}{\ell} = \sum_{\substack{0 \le \ell \le n-1\\\ell \text{ is odd}}} \binom{n-1}{\ell} = 2^{n-2}$$

Similarly, if n is even, then

$$\sum_{\substack{1 \le \ell \le n-1 \\ \ell \text{ is odd}}} \binom{n-1}{n-\ell} = 2^{n-2} \text{ and } \sum_{\substack{1 \le \ell \le n-1 \\ \ell \text{ is even}}} \binom{n-1}{n-\ell} = 2^{n-2} - 1.$$

Hence $-2^{n-2} \leq g(x_1, x_2, \ldots, x_n) \leq 2^{n-2} - 1$, as required. Next we show that the lower bound -2^{n-2} and the upper bound $2^{n-2} - 1$ are actually the minimum and the maximum of $g(x_1, x_2, \ldots, x_n)$, respectively. Recall that the fractional part of a real number x, denoted by $\{x\}$, is defined by $\{x\} = x - \lfloor x \rfloor$. Let $x_k = \frac{1}{2}$ for every $k = 1, 2, \ldots, n$. Then

$$g(x_1, x_2, \dots, x_n) = \sum_{1 \le k \le n} (-1)^{k-1} \left\lfloor \frac{k}{2} \right\rfloor \binom{n}{k}$$

= $\sum_{1 \le k \le n} (-1)^{k-1} \left(\frac{k}{2} \right) \binom{n}{k} - \sum_{1 \le k \le n} (-1)^{k-1} \left\{ \frac{k}{2} \right\} \binom{n}{k}$
= $\frac{1}{2} \sum_{1 \le k \le n} (-1)^{k-1} k \binom{n}{k} - \frac{1}{2} \sum_{\substack{1 \le k \le n \\ k \text{ is odd}}} \binom{n}{k},$ (19)

where the last equality is obtained from the fact that $\left\{\frac{k}{2}\right\} = 0$ if k is even and $\left\{\frac{k}{2}\right\} = \frac{1}{2}$ if k is odd. By differentiating both sides of

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k \tag{20}$$

and substituting x = -1, we obtain a well-known identity

$$\sum_{k=1}^{n} (-1)^{k-1} k \binom{n}{k} = 0, \text{ which holds for all } n \ge 2.$$
(21)

In addition, we know that

$$\sum_{\substack{1 \le k \le n \\ k \text{ is odd}}} \binom{n}{k} = 2^{n-1}$$

Therefore (19) becomes

$$g(x_1, x_2, \dots, x_n) = 0 - \frac{1}{2} (2^{n-1}) = -2^{n-2}.$$

This shows that -2^{n-2} is the minimum value of g. Next let $x_k = \frac{1}{2} - \frac{1}{n^2}$ for every $k = 1, 2, \ldots, n$. Then

$$g(x_1, x_2, \dots, x_n) = \sum_{1 \le k \le n} (-1)^{k-1} \left\lfloor \frac{k}{2} - \frac{k}{n^2} \right\rfloor \binom{n}{k}.$$
 (22)

If $1 \le k \le n$ and k is even, then $\lfloor \frac{k}{2} - \frac{k}{n^2} \rfloor = \frac{k}{2} - 1 = \lfloor \frac{k-1}{2} \rfloor$. If $1 \le k \le n$ and k is odd, then $\lfloor \frac{k}{2} - \frac{k}{n^2} \rfloor = \lfloor \frac{k-1}{2} + \frac{1}{2} - \frac{k}{n^2} \rfloor = \lfloor \frac{k-1}{2} \rfloor$. Therefore (22) becomes

$$g(x_1, x_2, \dots, x_n) = \sum_{1 \le k \le n} (-1)^{k-1} \left\lfloor \frac{k-1}{2} \right\rfloor \binom{n}{k}.$$
 (23)

Now we can evaluate the sum (23) by using the same method as in (19). We write $\lfloor \frac{k-1}{2} \rfloor = \frac{k-1}{2} - \left\{ \frac{k-1}{2} \right\}$ and we know that $\left\{ \frac{k-1}{2} \right\} = 0$ if k is odd and $\left\{ \frac{k-1}{2} \right\} = \frac{1}{2}$ if k is even. Then (23) can be written as

$$g(x_1, x_2, \dots, x_n) = \frac{1}{2} \sum_{1 \le k \le n} (-1)^{k-1} k \binom{n}{k} - \frac{1}{2} \sum_{1 \le k \le n} (-1)^{k-1} \binom{n}{k} + \frac{1}{2} \sum_{\substack{1 \le k \le n \\ k \text{ is even}}} \binom{n}{k}.$$

The first sum is zero by (21). The second sum is 1 by substituting x = -1 in (20). Therefore

$$g(x_1, x_2, \dots, x_n) = 0 - \frac{1}{2} + \frac{1}{2} \left(2^{n-1} - 1 \right) = 2^{n-2} - 1.$$

Recall that the Binet forms of Jacobsthal numbers J_n and Jacobsthal-Lucas numbers j_n are

$$J_n = \frac{2^n - (-1)^n}{3} \quad \text{and} \quad j_n = 2^n + (-1)^n \tag{24}$$

for every $n \ge 0$. Therefore we obtain the connection between Jacobsthal and Jacobsthal-Lucas numbers and sums introduced by Jacobsthal [4] and Tverberg [6] as follows.

Corollary 5. If n is odd, then the maximum and the minimum value of $g(x_1, x_2, x_3, \ldots, x_n)$ are j_{n-2} and $-1 - j_{n-2}$, respectively. If n is even, then the maximum and the minimum value of $g(x_1, x_2, x_3, \ldots, x_n)$ are $3J_{n-2}$ and $1 - j_{n-2}$, respectively.

Proof. This follows immediately from (24) and Theorem 4.

Remark 6. From this point on, we will apply the well-known identities which are already recalled without reference.

Next we give the extreme values of $f_{a_1,a_2,\ldots,a_\ell;m}(k)$. Although we can write $f_{a_1,a_2,\ldots,a_\ell;m}(k)$ in terms of $g(x_1, x_2, \ldots, x_n)$ as given in Proposition 3, we do not know the proof which applies Theorem 4 to obtain Theorem 8. Nevertheless, we can use the same idea in the proof of Theorem 4 together with the following lemma to prove Theorem 8.

Lemma 7. The following statements hold.

(i) For each $i \in \{1, 2, ..., n\}$ and $q \in \mathbb{Z}$, we have

 $g(x_1, x_2, \dots, x_i + q, \dots, x_n) = g(x_1, x_2, \dots, x_n).$

In particular, g has period 1 in each variable.

(ii) For each $i \in \{1, 2, \dots, \ell\}$ and $q \in \mathbb{Z}$, we have

$$f_{a_1,a_2,\dots,a_i+qm,\dots,a_\ell;m}(k) = f_{a_1,a_2,\dots,a_\ell;m}(k) = f_{a_1,a_2,\dots,a_\ell;m}(k+qm).$$

In particular, f has period m in each variable a_1, a_2, \ldots, a_ℓ and k.

Proof. Since $\lfloor q + x \rfloor = q + \lfloor x \rfloor$ for every $q \in \mathbb{Z}$ and $x \in \mathbb{R}$, we see that

$$g(x_1, x_2, \dots, x_i + q, \dots, x_n) = \left(q + \sum_{i=1}^n \lfloor x_i \rfloor\right) - \left(\binom{n-1}{1}q + \sum_{1 \le i_1 < i_2 \le n} \lfloor x_{i_1} + x_{i_2} \rfloor\right) \\ + \left(\binom{n-1}{2}q + \sum_{1 \le i_1 < i_2 < i_3 \le n} \lfloor x_{i_1} + x_{i_2} + x_{i_3} \rfloor\right) \\ - \dots + (-1)^{n-1} \left(\binom{n-1}{n-1}q + \lfloor x_1 + x_2 + \dots + x_n \rfloor\right) \\ = g(x_1, x_2, \dots, x_n) + q \sum_{0 \le k \le n-1} (-1)^k \binom{n-1}{k} \\ = g(x_1, x_2, \dots, x_n).$$

This proves (i). Next we prove (ii). By Proposition 3 and by (i), we obtain

$$f_{a_1,a_2,\dots,a_i+qm,\dots,a_\ell;m}(k) = (-1)^{\ell} g\left(\frac{a_1}{m}, \frac{a_2}{m}, \dots, \frac{a_i}{m} + q, \dots, \frac{a_\ell}{m}, \frac{k}{m}\right) + (-1)^{\ell-1} g\left(\frac{a_1}{m}, \frac{a_2}{m}, \dots, \frac{a_i}{m} + q, \dots, \frac{a_\ell}{m}\right) = (-1)^{\ell} g\left(\frac{a_1}{m}, \frac{a_2}{m}, \dots, \frac{a_\ell}{m}, \frac{k}{m}\right) + (-1)^{\ell-1} g\left(\frac{a_1}{m}, \frac{a_2}{m}, \dots, \frac{a_\ell}{m}\right) = f_{a_1,a_2,\dots,a_\ell;m}(k).$$

Similarly, $f_{a_1,a_2,\ldots,a_\ell;m}(k+qm) = f_{a_1,a_2,\ldots,a_\ell;m}(k)$. This completes the proof.

Theorem 8. For each $\ell \geq 2$, $a_1, a_2, \ldots, a_\ell, k \in \mathbb{Z}$ and $m \geq 1$, we have

$$-2^{\ell-2} \le f_{a_1, a_2, \dots, a_\ell; m}(k) \le 2^{\ell-2}.$$

Moreover, $-2^{\ell-2}$ and $2^{\ell-2}$ are best possible in the sense that there are $a_1, a_2, \ldots, a_\ell, m, k$ which make the inequality becomes equality. More precisely the following statements hold.

- (i) If ℓ is odd, m is even, and $a_i = \frac{m}{2}$ for every $i = 1, 2, ..., \ell$, then $f_{a_1, a_2, ..., a_\ell; m}(0) = -2^{\ell-2}$ and $f_{a_1, a_2, ..., a_\ell; m}(\frac{m}{2}) = 2^{\ell-2}$.
- (ii) If ℓ is even, m is even, and $a_i = \frac{m}{2}$ for every $i = 1, 2, ..., \ell$, then $f_{a_1, a_2, ..., a_\ell; m}(0) = 2^{\ell-2}$ and $f_{a_1, a_2, ..., a_\ell; m}(\frac{m}{2}) = -2^{\ell-2}$.

Proof. By Lemma 7, we can assume that $a_i \in [0, m-1]$ for every $1 \le i \le \ell$. Therefore

$$\left\lfloor \frac{a_i}{m} \right\rfloor = 0 \text{ for every } i \in \{1, 2, \dots, \ell\}.$$
(25)

If $\ell = 2$, then the result follows from (25) and (3), and we have

$$0 \le \left\lfloor \frac{a_1 + a_2 + k}{m} \right\rfloor - \left\lfloor \frac{a_1 + k}{m} \right\rfloor \le 1,$$
(26)

and

$$-1 \le -\left\lfloor \frac{a_2 + k}{m} \right\rfloor + \left\lfloor \frac{k}{m} \right\rfloor \le 0.$$
(27)

Summing (26) and (27), we obtain $-1 \leq f_{a_1,a_2;m}(k) \leq 1$. The result when $\ell \geq 3$ is based on a careful selection of pairs and the case $\ell = 2$. For illustration purpose, we first give a proof for the case $\ell = 3$ and $\ell = 4$. Recall that

$$f_{a_1,a_2,a_3;m}(k) = \left\lfloor \frac{a_1 + a_2 + a_3 + k}{m} \right\rfloor - \left\lfloor \frac{a_1 + a_2 + k}{m} \right\rfloor - \left\lfloor \frac{a_1 + a_3 + k}{m} \right\rfloor - \left\lfloor \frac{a_2 + a_3 + k}{m} \right\rfloor + \left\lfloor \frac{a_1 + k}{m} \right\rfloor + \left\lfloor \frac{a_2 + k}{m} \right\rfloor + \left\lfloor \frac{a_3 + k}{m} \right\rfloor - \left\lfloor \frac{k}{m} \right\rfloor.$$

We obtain by (3) and (25) that

$$0 \le \left\lfloor \frac{a_1 + a_2 + a_3 + k}{m} \right\rfloor - \left\lfloor \frac{a_1 + a_2 + k}{m} \right\rfloor \le 1,$$
(28)

$$-1 \le -\left\lfloor \frac{a_1 + a_3 + k}{m} \right\rfloor + \left\lfloor \frac{a_1 + k}{m} \right\rfloor \le 0, \tag{29}$$

$$-1 \le -\left\lfloor \frac{a_2 + a_3 + k}{m} \right\rfloor + \left\lfloor \frac{a_2 + k}{m} \right\rfloor \le 0, \tag{30}$$

$$0 \le \left\lfloor \frac{a_3 + k}{m} \right\rfloor - \left\lfloor \frac{k}{m} \right\rfloor \le 1.$$
(31)

Summing (28), (29), (30), and (31), we see that the middle term is $f_{a_1,a_2,a_3,m}(k)$. Therefore $-2 \leq f_{a_1,a_2,a_3,m}(k) \leq 2$. Next we consider

$$\begin{aligned} f_{a_1,a_2,a_3,a_4;m}(k) &= \left\lfloor \frac{a_1 + a_2 + a_3 + a_4 + k}{m} \right\rfloor - \left\lfloor \frac{a_1 + a_2 + a_3 + k}{m} \right\rfloor - \left\lfloor \frac{a_1 + a_2 + a_4 + k}{m} \right\rfloor \\ &- \left\lfloor \frac{a_1 + a_3 + a_4 + k}{m} \right\rfloor - \left\lfloor \frac{a_2 + a_3 + a_4 + k}{m} \right\rfloor + \left\lfloor \frac{a_1 + a_2 + k}{m} \right\rfloor \\ &+ \left\lfloor \frac{a_1 + a_3 + k}{m} \right\rfloor + \left\lfloor \frac{a_1 + a_4 + k}{m} \right\rfloor + \left\lfloor \frac{a_2 + a_3 + k}{m} \right\rfloor + \left\lfloor \frac{a_2 + a_4 + k}{m} \right\rfloor \\ &+ \left\lfloor \frac{a_3 + a_4 + k}{m} \right\rfloor - \left\lfloor \frac{a_1 + k}{m} \right\rfloor - \left\lfloor \frac{a_2 + k}{m} \right\rfloor - \left\lfloor \frac{a_3 + k}{m} \right\rfloor - \left\lfloor \frac{a_4 + k}{m} \right\rfloor + \left\lfloor \frac{k}{m} \right\rfloor. \end{aligned}$$

Again, we obtain by (3) and (25) the following inequalities:

$$0 \le \left\lfloor \frac{a_1 + a_2 + a_3 + a_4 + k}{m} \right\rfloor - \left\lfloor \frac{a_1 + a_2 + a_3 + k}{m} \right\rfloor \le 1,$$
(32)

$$-1 \le -\left\lfloor \frac{a_1 + a_2 + a_4 + k}{m} \right\rfloor + \left\lfloor \frac{a_1 + a_2 + k}{m} \right\rfloor \le 0, \tag{33}$$

$$-1 \le -\left\lfloor \frac{a_1 + a_3 + a_4 + k}{m} \right\rfloor + \left\lfloor \frac{a_1 + a_3 + k}{m} \right\rfloor \le 0, \tag{34}$$

$$-1 \le -\left\lfloor \frac{a_2 + a_3 + a_4 + k}{m} \right\rfloor + \left\lfloor \frac{a_2 + a_3 + k}{m} \right\rfloor \le 0, \tag{35}$$

$$0 \le \left\lfloor \frac{a_1 + a_4 + k}{m} \right\rfloor - \left\lfloor \frac{a_1 + k}{m} \right\rfloor \le 1, \tag{36}$$

$$0 \le \left\lfloor \frac{a_2 + a_4 + k}{m} \right\rfloor - \left\lfloor \frac{a_2 + k}{m} \right\rfloor \le 1, \tag{37}$$

$$0 \le \left\lfloor \frac{a_3 + a_4 + k}{m} \right\rfloor - \left\lfloor \frac{a_3 + k}{m} \right\rfloor \le 1, \tag{38}$$

$$-1 \le -\left\lfloor \frac{a_4 + k}{m} \right\rfloor + \left\lfloor \frac{k}{m} \right\rfloor \le 0.$$
(39)

Summing (32) to (39), we see that $-4 \leq f_{a_1,a_2,a_3,a_4,m}(k) \leq 4$. Next we prove the general case $\ell \geq 5$. The expression of the form $\left\lfloor \frac{a_{i_1}+a_{i_2}+\dots+a_{i_r}+k}{m} \right\rfloor$ will be called an *r*-bracket. So for each $1 \leq r \leq \ell$, there are $\binom{\ell}{r}$ *r*-brackets appearing in the sum

defining $f_{a_1,a_2,\ldots,a_\ell}(k)$. We follow closely the method used in the proof of Theorem 4. So we first pair up the ℓ -bracket with an $(\ell - 1)$ -bracket as follows:

$$s_1 = \left\lfloor \frac{a_1 + a_2 + \dots + a_{\ell} + k}{m} \right\rfloor - \left\lfloor \frac{a_1 + a_2 + \dots + a_{\ell-1} + k}{m} \right\rfloor,$$
 (40)

and we can apply (3) and (25) to obtain the bound for s_1 . Next we pair up the remaining $(\ell - 1)$ -brackets with $(\ell - 2)$ -brackets as follows:

$$-\left\lfloor \frac{a_{i_1} + a_{i_2} + \dots + a_{i_{\ell-1}} + k}{m} \right\rfloor + \left\lfloor \frac{a_{i_1} + a_{i_2} + \dots + a_{i_{\ell-2}} + k}{m} \right\rfloor,$$
(41)

and we sum (41) over all $1 \leq i_1 < i_2 < \ldots < i_{\ell-1} \leq \ell$ and call it s_2 . Since a_ℓ does not appear in the second term on the right of (40), the term $a_{i_{\ell-1}}$ appearing in (41) is always a_ℓ . So in fact

$$s_{2} = -\sum_{1 \le i_{1} < i_{2} < \dots < i_{\ell-2} < \ell} \left[\frac{a_{i_{1}} + a_{i_{2}} + \dots + a_{i_{\ell-2}} + a_{\ell} + k}{m} + \sum_{1 \le i_{1} < i_{2} < \dots < i_{\ell-2} < \ell} \left[\frac{a_{i_{1}} + a_{i_{2}} + \dots + a_{i_{\ell-2}} + k}{m} \right].$$

We continue doing this process as follows. For each $1 \leq r \leq \ell$, let c_r be the sum of all $\left\lfloor \frac{a_{i_1}+a_{i_2}+\dots+a_{i_r}+k}{m} \right\rfloor$ with $1 \leq i_1 < i_2 < \dots < i_r \leq \ell$, a_r the sum of all such terms with $i_r = \ell$, and b_r the sum of all such terms with $i_r < \ell$. Therefore $c_r = a_r + b_r$, the number of summands of c_r is $\binom{\ell}{r}$, the number of summands of a_r is $\binom{\ell-1}{r-1}$, and the number of summands of b_r is $\binom{\ell-1}{r}$. As usual, the empty sum is defined to be zero, so $b_\ell = 0$. We have $s_1 = a_\ell - b_{\ell-1}$ and $s_2 = -a_{\ell-1} + b_{\ell-2}$. In general, for each $1 \leq r \leq \ell - 1$, we let

$$s_r = (-1)^{r+1} a_{\ell-r+1} + (-1)^r b_{\ell-r}$$
 and $s_\ell = (-1)^{\ell+1} a_1 + (-1)^\ell \left\lfloor \frac{k}{m} \right\rfloor$.

Then

$$0 \le s_r \le \binom{\ell-1}{\ell-r}$$
 if r is odd, and $-\binom{\ell-1}{\ell-r} \le s_r \le 0$ if r is even

$$\begin{split} \sum_{1 \le r \le \ell} s_r &= a_\ell + \sum_{2 \le r \le \ell - 1} (-1)^{r+1} a_{\ell - r + 1} + \sum_{1 \le r \le \ell - 2} (-1)^r b_{\ell - r} + (-1)^{\ell - 1} b_1 + s_\ell \\ &= a_\ell + \sum_{1 \le r \le \ell - 2} (-1)^r (a_{\ell - r} + b_{\ell - r}) + (-1)^{\ell - 1} b_1 + (-1)^{\ell + 1} a_1 + \left\lfloor \frac{k}{m} \right\rfloor \\ &= c_\ell + \sum_{1 \le r \le \ell - 2} (-1)^r c_{\ell - r} + (-1)^{\ell - 1} c_1 + \left\lfloor \frac{k}{m} \right\rfloor \\ &= \sum_{0 \le r \le \ell - 1} (-1)^r c_{\ell - r} + \left\lfloor \frac{k}{m} \right\rfloor \\ &= f_{a_1, a_2, \dots, a_\ell; m}(k). \end{split}$$

Therefore

$$-\sum_{\substack{1\leq r\leq\ell\\r \text{ is even}}} \binom{\ell-1}{\ell-r} \leq f_{a_1,a_2,\dots,a_\ell;m}(k) \leq \sum_{\substack{1\leq r\leq\ell\\r \text{ is odd}}} \binom{\ell-1}{\ell-r}.$$

Replacing r by r + 1, we see that

$$\sum_{\substack{1 \le r \le \ell \\ r \text{ is odd}}} \binom{\ell-1}{\ell-r} = \sum_{\substack{0 \le r \le \ell-1 \\ r \text{ is even}}} \binom{\ell-1}{\ell-1-r} = 2^{\ell-2}.$$

Similarly,

$$-\sum_{\substack{1\leq r\leq\ell\\r \text{ is even}}} \binom{\ell-1}{\ell-r} = -2^{\ell-2}$$

Therefore

$$-2^{\ell-2} \le f_{a_1,a_2,\dots,a_\ell;m}(k) \le 2^{\ell-2},\tag{42}$$

as required. If ℓ is odd, m is even, and $a_i = \frac{m}{2}$ for every $1 \leq i \leq \ell$, we obtain by Proposition 3 and Theorem 4 that $f_{a_1,a_2,\ldots,a_\ell;m}(0) = g\left(\frac{1}{2},\frac{1}{2},\ldots,\frac{1}{2}\right) = -2^{\ell-2}$ and $f_{a_1,a_2,\ldots,a_\ell;m}(\frac{m}{2}) = (-1)^{\ell}g\left(\frac{1}{2},\frac{1}{2},\ldots,\frac{1}{2}\right) + (-1)^{\ell-1}g\left(\frac{1}{2},\frac{1}{2},\ldots,\frac{1}{2}\right) = 2^{\ell-2}$. If ℓ is even, m is even, and $a_i = \frac{m}{2}$ for every $1 \leq i \leq \ell$, we obtain similarly that $f_{a_1,a_2,\ldots,a_\ell;m}(0) = 2^{\ell-2}$ and $f_{a_1,a_2,\ldots,a_\ell;m}(\frac{m}{2}) = -2^{\ell-2}$. So $2^{\ell-2}$ and $-2^{\ell-2}$ in (42) cannot be improved. This completes The proof.

We obtain the extreme values of $S_{a_1,a_2,\ldots,a_\ell;m}$ for some cases $\ell \ge 4$ as well. More precisely, we have the following result.

Theorem 9. For each $\ell \geq 2$, $a_1, a_2, \ldots, a_\ell \in \mathbb{Z}$, $m \in \mathbb{N}$, and $K \in \mathbb{N} \cup \{0\}$, we have

$$-2^{\ell-2} \left\lfloor \frac{m}{2} \right\rfloor \le S_{a_1, a_2, \dots, a_\ell; m}(K) \le 2^{\ell-2} \left\lfloor \frac{m}{2} \right\rfloor.$$

$$\tag{43}$$

Moreover, If ℓ is odd, then the lower bound $-2^{\ell-2} \lfloor \frac{m}{2} \rfloor$ is sharp and if ℓ is even, then the upper bound $2^{\ell-2} \lfloor \frac{m}{2} \rfloor$ is sharp in the sense that there are $a_1, a_2, \ldots, a_\ell, m, k$ which make the inequality becomes equality. More precisely, the following statements hold.

- (i) If ℓ is odd, m is even, and $a_i = \frac{m}{2}$ for every $i = 1, 2, ..., \ell$, then $S_{a_1, a_2, ..., a_\ell; m}(K) = -2^{\ell-2} \left| \frac{m}{2} \right|$.
- (ii) If ℓ is even, m is even, and $a_i = \frac{m}{2}$ for every $i = 1, 2, \ldots, \ell$, then $S_{a_1, a_2, \ldots, a_\ell; m}(K) = 2^{\ell-2} \lfloor \frac{m}{2} \rfloor$.

Proof. If $\ell = 2$, then the result is already proved by Jacobsthal [4]. See also another proof by Tverberg [6]. We recall the result when $\ell = 2$ for easy reference as follows:

$$0 \le S_{a,b;m}(K) \le \left\lfloor \frac{m}{2} \right\rfloor.$$
(44)

As before the result when $\ell \geq 3$ is based on the case $\ell = 2$ and a careful selection of pairs, and we first illustrate the idea by giving the proof for the case $\ell = 3$ and $\ell = 4$. Recall that

$$f_{a_1,a_2,a_3;m}(k) = \left\lfloor \frac{a_1 + a_2 + a_3 + k}{m} \right\rfloor - \left\lfloor \frac{a_1 + a_2 + k}{m} \right\rfloor - \left\lfloor \frac{a_1 + a_3 + k}{m} \right\rfloor - \left\lfloor \frac{a_2 + a_3 + k}{m} \right\rfloor + \left\lfloor \frac{a_1 + k}{m} \right\rfloor + \left\lfloor \frac{a_2 + k}{m} \right\rfloor + \left\lfloor \frac{a_3 + k}{m} \right\rfloor - \left\lfloor \frac{k}{m} \right\rfloor.$$

We have

$$f_{a_1+a_2,a_3;m}(k) = \left\lfloor \frac{a_1+a_2+a_3+k}{m} \right\rfloor - \left\lfloor \frac{a_1+a_2+k}{m} \right\rfloor - \left\lfloor \frac{a_3+k}{m} \right\rfloor + \left\lfloor \frac{k}{m} \right\rfloor, \quad (45)$$

$$-f_{a_1,a_3;m}(k) = -\left\lfloor \frac{a_1 + a_3 + k}{m} \right\rfloor + \left\lfloor \frac{a_1 + k}{m} \right\rfloor + \left\lfloor \frac{a_3 + k}{m} \right\rfloor - \left\lfloor \frac{k}{m} \right\rfloor,$$
(46)

$$-f_{a_2,a_3;m}(k) = -\left\lfloor \frac{a_2 + a_3 + k}{m} \right\rfloor + \left\lfloor \frac{a_2 + k}{m} \right\rfloor + \left\lfloor \frac{a_3 + k}{m} \right\rfloor - \left\lfloor \frac{k}{m} \right\rfloor.$$
(47)

Summing (45), (46), and (47), we see that

$$f_{a_1,a_2,a_3;m}(k) = f_{a_1+a_2,a_3;m}(k) - f_{a_1,a_3;m}(k) - f_{a_2,a_3;m}(k).$$
(48)

By the definition of $S_{a_1,a_2,a_3;m}(K)$, (48), and (44), we obtain

$$S_{a_1,a_2,a_3;m}(K) = \sum_{k=0}^{K} f_{a_1,a_2,a_3;m}(k)$$

= $\sum_{k=0}^{K} f_{a_1+a_2,a_3;m}(k) - \sum_{k=0}^{K} f_{a_1,a_3;m}(k) - \sum_{k=0}^{K} f_{a_2,a_3;m}(k)$
= $S_{a_1+a_2,a_3;m}(K) - S_{a_1,a_3;m}(K) - S_{a_2,a_3;m}(K)$
 $\ge 0 - \left\lfloor \frac{m}{2} \right\rfloor - \left\lfloor \frac{m}{2} \right\rfloor = -2 \left\lfloor \frac{m}{2} \right\rfloor.$

Similarly,

$$S_{a_1,a_2,a_3;m}(K) \le \left\lfloor \frac{m}{2} \right\rfloor - 0 - 0 = \left\lfloor \frac{m}{2} \right\rfloor \le 2 \left\lfloor \frac{m}{2} \right\rfloor.$$

Similarly, we have the following equalities:

$$f_{a_1+a_2+a_3,a_4;m}(k) = \left\lfloor \frac{a_1+a_2+a_3+a_4+k}{m} \right\rfloor - \left\lfloor \frac{a_1+a_2+a_3+k}{m} \right\rfloor - \left\lfloor \frac{a_4+k}{m} \right\rfloor + \left\lfloor \frac{k}{m} \right\rfloor,$$
(49)

$$-f_{a_1+a_2,a_4;m}(k) = -\left\lfloor \frac{a_1 + a_2 + a_4 + k}{m} \right\rfloor + \left\lfloor \frac{a_1 + a_2 + k}{m} \right\rfloor + \left\lfloor \frac{a_4 + k}{m} \right\rfloor - \left\lfloor \frac{k}{m} \right\rfloor, \quad (50)$$

$$-f_{a_1+a_3,a_4;m}(k) = -\left\lfloor \frac{a_1+a_3+a_4+k}{m} \right\rfloor + \left\lfloor \frac{a_1+a_3+k}{m} \right\rfloor + \left\lfloor \frac{a_4+k}{m} \right\rfloor - \left\lfloor \frac{k}{m} \right\rfloor, \quad (51)$$

$$-f_{a_2+a_3,a_4;m}(k) = -\left\lfloor \frac{a_2+a_3+a_4+k}{m} \right\rfloor + \left\lfloor \frac{a_2+a_3+k}{m} \right\rfloor + \left\lfloor \frac{a_4+k}{m} \right\rfloor - \left\lfloor \frac{k}{m} \right\rfloor, \quad (52)$$

$$f_{a_1,a_4;m}(k) = \left\lfloor \frac{a_1 + a_4 + k}{m} \right\rfloor - \left\lfloor \frac{a_1 + k}{m} \right\rfloor - \left\lfloor \frac{a_4 + k}{m} \right\rfloor + \left\lfloor \frac{k}{m} \right\rfloor,$$
(53)

$$f_{a_2,a_4;m}(k) = \left\lfloor \frac{a_2 + a_4 + k}{m} \right\rfloor - \left\lfloor \frac{a_2 + k}{m} \right\rfloor - \left\lfloor \frac{a_4 + k}{m} \right\rfloor + \left\lfloor \frac{k}{m} \right\rfloor,$$
(54)

$$f_{a_3,a_4;m}(k) = \left\lfloor \frac{a_3 + a_4 + k}{m} \right\rfloor - \left\lfloor \frac{a_3 + k}{m} \right\rfloor - \left\lfloor \frac{a_4 + k}{m} \right\rfloor + \left\lfloor \frac{k}{m} \right\rfloor.$$
(55)

Summing (49) to (55) and recalling the definition of $f_{a_1,a_2,a_3,a_4;m}(k)$, we see that

$$f_{a_1,a_2,a_3,a_4;m}(k) = f_{a_1+a_2+a_3,a_4;m}(k) - f_{a_1+a_2,a_4;m}(k) - f_{a_1+a_3,a_4;m}(k) - f_{a_2+a_3,a_4;m}(k) + f_{a_1,a_4;m}(k) + f_{a_2,a_4;m}(k) + f_{a_3,a_4;m}(k).$$
(56)

Then we obtain from (56) and (44) that

$$S_{a_1,a_2,a_3,a_4;m}(K) = S_{a_1+a_2+a_3,a_4;m}(K) - S_{a_1+a_2,a_4;m}(K) - S_{a_1+a_3,a_4;m}(K) - S_{a_2+a_3,a_4;m}(K) + S_{a_1,a_4;m}(K) + S_{a_2,a_4;m}(K) + S_{a_3,a_4;m}(K) \leq \left\lfloor \frac{m}{2} \right\rfloor - 0 - 0 - 0 + \left\lfloor \frac{m}{2} \right\rfloor + \left\lfloor \frac{m}{2} \right\rfloor + \left\lfloor \frac{m}{2} \right\rfloor = 4 \left\lfloor \frac{m}{2} \right\rfloor.$$

Similarly, $S_{a_1,a_2,a_3,a_4;m}(K) \ge -4 \lfloor \frac{m}{2} \rfloor$. Next we prove the general case $\ell \ge 5$. The expression of the form $\lfloor \frac{a_{i_1}+a_{i_2}+\dots+a_{i_r}+k}{m} \rfloor$ will be called an *r*-bracket. So for each $0 \le r \le \ell$, there are $\binom{\ell}{r}$ *r*-brackets appearing in the sum defining $f_{a_1,a_2,\dots,a_\ell;m}(k)$. We first pair up the ℓ -bracket with an $(\ell - 1)$ -bracket, a 1-bracket and a 0-bracket as follows:

$$s_1(k) = \left\lfloor \frac{a_1 + a_2 + \dots + a_\ell + k}{m} \right\rfloor - \left\lfloor \frac{a_1 + a_2 + \dots + a_{\ell-1} + k}{m} \right\rfloor - \left\lfloor \frac{a_\ell + k}{m} \right\rfloor + \left\lfloor \frac{k}{m} \right\rfloor.$$
(57)

So $s_1(k)$ is in fact $f_{a_1+a_2+\cdots+a_{\ell-1},a_\ell;m}(k)$ and we can apply (44) to obtain the inequality

$$0 \le S_{a_1+a_2+\dots+a_{\ell-1},a_\ell;m}(K) = \sum_{k=0}^K s_1(k) \le \left\lfloor \frac{m}{2} \right\rfloor.$$

Next we pair up the remaining $(\ell-1)$ -brackets with $(\ell-2)$ -brackets, 1-brackets and 0-brackets as follows:

$$-\left\lfloor\frac{a_{i_1}+a_{i_2}+\dots+a_{i_{\ell-1}}+k}{m}\right\rfloor + \left\lfloor\frac{a_{i_1}+a_{i_2}+\dots+a_{i_{\ell-2}}+k}{m}\right\rfloor + \left\lfloor\frac{a_{i_{\ell-1}}+k}{m}\right\rfloor - \left\lfloor\frac{k}{m}\right\rfloor, (58)$$

and we sum (58) over all $1 \leq i_1 < i_2 < \cdots < i_{\ell-1} \leq \ell$ and call it $s_2(k)$. Since a_ℓ does not appear in the second term on the right hand side of (57), the term $a_{i_{\ell-1}}$ appearing in (58) is always a_ℓ . So in fact (58) is $-f_{a_{i_1}+a_{i_2}+\cdots+a_{i_{\ell-2}},a_\ell;m}(k)$ and

$$s_2(k) = -\sum_{1 \le i_1 < i_2 < \dots < i_{\ell-2} < \ell} f_{a_{i_1} + a_{i_2} + \dots + a_{i_{\ell-2}}, a_{\ell}; m}(k)$$

Furthermore,

$$\sum_{k=0}^{K} s_2(k) = -\sum_{1 \le i_1 < i_2 < \dots < i_{\ell-2} < \ell} S_{a_{i_1} + a_{i_2} + \dots + a_{i_{\ell-2}}, a_{\ell}; m}(K) \le 0.$$

where the last inequality is obtained from (44). We continue doing this process and follow closely the method used in the proof of Theorems 4 and 8. The well-known identities previously recalled will be applied without reference. For each $1 \leq r \leq \ell$, let $c_r(k)$ be the sum of all $\left\lfloor \frac{a_{i_1}+a_{i_2}+\dots+a_{i_r}+k}{m} \right\rfloor$ with $1 \leq i_1 < i_2 < \dots < i_r \leq \ell$, $a_r(k)$ the sum of all such terms with $i_r = \ell$, and $b_r(k)$ the sum of all such terms with $i_r < \ell$. Therefore $c_r(k) = a_r(k) + b_r(k)$, the number of r-brackets appearing in the sum defining $c_r(k)$ is $\binom{\ell}{r}$, the number of r-brackets appearing in the sum defining $a_r(k)$ is $\binom{\ell-1}{r-1}$, and the number of r-brackets appearing in the sum defining $b_r(k)$ is $\binom{\ell-1}{r}$. As usual, the empty sum is defined to be zero, so $b_\ell(k) = 0$. We have $s_1(k) = a_\ell(k) - b_{\ell-1}(k) - a_1(k) + \lfloor \frac{k}{m} \rfloor$ and $s_2(k) = -a_{\ell-1}(k) + b_{\ell-2}(k) + \binom{\ell-1}{\ell-2}a_1(k) - \binom{\ell-1}{\ell-2} \lfloor \frac{k}{m} \rfloor$. In general, for each $1 \leq r \leq \ell - 1$, we let

$$s_{r}(k) = (-1)^{r+1}a_{\ell-r+1}(k) + (-1)^{r}b_{\ell-r}(k) + (-1)^{r}\binom{\ell-1}{\ell-r}a_{1}(k) + (-1)^{r+1}\binom{\ell-1}{\ell-r}\left\lfloor\frac{k}{m}\right\rfloor$$
$$= (-1)^{r+1}\sum_{1 \le i_{1} < i_{2} < \dots < i_{\ell-r} < \ell} f_{a_{i_{1}}+a_{i_{2}}+\dots+a_{i_{\ell-r}},a_{\ell};m}(k).$$

Then

$$\sum_{k=0}^{K} s_r(k) = (-1)^{r+1} \sum_{1 \le i_1 < i_2 < \dots < i_{\ell-r} < \ell} S_{a_{i_1} + a_{i_2} + \dots + a_{i_{\ell-r}}, a_\ell; m}(K).$$

So by (44), we see that

$$0 \le \sum_{k=0}^{K} s_r(k) \le \binom{\ell-1}{\ell-r} \left\lfloor \frac{m}{2} \right\rfloor \text{ if } r \text{ is odd, and } - \binom{\ell-1}{\ell-r} \left\lfloor \frac{m}{2} \right\rfloor \le \sum_{k=0}^{K} s_r(k) \le 0 \text{ if } r \text{ is even.}$$

Similar to the proof of Theorems 4 and 8, we obtain

$$\begin{split} \sum_{1 \le r \le \ell - 1} s_r(k) &= a_\ell + \sum_{2 \le r \le \ell - 1} (-1)^{r+1} a_{\ell - r + 1} + \sum_{1 \le r \le \ell - 2} (-1)^r b_{\ell - r} + (-1)^{\ell - 1} b_1 \\ &+ (-1)^{\ell + 1} a_1 + (-1)^\ell \left\lfloor \frac{k}{m} \right\rfloor \\ &= a_\ell + \sum_{1 \le r \le \ell - 2} (-1)^r (a_{\ell - r} + b_{\ell - r}) + (-1)^{\ell - 1} b_1 + (-1)^{\ell + 1} a_1 + (-1)^\ell \left\lfloor \frac{k}{m} \right\rfloor \\ &= c_\ell + \sum_{1 \le r \le \ell - 2} (-1)^r c_{\ell - r} + (-1)^{\ell - 1} c_1 + (-1)^\ell \left\lfloor \frac{k}{m} \right\rfloor \\ &= \sum_{0 \le r \le \ell - 1} (-1)^r c_{\ell - r} + (-1)^\ell \left\lfloor \frac{k}{m} \right\rfloor \\ &= f_{a_1, a_2, \dots, a_\ell; m}(k). \end{split}$$

Therefore

$$-\sum_{\substack{1 \le r \le \ell-1 \\ r \text{ is even}}} \binom{\ell-1}{\ell-r} \left\lfloor \frac{m}{2} \right\rfloor \le \sum_{k=0}^{K} f_{a_1,a_2,\dots,a_\ell;m}(k) \le \sum_{\substack{1 \le r \le \ell-1 \\ r \text{ is odd}}} \binom{\ell-1}{\ell-r} \left\lfloor \frac{m}{2} \right\rfloor.$$
(59)

The middle term in (59) is $S_{a_1,a_2,\ldots,a_\ell;m}(K)$. The left and right most terms in (59) are, respectively, equal to $-2^{\ell-2} \lfloor \frac{m}{2} \rfloor$ and $2^{\ell-2} \lfloor \frac{m}{2} \rfloor$ which can be evaluated by the well-known identity previously recalled. This proves the first part of the theorem. Next we show that one of the upper bound or lower bound is sharp. Let $C = \{a_1, a_2, \ldots, a_\ell\}$. Suppose ℓ is odd, m is even, and $a_i = \frac{m}{2}$ for every $1 \leq i \leq \ell$. Then we obtain by Proposition 3 and Theorem 4 that $f_{C;m}(0) = g\left(\frac{1}{2}, \frac{1}{2}, \ldots, \frac{1}{2}\right) = -2^{\ell-2}$. Let $0 < k < \frac{m}{2}$. By the definition of $f_{C;m}(k)$, we see that

$$f_{C;m}(k) = \sum_{T \subseteq [1,\ell]} (-1)^{\ell - |T|} \left\lfloor \frac{k}{m} + \frac{|T|}{2} \right\rfloor$$
$$= \sum_{r=0}^{\ell} (-1)^{\ell - r} \binom{\ell}{r} \left\lfloor \frac{k}{m} + \frac{r}{2} \right\rfloor$$
(60)

Since $0 < k < \frac{m}{2}$, we have $\frac{r}{2} < \frac{k}{m} + \frac{r}{2} < \frac{r+1}{2}$. So if r is even, then $\lfloor \frac{k}{m} + \frac{r}{2} \rfloor = \frac{r}{2} = \lfloor \frac{r}{2} \rfloor$ and if r is odd, then $\lfloor \frac{k}{m} + \frac{r}{2} \rfloor = \frac{r-1}{2} = \lfloor \frac{r}{2} \rfloor$. In any case, $\lfloor \frac{k}{m} + \frac{r}{2} \rfloor = \frac{r}{2} = \lfloor \frac{0}{m} + \frac{r}{2} \rfloor$. This implies

that $f_{C;m}(k) = f_{C;m}(0)$ for every $k = 0, 1, 2, \dots, \frac{m}{2} - 1$. Then

$$S_{C;m}\left(\frac{m}{2}-1\right) = \sum_{k=0}^{\frac{m}{2}-1} f_{C;m}(k) = \frac{m}{2} f_{C;m}(0) = -2^{\ell-2} \left\lfloor \frac{m}{2} \right\rfloor$$

So $-2^{\ell-2} \lfloor \frac{m}{2} \rfloor$ in (43) cannot be improved when ℓ is odd. Next suppose ℓ is even, m is even, and $a_i = \frac{m}{2}$ for every $1 \leq i \leq \ell$. Then we obtain similarly that $f_{C;m}(k) = f_{C;m}(0) = 2^{\ell-2}$ for every $k = 0, 1, 2, \ldots, \frac{m}{2} - 1$. Then $S_{C;m}(\frac{m}{2} - 1) = 2^{\ell-2} \lfloor \frac{m}{2} \rfloor$. So $2^{\ell-2} \lfloor \frac{m}{2} \rfloor$ in (43) cannot be improved when ℓ is even. This completes the proof.

3 Acknowledgments

Kritkhajohn Onphaeng wishes to thank DPST (Development and Promotion of Science and Technology Talents) for giving him a scholarship. Prapanpong Pongsriiam receives financial support jointly from The Thailand Research Fund and Faculty of Science, Silpakorn University, grant number RSA5980040. Correspondence should be addressed to Prapanpong Pongsriiam: prapanpong@gmail.com.

References

- L. Carlitz, An arithmetic sum connected with the greatest integer function, Norske Vid. Selsk. Forh. Trondheim 32 (1959), 24–30.
- [2] L. Carlitz, Some arithmetic sums connected with the greatest integer function, Math Scand. 8 (1960), 59-64.
- [3] R. C. Grimson, The evaluation of a sum of Jacobsthal, Norske Vid. Selsk. Skr. Trondheim (1974), No. 4.
- [4] E. Jacobsthal, Uber eine zahlentheoretische Summe, Norske Vid. Selsk. Forh. Trondheim 30 (1957), 35–41.
- [5] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, https://oeis.org.
- [6] H. Tverberg, On some number-theoretic sums introduced by Jacobsthal, Acta Arith. 155 (2012), 349–351.

2010 Mathematics Subject Classification: Primary 11A25; Secondary 11B37. Keywords: Jacobsthal sum, Jacobsthal number, Jacobsthal-Lucas number, floor function, sum. (Concerned with sequences $\underline{A001045}$ and $\underline{A014551}$.)

Received September 28 2016; revised version received January 4 2017. Published in *Journal of Integer Sequences*, January 14 2017.

Return to Journal of Integer Sequences home page.