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Abstract

We study the sums introduced by Jacobsthal and Tverberg and show that the ex-

treme values of the sums are connected with Jacobsthal and Jacobsthal-Lucas numbers.

1 Introduction

Let a, b ∈ Z and m ∈ Z
+. In 1957, Jacobsthal [4] introduced the sums of the form

Sa,b;m(K) =
K
∑

k=0

fa,b;m(k),

where

fa,b;m(k) =

⌊

a+ b+ k

m

⌋

−

⌊

a+ k

m

⌋

−

⌊

b+ k

m

⌋

+

⌊

k

m

⌋

. (1)
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In the above equation and throughout this article, unless stated otherwise, k is an integer
and K is a nonnegative integer. So we can consider fa,b;m and Sa,b;m as functions of k and
K defined on Z and on N ∪ {0}, respectively.

These sums are also studied by Carlitz [1, 2], Grimson [3] and recently by Tverberg [6].
In addition, Tverberg [6] extends the definition of fa,b;m(k) and Sa,b;m(K) to the following
form.

Definition 1. Let m and ℓ be positive integers and let C be a multiset of ℓ integers
a1, a2, . . . , aℓ, i.e., ai = aj is allowed for some i 6= j. Define fC;m : Z → Z and SC;m :
N ∪ {0} → Z by

fC;m(k) =
∑

T⊆[1,ℓ]

(−1)ℓ−|T |

⌊

k +
∑

i∈T ai

m

⌋

,

SC;m(K) =
K
∑

k=0

fC;m(k).

We sometimes write fa1,a2,...,aℓ;m(k) and Sa1,a2,...,aℓ;m(K) instead of fC;m(k) and SC;m(K),
respectively. The set [1, ℓ] appearing in the sum defining f is {1, 2, 3, . . . , ℓ} and if T = ∅,
then

∑

i∈T ai is defined to be zero.

For example, if C = {a, b}, then fC;m(k) given in Definition 1 is the same as fa,b;m(k)
given in (1), and if C = {a1, a2, a3}, then fC;m(k) is

fa1,a2,a3;m(k) =

⌊

a1 + a2 + a3 + k

m

⌋

−

⌊

a1 + a2 + k

m

⌋

−

⌊

a1 + a3 + k

m

⌋

−

⌊

a2 + a3 + k

m

⌋

+

⌊

a1 + k

m

⌋

+

⌊

a2 + k

m

⌋

+

⌊

a3 + k

m

⌋

−

⌊

k

m

⌋

.

Jacobsthal [4] shows that for any K ∈ N ∪ {0}, we have

0 ≤ Sa,b;m(K) ≤
⌊m

2

⌋

, (2)

which is a sharp inequality, that is, the lower bound 0 is actually the minimum value and the
upper bound

⌊

m
2

⌋

is the maximum value of Sa,b;m(K). Tverberg [6] proves (2) in a different
way and he also gives the extreme values of Sa1,a2,a3;m(K) without proof. Nevertheless, the
extreme values of fa1,a2,...,aℓ;m(k) (for ℓ ≥ 2) and Sa1,a2,...,aℓ;m(K) (for ℓ ≥ 4) have not been
calculated.

In this article, we calculate the extreme values of fa1,a2,...,aℓ;m(k) for all ℓ ≥ 2 (see Theorem
8). We also introduce the function g in Definition 2, give its connection with fa1,a2,...,aℓ;m(k),
and obtain its extreme values (see Proposition 3 and Theorem 4). Furthermore, we obtain the
minimum value of Sa1,a2,...,aℓ;m(K) when ℓ is odd and the maximum value of Sa1,a2,...,aℓ;m(K)
when ℓ is even (see Theorem 9).
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The reader will see that the extreme values of the functions g and fa1,a2,...,aℓ;m(k) are con-
nected with Jacobsthal numbers Jn and Jacobsthal-Lucas numbers jn defined, respectively,
by the recurrence relations

J0 = 0, J1 = 1, Jn = Jn−1 + 2Jn−2 for n ≥ 2,

and
j0 = 2, j1 = 1, jn = jn−1 + 2jn−2 for n ≥ 2.

The sequences (Jn)n≥0 and (jn)n≥0 are, respectively, A001045 and A014551 in the OEIS [5].
The function g is defined as follows:

Definition 2. Let g : Rn → Z be given by

g(x1, x2, x3, . . . , xn) =
∑

1≤i≤n

⌊xi⌋ −
∑

1≤i1<i2≤n

⌊xi1 + xi2⌋

+
∑

1≤i1<i2<i3≤n

⌊xi1 + xi2 + xi3⌋ − · · ·+ (−1)n−1⌊x1 + x2 + x3 + · · ·+ xn⌋.

In other words,

g(x1, x2, x3, . . . , xn) =
∑

∅6=T⊆[1,n]

(−1)|T |−1

⌊

∑

i∈T

xi

⌋

.

2 Main results

We begin this section by giving a relation between the functions f and g. Then we give
the extreme values of g and f and their connection with Jacobsthal and Jacobsthal-Lucas
numbers.

Proposition 3. For each ℓ ≥ 2, we have

(i) fa1,a2,...,aℓ;m(0) = (−1)ℓ−1g
(

a1
m
, a2
m
, · · · , aℓ

m

)

,

(ii) fa1,a2,...,aℓ;m(k) = (−1)ℓg
(

a1
m
, a2
m
, · · · , aℓ

m
, k
m

)

+ (−1)ℓ−1g
(

a1
m
, a2
m
, · · · , aℓ

m

)

.

Proof. This follows easily from the definitions of f and g but we give a proof for completeness.
We have

fa1,a2,...,aℓ;m(0) =
∑

T⊆[1,ℓ]

(−1)ℓ−|T |

⌊

∑

i∈T

(ai

m

)

⌋

=
∑

∅6=T⊆[1,ℓ]

(−1)ℓ−|T |

⌊

∑

i∈T

(ai

m

)

⌋

= (−1)ℓ−1
∑

∅6=T⊆[1,ℓ]

(−1)1−|T |

⌊

∑

i∈T

(ai

m

)

⌋

= (−1)ℓ−1g
(a1

m
,
a2

m
, . . . ,

aℓ

m

)

.
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Next let aℓ+1 = k. Then we obtain

(−1)ℓg

(

a1

m
,
a2

m
, · · · ,

aℓ

m
,
k

m

)

+ (−1)ℓ−1g
(a1

m
,
a2

m
, · · · ,

aℓ

m

)

=(−1)ℓ





∑

∅6=T⊆[1,ℓ+1]

(−1)|T |−1

⌊

∑

i∈T

(ai

m

)

⌋

−
∑

∅6=T⊆[1,ℓ]

(−1)|T |−1

⌊

∑

i∈T

(ai

m

)

⌋





=(−1)ℓ
∑

T⊆[1,ℓ+1]
ℓ+1∈T

(−1)|T |−1

⌊

∑

i∈T

(ai

m

)

⌋

=(−1)ℓ
∑

T⊆[1,ℓ]

(−1)|T |

⌊

k +
∑

i∈T ai

m

⌋

=fa1,a2,...,aℓ;m(k).

Theorem 4. For each n ≥ 2, the function g given in Definition 2 has maximum value

2n−2 − 1 and minimum value −2n−2. The minimum occurs at least when xk = 1
2
for every

1 ≤ k ≤ n. The maximum occurs at least when xk =
1
2
− 1

n2 for every 1 ≤ k ≤ n.

Proof. If n = 2, then the result is a well-known inequality

−1 ≤ ⌊x⌋+ ⌊y⌋ − ⌊x+ y⌋ ≤ 0, (3)

which holds for all x, y ∈ R. The inequality (3) is sharp: if x = y = 1
2
the left inequality

in (3) becomes equality, and if x = y = 1
4
the right inequality in (3) becomes equality. The

result when n ≥ 3 is obtained from the case n = 2 and a careful selection of pairs. For
illustration purpose, we first give a proof for the case n = 3 and n = 4. Recall that

g(x1, x2, x3) = ⌊x1⌋+ ⌊x2⌋+ ⌊x3⌋ − ⌊x1 + x2⌋ − ⌊x1 + x3⌋ − ⌊x2 + x3⌋+ ⌊x1 + x2 + x3⌋.

We obtain by (3) that

0 ≤ ⌊x1 + x2 + x3⌋ − ⌊x1 + x2⌋ − ⌊x3⌋ ≤ 1, (4)

−1 ≤ −⌊x2 + x3⌋+ ⌊x2⌋+ ⌊x3⌋ ≤ 0, (5)

−1 ≤ −⌊x1 + x3⌋+ ⌊x1⌋+ ⌊x3⌋ ≤ 0. (6)

Summing (4), (5), and (6), the middle terms give g(x1, x2, x3). Then −2 ≤ g(x1, x2, x3) ≤ 1.
Next we consider

g(x1, x2, x3, x4) = ⌊x1⌋+ ⌊x2⌋+ ⌊x3⌋+ ⌊x4⌋ − ⌊x1 + x2⌋ − ⌊x1 + x3⌋ − ⌊x1 + x4⌋

− ⌊x2 + x3⌋ − ⌊x2 + x4⌋ − ⌊x3 + x4⌋+ ⌊x1 + x2 + x3⌋+ ⌊x1 + x2 + x4⌋

+ ⌊x1 + x3 + x4⌋+ ⌊x2 + x3 + x4⌋ − ⌊x1 + x2 + x3 + x4⌋.
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Again, we obtain by (3) the following inequalities:

−1 ≤ −⌊x1 + x2 + x3 + x4⌋+ ⌊x1 + x2 + x3⌋+ ⌊x4⌋ ≤ 0, (7)

0 ≤ ⌊x1 + x2 + x4⌋ − ⌊x1 + x2⌋ − ⌊x4⌋ ≤ 1, (8)

0 ≤ ⌊x1 + x3 + x4⌋ − ⌊x1 + x3⌋ − ⌊x4⌋ ≤ 1, (9)

0 ≤ ⌊x2 + x3 + x4⌋ − ⌊x2 + x3⌋ − ⌊x4⌋ ≤ 1, (10)

−1 ≤ −⌊x1 + x4⌋+ ⌊x1⌋+ ⌊x4⌋ ≤ 0, (11)

−1 ≤ −⌊x2 + x4⌋+ ⌊x2⌋+ ⌊x4⌋ ≤ 0, (12)

−1 ≤ −⌊x3 + x4⌋+ ⌊x3⌋+ ⌊x4⌋ ≤ 0. (13)

Summing (7) to (13), we see that −4 ≤ g(x1, x2, x3, x4) ≤ 3.
Next we prove the general case n ≥ 5. The expression of the form ⌊xi1 + xi2 + · · ·+ xik⌋

will be called a k-bracket. So for each 1 ≤ k ≤ n, there are
(

n

k

)

k-brackets appearing in the
sum defining g(x1, x2, . . . , xn). We first pair up the n-bracket with an (n− 1)-bracket and a
1-bracket as follows:

s1 = (−1)n−1⌊x1 + x2 + · · ·+ xn⌋+ (−1)n−2⌊x1 + x2 + · · ·+ xn−1⌋+ (−1)n−2⌊xn⌋. (14)

Notice that the sign of ⌊xn⌋ in (14) may or may not be the same as that appearing in the
sum defining g(x1, x2, . . . , xn) but it is the same as the sign of ⌊x1 + x2 + · · ·+ xn−1⌋ so that
we can apply (3) to obtain the bound for s1. Next we pair up the remaining (n−1)-brackets
with (n− 2)-brackets and 1-brackets as follows:

(−1)n−2⌊xi1 + xi2 + · · ·+ xin−1
⌋+ (−1)n−3⌊xi1 + xi2 + · · ·+ xin−2

⌋+ (−1)n−3⌊xin−1
⌋, (15)

where 1 ≤ i1 < i2 < . . . < in−1 ≤ n. We note again that the sign of ⌊xi1 + xi2 + · · ·+ xin−1
⌋

and ⌊xi1 + xi2 + · · · + xin−2
⌋ in (15) are the same as those appearing in the sum defining

g(x1, x2, . . . , xn) while the sign of ⌊xin−1
⌋ in (15) may or may not be the same, but we can

apply (3) to obtain the bound of (15). Since ⌊x1+x2+ · · ·+xn−1⌋ appears in (14), the term
xin−1

appearing in the (n− 1)-brackets in (15) is always xn. So in fact (15) is

(−1)n−2⌊xi1 + xi2 + · · ·+ xin−2
+ xn⌋+ (−1)n−3⌊xi1 + xi2 + · · ·+ xin−2

⌋+ (−1)n−3⌊xn⌋. (16)
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Then we sum (16) over all possibles 1 ≤ i1 < i2 < . . . < in−2 < n, and call it s2. That is

s2 = (−1)n−2
∑

1≤i1<i2<...<in−2<n

⌊xi1 + xi2 + · · ·+ xin−2
+ xn⌋

+ (−1)n−3
∑

1≤i1<i2<...<in−2<n

⌊xi1 + xi2 + · · ·+ xin−2
⌋+ (−1)n−3

(

n− 1

n− 2

)

⌊xn⌋.

We continue doing this process as follows. For each 0 ≤ ℓ ≤ n − 1, let cℓ be the sum of all
⌊xi1 + xi2 + · · ·+ xin−ℓ

⌋ with 1 ≤ i1 < i2 < . . . < in−ℓ ≤ n, aℓ the sum of all such terms with
in−ℓ = n, and bℓ the sum of all such terms with in−ℓ < n. Therefore cℓ = aℓ + bℓ. As usual,
the empty sum is defined to be zero, so b0 = 0. The number of (n− ℓ)-brackets appearing in
the sum defining cℓ is

(

n

n−ℓ

)

, the number of (n − ℓ)-brackets appearing in the sum defining

aℓ is
(

n−1
n−ℓ−1

)

, and the number of (n− ℓ)-brackets appearing in the sum defining bℓ is
(

n−1
n−ℓ

)

.
In addition, we have

s1 = (−1)n−1a0 + (−1)n−2b1 + (−1)n−2⌊xn⌋,

s2 = (−1)n−2a1 + (−1)n−3b2 + (−1)n−3

(

n− 1

n− 2

)

⌊xn⌋.

In general, for each 1 ≤ ℓ ≤ n− 1, we let

sℓ = (−1)n−ℓaℓ−1 + (−1)n−ℓ−1bℓ + (−1)n−ℓ−1

(

n− 1

n− ℓ

)

⌊xn⌋.

Then

∑

1≤ℓ≤n−1

sℓ = (−1)n−1a0 +
∑

2≤ℓ≤n−1

(−1)n−ℓaℓ−1 +
∑

1≤ℓ≤n−2

(−1)n−ℓ−1bℓ + bn−1

+ ⌊xn⌋
∑

1≤ℓ≤n−1

(−1)n−ℓ−1

(

n− 1

n− ℓ

)

. (17)

Recall a well known identity
∑

0≤ℓ≤n(−1)ℓ
(

n

ℓ

)

= 0 for all n ≥ 1. Therefore the last sum on
the right hand side of (17) is

−
∑

1≤ℓ≤n−1

(−1)n−ℓ

(

n− 1

n− ℓ

)

= −
∑

1≤ℓ≤n−1

(−1)ℓ
(

n− 1

ℓ

)

= −
∑

0≤ℓ≤n−1

(−1)ℓ
(

n− 1

ℓ

)

+ 1 = 1.

Therefore the last term in (17) is ⌊xn⌋. Replacing ℓ by ℓ+1 in the first sum on the right
hand side of (17), we see that
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∑

1≤ℓ≤n−1

sℓ = (−1)n−1a0 +
∑

1≤ℓ≤n−2

(−1)n−ℓ−1(aℓ + bℓ) + bn−1 + ⌊xn⌋

= (−1)n−1c0 +
∑

1≤ℓ≤n−2

(−1)n−ℓ−1cℓ + bn−1 + ⌊xn⌋

= (−1)n−1c0 +
∑

1≤ℓ≤n−2

(−1)n−ℓ−1cℓ + cn−1 (18)

=
∑

0≤ℓ≤n−1

(−1)n−ℓ−1cℓ

= g(x1, x2, . . . , xn),

where (18) can be obtained from the definition of cn−1, bn−1, and an−1 that

cn−1 = ⌊x1⌋+ ⌊x2⌋+ · · ·+ ⌊xn⌋ ,

bn−1 = ⌊x1⌋+ ⌊x2⌋+ · · ·+ ⌊xn−1⌋ ,

an−1 = ⌊xn⌋ , and

cn−1 = an−1 + bn−1.

We apply (3) to (14) to obtain

0 ≤ s1 ≤ 1 if n is odd, and −1 ≤ s1 ≤ 0 if n is even.

Similarly, applying (3) to (16), we see that such sum lies in [0, 1] if n is even, and lies in
[−1, 0] if n is odd. Therefore

0 ≤ s2 ≤

(

n− 1

n− 2

)

if n is even, and −

(

n− 1

n− 2

)

≤ s2 ≤ 0 if n is odd.

In general, for each 1 ≤ ℓ ≤ n− 1, we have

0 ≤ sℓ ≤

(

n− 1

n− ℓ

)

, if n and ℓ have the same parity,

−

(

n− 1

n− ℓ

)

≤ sℓ ≤ 0, if n and ℓ have a different parity.

Since g(x1, x2, . . . , xn) =
∑

1≤ℓ≤n−1 sℓ, we obtain, for odd n,

−
∑

1≤ℓ≤n−1
ℓ is even

(

n− 1

n− ℓ

)

≤ g(x1, x2, . . . , xn) ≤
∑

1≤ℓ≤n−1
ℓ is odd

(

n− 1

n− ℓ

)

,

and for even n,

−
∑

1≤ℓ≤n−1
ℓ is odd

(

n− 1

n− ℓ

)

≤ g(x1, x2, . . . , xn) ≤
∑

1≤ℓ≤n−1
ℓ is even

(

n− 1

n− ℓ

)

.
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Recall a well known identity

∑

0≤k≤n
k is even

(

n

k

)

=
∑

0≤k≤n
k is odd

(

n

k

)

= 2n−1.

Therefore if n is odd, then

∑

1≤ℓ≤n−1
ℓ is odd

(

n− 1

n− ℓ

)

=
∑

1≤ℓ≤n−1
ℓ is even

(

n− 1

ℓ

)

= 2n−2 − 1, and

∑

1≤ℓ≤n−1
ℓ is even

(

n− 1

n− ℓ

)

=
∑

1≤ℓ≤n−1
ℓ is odd

(

n− 1

ℓ

)

=
∑

0≤ℓ≤n−1
ℓ is odd

(

n− 1

ℓ

)

= 2n−2.

Similarly, if n is even, then

∑

1≤ℓ≤n−1
ℓ is odd

(

n− 1

n− ℓ

)

= 2n−2 and
∑

1≤ℓ≤n−1
ℓ is even

(

n− 1

n− ℓ

)

= 2n−2 − 1.

Hence −2n−2 ≤ g(x1, x2, . . . , xn) ≤ 2n−2 − 1, as required. Next we show that the lower
bound −2n−2 and the upper bound 2n−2 − 1 are actually the minimum and the maximum
of g(x1, x2, . . . , xn), respectively. Recall that the fractional part of a real number x, denoted
by {x}, is defined by {x} = x− ⌊x⌋. Let xk =

1
2
for every k = 1, 2, . . . , n. Then

g(x1, x2, . . . , xn) =
∑

1≤k≤n

(−1)k−1

⌊

k

2

⌋(

n

k

)

=
∑

1≤k≤n

(−1)k−1

(

k

2

)(

n

k

)

−
∑

1≤k≤n

(−1)k−1

{

k

2

}(

n

k

)

=
1

2

∑

1≤k≤n

(−1)k−1k

(

n

k

)

−
1

2

∑

1≤k≤n
k is odd

(

n

k

)

, (19)

where the last equality is obtained from the fact that
{

k
2

}

= 0 if k is even and
{

k
2

}

= 1
2
if k

is odd. By differentiating both sides of

(1 + x)n =
n
∑

k=0

(

n

k

)

xk (20)

and substituting x = −1, we obtain a well-known identity

n
∑

k=1

(−1)k−1k

(

n

k

)

= 0, which holds for all n ≥ 2. (21)
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In addition, we know that
∑

1≤k≤n
k is odd

(

n

k

)

= 2n−1.

Therefore (19) becomes

g(x1, x2, . . . , xn) = 0−
1

2

(

2n−1
)

= −2n−2.

This shows that −2n−2 is the minimun value of g. Next let xk = 1
2
− 1

n2 for every k =
1, 2, . . . , n. Then

g(x1, x2, . . . , xn) =
∑

1≤k≤n

(−1)k−1

⌊

k

2
−

k

n2

⌋(

n

k

)

. (22)

If 1 ≤ k ≤ n and k is even, then
⌊

k
2
− k

n2

⌋

= k
2
− 1 =

⌊

k−1
2

⌋

. If 1 ≤ k ≤ n and k is odd, then
⌊

k
2
− k

n2

⌋

=
⌊

k−1
2

+ 1
2
− k

n2

⌋

=
⌊

k−1
2

⌋

. Therefore (22) becomes

g(x1, x2, . . . , xn) =
∑

1≤k≤n

(−1)k−1

⌊

k − 1

2

⌋(

n

k

)

. (23)

Now we can evaluate the sum (23) by using the same method as in (19). We write
⌊

k−1
2

⌋

=
k−1
2

−
{

k−1
2

}

and we know that
{

k−1
2

}

= 0 if k is odd and
{

k−1
2

}

= 1
2
if k is even. Then (23)

can be written as

g(x1, x2, . . . , xn) =
1

2

∑

1≤k≤n

(−1)k−1k

(

n

k

)

−
1

2

∑

1≤k≤n

(−1)k−1

(

n

k

)

+
1

2

∑

1≤k≤n
k is even

(

n

k

)

.

The first sum is zero by (21). The second sum is 1 by substituting x = −1 in (20). Therefore

g(x1, x2, . . . , xn) = 0−
1

2
+

1

2

(

2n−1 − 1
)

= 2n−2 − 1.

Recall that the Binet forms of Jacobsthal numbers Jn and Jacobsthal-Lucas numbers jn
are

Jn =
2n − (−1)n

3
and jn = 2n + (−1)n (24)

for every n ≥ 0. Therefore we obtain the connection between Jacobsthal and Jacobsthal-
Lucas numbers and sums introduced by Jacobsthal [4] and Tverberg [6] as follows.

Corollary 5. If n is odd, then the maximum and the minimum value of g(x1, x2, x3, . . . , xn)
are jn−2 and −1−jn−2, respectively. If n is even, then the maximum and the minimum value

of g(x1, x2, x3, . . . , xn) are 3Jn−2 and 1− jn−2, respectively.
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Proof. This follows immediately from (24) and Theorem 4.

Remark 6. From this point on, we will apply the well-known identities which are already
recalled without reference.

Next we give the extreme values of fa1,a2,...,aℓ;m(k). Although we can write fa1,a2,...,aℓ;m(k)
in terms of g(x1, x2, . . . , xn) as given in Proposition 3, we do not know the proof which
applies Theorem 4 to obtain Theorem 8. Nevertheless, we can use the same idea in the proof
of Theorem 4 together with the following lemma to prove Theorem 8.

Lemma 7. The following statements hold.

(i) For each i ∈ {1, 2, . . . , n} and q ∈ Z, we have

g(x1, x2, . . . , xi + q, . . . , xn) = g(x1, x2, . . . , xn).

In particular, g has period 1 in each variable.

(ii) For each i ∈ {1, 2, . . . , ℓ} and q ∈ Z, we have

fa1,a2,...,ai+qm,...,aℓ;m(k) = fa1,a2,...,aℓ;m(k) = fa1,a2,...,aℓ;m(k + qm).

In particular, f has period m in each variable a1, a2, . . . , aℓ and k.

Proof. Since ⌊q + x⌋ = q + ⌊x⌋ for every q ∈ Z and x ∈ R, we see that

g(x1, x2, . . . , xi + q, . . . , xn) =

(

q +
n
∑

i=1

⌊xi⌋

)

−

(

(

n− 1

1

)

q +
∑

1≤i1<i2≤n

⌊xi1 + xi2⌋

)

+

(

(

n− 1

2

)

q +
∑

1≤i1<i2<i3≤n

⌊xi1 + xi2 + xi3⌋

)

− · · ·+ (−1)n−1

((

n− 1

n− 1

)

q + ⌊x1 + x2 + · · ·+ xn⌋

)

= g(x1, x2, . . . , xn) + q
∑

0≤k≤n−1

(−1)k
(

n− 1

k

)

= g(x1, x2, . . . , xn).

This proves (i). Next we prove (ii). By Proposition 3 and by (i), we obtain

fa1,a2,...,ai+qm,...,aℓ;m(k) = (−1)ℓg

(

a1

m
,
a2

m
, . . . ,

ai

m
+ q, . . . ,

aℓ

m
,
k

m

)

+ (−1)ℓ−1g
(a1

m
,
a2

m
, . . . ,

ai

m
+ q, . . . ,

aℓ

m

)

= (−1)ℓg

(

a1

m
,
a2

m
, . . . ,

aℓ

m
,
k

m

)

+ (−1)ℓ−1g
(a1

m
,
a2

m
, . . . ,

aℓ

m

)

= fa1,a2,...,aℓ;m(k).

Similarly, fa1,a2,...,aℓ;m(k + qm) = fa1,a2,...,aℓ;m(k). This completes the proof.
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Theorem 8. For each ℓ ≥ 2, a1, a2, . . . , aℓ, k ∈ Z and m ≥ 1, we have

−2ℓ−2 ≤ fa1,a2,...,aℓ;m(k) ≤ 2ℓ−2.

Moreover, −2ℓ−2 and 2ℓ−2 are best possible in the sense that there are a1, a2, . . . , aℓ,m, k

which make the inequality becomes equality. More precisely the following statements hold.

(i) If ℓ is odd, m is even, and ai =
m
2
for every i = 1, 2, . . . , ℓ, then fa1,a2,...,aℓ;m(0) = −2ℓ−2

and fa1,a2,...,aℓ;m(
m
2
) = 2ℓ−2.

(ii) If ℓ is even, m is even, and ai =
m
2
for every i = 1, 2, . . . , ℓ, then fa1,a2,...,aℓ;m(0) = 2ℓ−2

and fa1,a2,...,aℓ;m(
m
2
) = −2ℓ−2.

Proof. By Lemma 7, we can assume that ai ∈ [0,m− 1] for every 1 ≤ i ≤ ℓ. Therefore

⌊ai

m

⌋

= 0 for every i ∈ {1, 2, . . . , ℓ}. (25)

If ℓ = 2, then the result follows from (25) and (3), and we have

0 ≤

⌊

a1 + a2 + k

m

⌋

−

⌊

a1 + k

m

⌋

≤ 1, (26)

and

−1 ≤ −

⌊

a2 + k

m

⌋

+

⌊

k

m

⌋

≤ 0. (27)

Summing (26) and (27), we obtain −1 ≤ fa1,a2;m(k) ≤ 1. The result when ℓ ≥ 3 is based on
a careful selection of pairs and the case ℓ = 2. For illustration purpose, we first give a proof
for the case ℓ = 3 and ℓ = 4. Recall that

fa1,a2,a3;m(k) =

⌊

a1 + a2 + a3 + k

m

⌋

−

⌊

a1 + a2 + k

m

⌋

−

⌊

a1 + a3 + k

m

⌋

−

⌊

a2 + a3 + k

m

⌋

+

⌊

a1 + k

m

⌋

+

⌊

a2 + k

m

⌋

+

⌊

a3 + k

m

⌋

−

⌊

k

m

⌋

.

We obtain by (3) and (25) that

0 ≤

⌊

a1 + a2 + a3 + k

m

⌋

−

⌊

a1 + a2 + k

m

⌋

≤ 1, (28)

−1 ≤ −

⌊

a1 + a3 + k

m

⌋

+

⌊

a1 + k

m

⌋

≤ 0, (29)

−1 ≤ −

⌊

a2 + a3 + k

m

⌋

+

⌊

a2 + k

m

⌋

≤ 0, (30)
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0 ≤

⌊

a3 + k

m

⌋

−

⌊

k

m

⌋

≤ 1. (31)

Summing (28), (29), (30), and (31), we see that the middle term is fa1,a2,a3,m(k). Therefore
−2 ≤ fa1,a2,a3;m(k) ≤ 2. Next we consider

fa1,a2,a3,a4;m(k) =

⌊

a1 + a2 + a3 + a4 + k

m

⌋

−

⌊

a1 + a2 + a3 + k

m

⌋

−

⌊

a1 + a2 + a4 + k

m

⌋

−

⌊

a1 + a3 + a4 + k

m

⌋

−

⌊

a2 + a3 + a4 + k

m

⌋

+

⌊

a1 + a2 + k

m

⌋

+

⌊

a1 + a3 + k

m

⌋

+

⌊

a1 + a4 + k

m

⌋

+

⌊

a2 + a3 + k

m

⌋

+

⌊

a2 + a4 + k

m

⌋

+

⌊

a3 + a4 + k

m

⌋

−

⌊

a1 + k

m

⌋

−

⌊

a2 + k

m

⌋

−

⌊

a3 + k

m

⌋

−

⌊

a4 + k

m

⌋

+

⌊

k

m

⌋

.

Again, we obtain by (3) and (25) the following inequalities:

0 ≤

⌊

a1 + a2 + a3 + a4 + k

m

⌋

−

⌊

a1 + a2 + a3 + k

m

⌋

≤ 1, (32)

−1 ≤ −

⌊

a1 + a2 + a4 + k

m

⌋

+

⌊

a1 + a2 + k

m

⌋

≤ 0, (33)

−1 ≤ −

⌊

a1 + a3 + a4 + k

m

⌋

+

⌊

a1 + a3 + k

m

⌋

≤ 0, (34)

−1 ≤ −

⌊

a2 + a3 + a4 + k

m

⌋

+

⌊

a2 + a3 + k

m

⌋

≤ 0, (35)

0 ≤

⌊

a1 + a4 + k

m

⌋

−

⌊

a1 + k

m

⌋

≤ 1, (36)

0 ≤

⌊

a2 + a4 + k

m

⌋

−

⌊

a2 + k

m

⌋

≤ 1, (37)

0 ≤

⌊

a3 + a4 + k

m

⌋

−

⌊

a3 + k

m

⌋

≤ 1, (38)

−1 ≤ −

⌊

a4 + k

m

⌋

+

⌊

k

m

⌋

≤ 0. (39)

Summing (32) to (39), we see that −4 ≤ fa1,a2,a3,a4,m(k) ≤ 4.

Next we prove the general case ℓ ≥ 5. The expression of the form
⌊

ai1+ai2+···+air+k

m

⌋

will

be called an r-bracket. So for each 1 ≤ r ≤ ℓ, there are
(

ℓ

r

)

r-brackets appearing in the sum
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defining fa1,a2,...,aℓ;m(k). We follow closely the method used in the proof of Theorem 4. So
we first pair up the ℓ-bracket with an (ℓ− 1)-bracket as follows:

s1 =

⌊

a1 + a2 + · · ·+ aℓ + k

m

⌋

−

⌊

a1 + a2 + · · ·+ aℓ−1 + k

m

⌋

, (40)

and we can apply (3) and (25) to obtain the bound for s1. Next we pair up the remaining
(ℓ− 1)-brackets with (ℓ− 2)-brackets as follows:

−

⌊

ai1 + ai2 + · · ·+ aiℓ−1
+ k

m

⌋

+

⌊

ai1 + ai2 + · · ·+ aiℓ−2
+ k

m

⌋

, (41)

and we sum (41) over all 1 ≤ i1 < i2 < . . . < iℓ−1 ≤ ℓ and call it s2. Since aℓ does not appear
in the second term on the right hand side of (40), the term aiℓ−1

appearing in (41) is always
aℓ. So in fact

s2 = −
∑

1≤i1<i2<...<iℓ−2<ℓ

⌊

ai1 + ai2 + · · ·+ aiℓ−2
+ aℓ + k

m

⌋

+
∑

1≤i1<i2<...<iℓ−2<ℓ

⌊

ai1 + ai2 + · · ·+ aiℓ−2
+ k

m

⌋

.

We continue doing this process as follows. For each 1 ≤ r ≤ ℓ, let cr be the sum of all
⌊

ai1+ai2+···+air+k

m

⌋

with 1 ≤ i1 < i2 < · · · < ir ≤ ℓ, ar the sum of all such terms with ir = ℓ,

and br the sum of all such terms with ir < ℓ. Therefore cr = ar+br, the number of summands
of cr is

(

ℓ

r

)

, the number of summands of ar is
(

ℓ−1
r−1

)

, and the number of summands of br is
(

ℓ−1
r

)

. As usual, the empty sum is defined to be zero, so bℓ = 0. We have s1 = aℓ − bℓ−1 and
s2 = −aℓ−1 + bℓ−2. In general, for each 1 ≤ r ≤ ℓ− 1, we let

sr = (−1)r+1aℓ−r+1 + (−1)rbℓ−r and sℓ = (−1)ℓ+1a1 + (−1)ℓ
⌊

k

m

⌋

.

Then

0 ≤ sr ≤

(

ℓ− 1

ℓ− r

)

if r is odd, and −

(

ℓ− 1

ℓ− r

)

≤ sr ≤ 0 if r is even,
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∑

1≤r≤ℓ

sr = aℓ +
∑

2≤r≤ℓ−1

(−1)r+1aℓ−r+1 +
∑

1≤r≤ℓ−2

(−1)rbℓ−r + (−1)ℓ−1b1 + sℓ

= aℓ +
∑

1≤r≤ℓ−2

(−1)r(aℓ−r + bℓ−r) + (−1)ℓ−1b1 + (−1)ℓ+1a1 +

⌊

k

m

⌋

= cℓ +
∑

1≤r≤ℓ−2

(−1)rcℓ−r + (−1)ℓ−1c1 +

⌊

k

m

⌋

=
∑

0≤r≤ℓ−1

(−1)rcℓ−r +

⌊

k

m

⌋

= fa1,a2,...,aℓ;m(k).

Therefore

−
∑

1≤r≤ℓ
r is even

(

ℓ− 1

ℓ− r

)

≤ fa1,a2,...,aℓ;m(k) ≤
∑

1≤r≤ℓ
r is odd

(

ℓ− 1

ℓ− r

)

.

Replacing r by r + 1, we see that

∑

1≤r≤ℓ
r is odd

(

ℓ− 1

ℓ− r

)

=
∑

0≤r≤ℓ−1
r is even

(

ℓ− 1

ℓ− 1− r

)

= 2ℓ−2.

Similarly,

−
∑

1≤r≤ℓ
r is even

(

ℓ− 1

ℓ− r

)

= −2ℓ−2.

Therefore

−2ℓ−2 ≤ fa1,a2,...,aℓ;m(k) ≤ 2ℓ−2, (42)

as required. If ℓ is odd, m is even, and ai =
m
2
for every 1 ≤ i ≤ ℓ, we obtain by Propo-

sition 3 and Theorem 4 that fa1,a2,...,aℓ;m(0) = g
(

1
2
, 1
2
, . . . , 1

2

)

= −2ℓ−2and fa1,a2,...,aℓ;m(
m
2
) =

(−1)ℓg
(

1
2
, 1
2
, . . . , 1

2

)

+ (−1)ℓ−1g
(

1
2
, 1
2
, . . . , 1

2

)

= 2ℓ−2 . If ℓ is even, m is even, and ai =
m
2
for

every 1 ≤ i ≤ ℓ, we obtain similarly that fa1,a2,...,aℓ;m(0) = 2ℓ−2 and fa1,a2,...,aℓ;m(
m
2
) = −2ℓ−2.

So 2ℓ−2 and −2ℓ−2 in (42) cannot be improved. This completes The proof.

We obtain the extreme values of Sa1,a2,...,aℓ;m for some cases ℓ ≥ 4 as well. More precisely,
we have the following result.

Theorem 9. For each ℓ ≥ 2, a1, a2, . . . , , aℓ ∈ Z, m ∈ N, and K ∈ N ∪ {0}, we have

−2ℓ−2
⌊m

2

⌋

≤ Sa1,a2,...,aℓ;m(K) ≤ 2ℓ−2
⌊m

2

⌋

. (43)
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Moreover, If ℓ is odd, then the lower bound −2ℓ−2
⌊

m
2

⌋

is sharp and if ℓ is even, then the

upper bound 2ℓ−2
⌊

m
2

⌋

is sharp in the sense that there are a1, a2, . . . , aℓ,m, k which make the

inequality becomes equality. More precisely, the following statements hold.

(i) If ℓ is odd, m is even, and ai =
m
2

for every i = 1, 2, . . . , ℓ, then Sa1,a2,...,aℓ;m(K) =
−2ℓ−2

⌊

m
2

⌋

.

(ii) If ℓ is even, m is even, and ai =
m
2
for every i = 1, 2, . . . , ℓ, then Sa1,a2,...,aℓ;m(K) =

2ℓ−2
⌊

m
2

⌋

.

Proof. If ℓ = 2, then the result is already proved by Jacobsthal [4]. See also another proof
by Tverberg [6]. We recall the result when ℓ = 2 for easy reference as follows:

0 ≤ Sa,b;m(K) ≤
⌊m

2

⌋

. (44)

As before the result when ℓ ≥ 3 is based on the case ℓ = 2 and a careful selection of pairs,
and we first illustrate the idea by giving the proof for the case ℓ = 3 and ℓ = 4. Recall that

fa1,a2,a3;m(k) =

⌊

a1 + a2 + a3 + k

m

⌋

−

⌊

a1 + a2 + k

m

⌋

−

⌊

a1 + a3 + k

m

⌋

−

⌊

a2 + a3 + k

m

⌋

+

⌊

a1 + k

m

⌋

+

⌊

a2 + k

m

⌋

+

⌊

a3 + k

m

⌋

−

⌊

k

m

⌋

.

We have

fa1+a2,a3;m(k) =

⌊

a1 + a2 + a3 + k

m

⌋

−

⌊

a1 + a2 + k

m

⌋

−

⌊

a3 + k

m

⌋

+

⌊

k

m

⌋

, (45)

−fa1,a3;m(k) = −

⌊

a1 + a3 + k

m

⌋

+

⌊

a1 + k

m

⌋

+

⌊

a3 + k

m

⌋

−

⌊

k

m

⌋

, (46)

−fa2,a3;m(k) = −

⌊

a2 + a3 + k

m

⌋

+

⌊

a2 + k

m

⌋

+

⌊

a3 + k

m

⌋

−

⌊

k

m

⌋

. (47)

Summing (45), (46), and (47), we see that

fa1,a2,a3;m(k) = fa1+a2,a3;m(k)− fa1,a3;m(k)− fa2,a3;m(k). (48)

By the definition of Sa1,a2,a3;m(K), (48), and (44), we obtain

Sa1,a2,a3;m(K) =
K
∑

k=0

fa1,a2,a3;m(k)

=
K
∑

k=0

fa1+a2,a3;m(k)−
K
∑

k=0

fa1,a3;m(k)−
K
∑

k=0

fa2,a3;m(k)

= Sa1+a2,a3;m(K)− Sa1,a3;m(K)− Sa2,a3;m(K)

≥ 0−
⌊m

2

⌋

−
⌊m

2

⌋

= −2
⌊m

2

⌋

.
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Similarly,

Sa1,a2,a3;m(K) ≤
⌊m

2

⌋

− 0− 0 =
⌊m

2

⌋

≤ 2
⌊m

2

⌋

.

Similarly, we have the following equalities:

fa1+a2+a3,a4;m(k) =

⌊

a1 + a2 + a3 + a4 + k

m

⌋

−

⌊

a1 + a2 + a3 + k

m

⌋

−

⌊

a4 + k

m

⌋

+

⌊

k

m

⌋

, (49)

−fa1+a2,a4;m(k) = −

⌊

a1 + a2 + a4 + k

m

⌋

+

⌊

a1 + a2 + k

m

⌋

+

⌊

a4 + k

m

⌋

−

⌊

k

m

⌋

, (50)

−fa1+a3,a4;m(k) = −

⌊

a1 + a3 + a4 + k

m

⌋

+

⌊

a1 + a3 + k

m

⌋

+

⌊

a4 + k

m

⌋

−

⌊

k

m

⌋

, (51)

−fa2+a3,a4;m(k) = −

⌊

a2 + a3 + a4 + k

m

⌋

+

⌊

a2 + a3 + k

m

⌋

+

⌊

a4 + k

m

⌋

−

⌊

k

m

⌋

, (52)

fa1,a4;m(k) =

⌊

a1 + a4 + k

m

⌋

−

⌊

a1 + k

m

⌋

−

⌊

a4 + k

m

⌋

+

⌊

k

m

⌋

, (53)

fa2,a4;m(k) =

⌊

a2 + a4 + k

m

⌋

−

⌊

a2 + k

m

⌋

−

⌊

a4 + k

m

⌋

+

⌊

k

m

⌋

, (54)

fa3,a4;m(k) =

⌊

a3 + a4 + k

m

⌋

−

⌊

a3 + k

m

⌋

−

⌊

a4 + k

m

⌋

+

⌊

k

m

⌋

. (55)

Summing (49) to (55) and recalling the definition of fa1,a2,a3,a4;m(k), we see that

fa1,a2,a3,a4;m(k) = fa1+a2+a3,a4;m(k)− fa1+a2,a4;m(k)− fa1+a3,a4;m(k)− fa2+a3,a4;m(k)

+ fa1,a4;m(k) + fa2,a4;m(k) + fa3,a4;m(k). (56)

Then we obtain from (56) and (44) that

Sa1,a2,a3,a4;m(K) = Sa1+a2+a3,a4;m(K)− Sa1+a2,a4;m(K)− Sa1+a3,a4;m(K)− Sa2+a3,a4;m(K)

+ Sa1,a4;m(K) + Sa2,a4;m(K) + Sa3,a4;m(K)

≤
⌊m

2

⌋

− 0− 0− 0 +
⌊m

2

⌋

+
⌊m

2

⌋

+
⌊m

2

⌋

= 4
⌊m

2

⌋

.

Similarly, Sa1,a2,a3,a4;m(K) ≥ −4
⌊

m
2

⌋

. Next we prove the general case ℓ ≥ 5. The expression

of the form
⌊

ai1+ai2+···+air+k

m

⌋

will be called an r-bracket. So for each 0 ≤ r ≤ ℓ, there are
(

ℓ

r

)

r-brackets appearing in the sum defining fa1,a2,...,aℓ;m(k). We first pair up the ℓ-bracket
with an (ℓ− 1)-bracket, a 1-bracket and a 0-bracket as follows:

s1(k) =

⌊

a1 + a2 + · · ·+ aℓ + k

m

⌋

−

⌊

a1 + a2 + · · ·+ aℓ−1 + k

m

⌋

−

⌊

aℓ + k

m

⌋

+

⌊

k

m

⌋

. (57)
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So s1(k) is in fact fa1+a2+···+aℓ−1,aℓ;m(k) and we can apply (44) to obtain the inequality

0 ≤ Sa1+a2+···+aℓ−1,aℓ;m(K) =
K
∑

k=0

s1(k) ≤
⌊m

2

⌋

.

Next we pair up the remaining (ℓ−1)-brackets with (ℓ−2)-brackets, 1-brackets and 0-brackets
as follows:

−

⌊

ai1 + ai2 + · · ·+ aiℓ−1
+ k

m

⌋

+

⌊

ai1 + ai2 + · · ·+ aiℓ−2
+ k

m

⌋

+

⌊

aiℓ−1
+ k

m

⌋

−

⌊

k

m

⌋

, (58)

and we sum (58) over all 1 ≤ i1 < i2 < · · · < iℓ−1 ≤ ℓ and call it s2(k). Since aℓ does not
appear in the second term on the right hand side of (57), the term aiℓ−1

appearing in (58) is
always aℓ. So in fact (58) is −fai1+ai2+···+aiℓ−2

,aℓ;m(k) and

s2(k) = −
∑

1≤i1<i2<...<iℓ−2<ℓ

fai1+ai2+···+aiℓ−2
,aℓ;m(k)

Furthermore,

K
∑

k=0

s2(k) = −
∑

1≤i1<i2<...<iℓ−2<ℓ

Sai1+ai2+···+aiℓ−2
,aℓ;m(K) ≤ 0,

where the last inequality is obtained from (44). We continue doing this process and follow
closely the method used in the proof of Theorems 4 and 8. The well-known identities
previously recalled will be applied without reference. For each 1 ≤ r ≤ ℓ, let cr(k) be

the sum of all
⌊

ai1+ai2+···+air+k

m

⌋

with 1 ≤ i1 < i2 < · · · < ir ≤ ℓ, ar(k) the sum of

all such terms with ir = ℓ, and br(k) the sum of all such terms with ir < ℓ. Therefore
cr(k) = ar(k) + br(k), the number of r-brackets appearing in the sum defining cr(k) is

(

ℓ

r

)

,

the number of r-brackets appearing in the sum defining ar(k) is
(

ℓ−1
r−1

)

, and the number

of r-brackets appearing in the sum defining br(k) is
(

ℓ−1
r

)

. As usual, the empty sum is
defined to be zero, so bℓ(k) = 0. We have s1(k) = aℓ(k) − bℓ−1(k) − a1(k) +

⌊

k
m

⌋

and

s2(k) = −aℓ−1(k) + bℓ−2(k) +
(

ℓ−1
ℓ−2

)

a1(k)−
(

ℓ−1
ℓ−2

) ⌊

k
m

⌋

. In general, for each 1 ≤ r ≤ ℓ− 1, we
let

sr(k) = (−1)r+1aℓ−r+1(k) + (−1)rbℓ−r(k) + (−1)r
(

ℓ− 1

ℓ− r

)

a1(k) + (−1)r+1

(

ℓ− 1

ℓ− r

)⌊

k

m

⌋

= (−1)r+1
∑

1≤i1<i2<...<iℓ−r<ℓ

fai1+ai2+···+aiℓ−r
,aℓ;m(k).

Then
K
∑

k=0

sr(k) = (−1)r+1
∑

1≤i1<i2<...<iℓ−r<ℓ

Sai1+ai2+···+aiℓ−r
,aℓ;m(K).
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So by (44), we see that

0 ≤
K
∑

k=0

sr(k) ≤

(

ℓ− 1

ℓ− r

)

⌊m

2

⌋

if r is odd, and −

(

ℓ− 1

ℓ− r

)

⌊m

2

⌋

≤
K
∑

k=0

sr(k) ≤ 0 if r is even.

Similar to the proof of Theorems 4 and 8, we obtain

∑

1≤r≤ℓ−1

sr(k) = aℓ +
∑

2≤r≤ℓ−1

(−1)r+1aℓ−r+1 +
∑

1≤r≤ℓ−2

(−1)rbℓ−r + (−1)ℓ−1b1

+ (−1)ℓ+1a1 + (−1)ℓ
⌊

k

m

⌋

= aℓ +
∑

1≤r≤ℓ−2

(−1)r(aℓ−r + bℓ−r) + (−1)ℓ−1b1 + (−1)ℓ+1a1 + (−1)ℓ
⌊

k

m

⌋

= cℓ +
∑

1≤r≤ℓ−2

(−1)rcℓ−r + (−1)ℓ−1c1 + (−1)ℓ
⌊

k

m

⌋

=
∑

0≤r≤ℓ−1

(−1)rcℓ−r + (−1)ℓ
⌊

k

m

⌋

= fa1,a2,...,aℓ;m(k).

Therefore

−
∑

1≤r≤ℓ−1
r is even

(

ℓ− 1

ℓ− r

)

⌊m

2

⌋

≤
K
∑

k=0

fa1,a2,...,aℓ;m(k) ≤
∑

1≤r≤ℓ−1
r is odd

(

ℓ− 1

ℓ− r

)

⌊m

2

⌋

. (59)

The middle term in (59) is Sa1,a2,...,aℓ;m(K). The left and right most terms in (59) are,
respectively, equal to −2ℓ−2

⌊

m
2

⌋

and 2ℓ−2
⌊

m
2

⌋

which can be evaluated by the well-known
identity previously recalled. This proves the first part of the theorem. Next we show that
one of the upper bound or lower bound is sharp. Let C = {a1, a2, . . . , aℓ}. Suppose ℓ is odd,
m is even, and ai =

m
2
for every 1 ≤ i ≤ ℓ. Then we obtain by Proposition 3 and Theorem

4 that fC;m(0) = g
(

1
2
, 1
2
, . . . , 1

2

)

= −2ℓ−2. Let 0 < k < m
2
. By the definition of fC;m(k), we

see that

fC;m(k) =
∑

T⊆[1,ℓ]

(−1)ℓ−|T |

⌊

k

m
+

|T |

2

⌋

=
ℓ
∑

r=0

(−1)ℓ−r

(

ℓ

r

)⌊

k

m
+

r

2

⌋

(60)

Since 0 < k < m
2
, we have r

2
< k

m
+ r

2
< r+1

2
. So if r is even, then

⌊

k
m
+ r

2

⌋

= r
2
=
⌊

r
2

⌋

and
if r is odd, then

⌊

k
m
+ r

2

⌋

= r−1
2

=
⌊

r
2

⌋

. In any case,
⌊

k
m
+ r

2

⌋

= r
2
=
⌊

0
m
+ r

2

⌋

. This implies
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that fC;m(k) = fC;m(0) for every k = 0, 1, 2, . . . , m
2
− 1. Then

SC;m

(m

2
− 1
)

=

m

2
−1
∑

k=0

fC;m(k) =
m

2
fC;m(0) = −2ℓ−2

⌊m

2

⌋

So −2ℓ−2
⌊

m
2

⌋

in (43) cannot be improved when ℓ is odd. Next suppose ℓ is even, m is even,
and ai =

m
2
for every 1 ≤ i ≤ ℓ. Then we obtain similarly that fC;m(k) = fC;m(0) = 2ℓ−2 for

every k = 0, 1, 2, . . . , m
2
− 1. Then SC;m(

m
2
− 1) = 2ℓ−2

⌊

m
2

⌋

. So 2ℓ−2
⌊

m
2

⌋

in (43) cannot be
improved when ℓ is even. This completes the proof.
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