Journal of Integer Sequences, Vol. 20 (2017), Article 17.4.7

Constructing Pseudo-Involutions in the Riordan Group

Dev Phulara
National Security Agency
Fort Meade, MD 20755
USA
drphula@nsa.gov
phulara@comcast.net
Louis Shapiro
Howard University
Washington, DC 20059
USA
lshapiro@howard.edu

Abstract

Involutions and pseudo-involutions in the Riordan group are interesting because of their numerous applications. In this paper we study involutions using sequence characterizations of the Riordan arrays. For a given B-sequence we find the unique function $f(z)$ such that the array $(g(z), f(z))$ is a pseudo-involution. As a combinatorial application, we find the interpretation of each entry in the Bell array $(g(z), f(z))$ with a given B-sequence.

1 Introduction

A Riordan array originally introduced by Shapiro et al. [13] is defined in terms of generating functions of its columns. Let $g(z)=g_{0}+g_{1} z+g_{2} z^{2}+\cdots, g_{0} \neq 0$ and $f(z)=f_{1} z+f_{2} z^{2}+$ $f_{3} z^{3}+\cdots, f_{1} \neq 0$ be two formal power series. The Riordan array generated by $g(z)$ and
$f(z)$ is an infinite lower triangular array D whose k th column has the generating function $g(z)(f(z))^{k}$ for all $k \geq 0$. We denote D by $(g(z), f(z))$. In other words $D=\left(d_{n, k}\right)_{n, k \geq 0}$ is Riordan if and only if there exist two generating functions $g(z)$ and $f(z)$ such that $d_{n, k}$ is the coefficient of z^{n} in the expansion of $g(z)(f(z))^{k}$.

The set \mathcal{R} of all Riordan arrays forms a group under the matrix multiplication operation. In terms of generating functions, the product of two arrays $(g(z), f(z))$ and $(\alpha(z), \beta(z))$ can be written as

$$
(g(z), f(z)) \cdot(\alpha(z), \beta(z))=(g(z) \alpha(f(z)), \beta(f(z)))
$$

The usual identity matrix $(1, z)$ serves as the group identity and for any $(g(z), f(z)) \in \mathcal{R}$, $\left(\frac{1}{g(\bar{f}(z))}, \bar{f}(z)\right)$ is its inverse, where \bar{f} represents the compositional inverse of f.

Note that the original definitions of Riordan array are based on column construction. Merlini et al. [11] and Sprugnoli [14] characterized Riordan arrays using two sequences called the A-sequence and the Z-sequence which enables us to construct the Riordan array horizontally. That is each entry in the Riordan array can be written as a linear combination of entries in the previous row. More precisely we have

Theorem 1. An array $D=\left(d_{n, k}\right)_{n, k \geq 0}$ is Riordan if and only if there exist unique sequences $A=\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ and $Z=\left(z_{0}, z_{1}, z_{2}, \ldots\right)$ such that

1. $d_{n+1, k+1}=\sum_{i=0}^{\infty} a_{i} d_{n, k+i}$ and
2. $d_{n+1,0}=\sum_{i=0}^{\infty} z_{i} d_{n, i}$.

The sequences A and Z in this theorem are called the A-sequence and Z-sequence respectively. See also [8]. See [6] for another characterization of Riordan arrays (in terms of Stieltjes transform matrix). See also [7].

A nontrivial element $D=(g(z), f(z)) \in \mathcal{R}$ is an involution if and only if $D^{2}=I$. Let $M=(1,-z)$, that is M is a diagonal matrix with $(1,-1,1,-1, \ldots)$ along the diagonal. An element $D=(g(z), f(z))$ is a pseudo-involution if and only if $D M$ is an involution or equivalently $M D$ is an involution or $D^{-1}=M D M$. See $[1,2,3,4,5]$ for more information. In this paper we study pseudo-involutions via B-sequences. It is an important fact that the A-sequence uniquely determines the generating function f. One version is $f(z)=z A(f(z))$ or equivalently $z=\bar{f}(z) A(z)$. This could be called the second fundamental theorem of the Riordan group. A "dot" diagram of this is

However there are many situations where it is useful to expand to an A-matrix [11]

\ldots			
$a_{2,0}$	$a_{2,1}$	$a_{2,2}$	$a_{2,3}$
\ldots			
$a_{1,0}$	$a_{1,1}$	$a_{1,2}$	$a_{1,3}$
\ldots			
	\times	$a_{0,2}$	$a_{0,3}$
\cdots			

A modest example is given by

This produces the large Schröder numbers.
Recently Merlini and Sprugnoli [10] studied binary words avoiding certain patterns using A-matrices such as

Here is a picture of the A-matrix that produces the B-sequence.

See also [12] for several online software tools for exploring Riordan arrays.
This paper is organized as follows. In Section 2 we present some ways of constructing pseudo-involutions. In Section 3 we discuss those pseudo-involutions via B-sequences, we present a list of 24 examples, and we also present an explicit formula to compute the A sequence of a pseudo-involution with a given B-sequence. Finally in Section 4 we present combinatorial interpretations for all involutions in the Bell subgroup.

2 (Pseudo)-involutions

Given a formal power series $g(z)=1+\sum_{n \geq 1} g_{n} z^{n}$, we want to find a generating function $f(z)$ such that $(g(z), f(z))^{2}=I=(1, z)$. For such $f(z)$, we must have $g(z) g(f(z))=1$. That is $g(f(z))=\frac{1}{g(z)}$. We first study a special case in which $g(z)$ can be expressed as $g=1+z g^{k}$, for some $k \in \mathbb{N}$.

Theorem 2. Let $g(z)=1+\sum_{n \geq 1} g_{n} z^{n}$ be a power series where $g=1+z g^{k}$, for some $k \in \mathbb{N}$.
Then $\left(g(z),-z(g(z))^{2 k-1}\right)^{2}=I$.
Proof. Since $g(z)=1+z g^{k}$, we can write g as

$$
\begin{aligned}
g(z) & =\frac{1}{1-z g^{k-1}} \\
& =\left(1-z g^{k-1}\right)^{-1} .
\end{aligned}
$$

So $z g^{k-1}=z\left(1-z g^{k-1}\right)^{-(k-1)}$. Now set

$$
\begin{equation*}
F=F(z)=z g^{k-1} \tag{1}
\end{equation*}
$$

Then $F=z(1-F)^{-(k-1)}$. Apply \bar{F} to this equation to get

$$
z=\bar{F}(1-z)^{-(k-1)} .
$$

Then

$$
\begin{equation*}
\bar{F}=z(1-z)^{k-1} . \tag{2}
\end{equation*}
$$

Starting with Eq. 1, we get

$$
F(f(z))=f(z) g(f(z))^{k-1}=f \cdot(g(f))^{k-1}=f\left(\frac{1}{g}\right)^{k-1}=\frac{f}{g^{k-1}}
$$

Now apply \bar{F} to get

$$
f(z)=\bar{F}\left(\frac{f}{g^{k-1}}\right)=\frac{f}{g^{k-1}}\left(1-\frac{f}{g^{k-1}}\right)^{k-1}
$$

This implies

$$
\begin{aligned}
& g^{k-1}=\left(1-\frac{f}{g^{k-1}}\right)^{k-1} \\
\Rightarrow & g=1-\frac{f}{g^{k-1}} \\
\Rightarrow & f=g^{k-1}-g^{k} \\
\Rightarrow & f=g^{k-1}(1-g) .
\end{aligned}
$$

But $1-g=-z g^{k}$ so $f=g^{k-1}\left(-z g^{k}\right)=-z g^{2 k-1}$.
The following important examples which are some special cases of this theorem go back at least to 1976 in a paper of Hoggatt and Bicknell in the Fibonacci Quarterly [9]. These occur again in Section 3 as examples 1, 10, 18, and 20. Here the generating functions C, T and Q refer to the Catalan, ternary, and quaternary numbers respectively while $P=\frac{1}{1-z}$.

k	$g=1+z g^{k}$	$f=-z g^{2 k-1}$	$\left(g,-z g^{2 k-1}\right)^{2}=I$
$k=1$	$P=1+z P$	$f=-z P$	$(P,-z P)^{2}=I$
$k=2$	$C=1+z C^{2}$	$f=-z C^{3}$	$\left(C,-z C^{3}\right)^{2}=I$
$k=3$	$T=1+z T^{3}$	$f=-z T^{5}$	$\left(T,-z T^{5}\right)^{2}=I$
$k=4$	$Q=1+z Q^{4}$	$f=-z Q^{7}$	$\left(Q,-z Q^{7}\right)^{2}=I$

Table 1: Some special cases of Theorem 2

Another interesting relationship among these examples will be presented in Section 3 after presenting the notion of B-sequences.

For $g(z)=1+\sum_{n \geq 1} g_{n} z^{n}$ and $f(z)=z+\sum_{n \geq 2} f_{n} z^{n}$, we know that if $(g(z), f(z))$ is a pseudo-involution then $(g(z),-f(z))$ is an involution so $f(-f(-z))=z$. Then we use [15, Exercise 168, p. 134] to specify the even indexed coefficients (f_{2}, f_{4}, \ldots) arbitrarily which then determine the odd indexed coefficients $\left(f_{3}, f_{5}, \ldots\right)$ uniquely. So there are many generating
functions $f(z)$ which generate pseudo-involutions. It is easy to show that if $f(-f(-z))=z$, then $(f(z) / z, f(z))$ is a pseudo-involution. Moreover it has been established [2, Thm. 2.3] that if $(g(z), f(z))$ is an involution, then $g(z)= \pm \exp (\Phi(z, z f(z)))$ for some antisymmetric function Φ. However we do not know the answer of the following question.
Question 3. Given $f(z)$ such that $f(-f(-z))=z$ or $\bar{f}(z)=-f(-z)$, what are the possibilities for $g(z)$ so that $(g(z), f(z))$ is an involution, particularly in combinatorial situations?

Another way to find more involutions and thus pseudo-involutions comes from basic group theory. If α and β are two noncommuting involutions then $\langle\alpha, \beta\rangle$ is a dihedral group and $(\alpha \beta)^{n} \beta$ is an involution for all integers n, where $\alpha \beta$ plays the role of a rotation. In the Riordan group if M_{1} and M_{2} are noncommuting involutions then $\left\langle M_{1}, M_{2}\right\rangle$ is a dihedral group.
Proposition 4. Let D_{1} and D_{2} be two pseudo-involutions. Then both $\left(D_{1} D_{2}^{-1}\right)^{n} D_{2}$ and $D_{1}\left(D_{1}^{-1} D_{2}\right)^{n}$ are pseudo-involutions for all integers n.
Proof. Let $H_{1}=D_{1} M$ and $H_{2}=D_{2} M$. Then H_{1} and H_{2} are involutions and so for all integer $n,\left(H_{1} H_{2}\right)^{n} H_{2}$ is an involution and

$$
\begin{aligned}
\left(H_{1} H_{2}\right)^{n} H_{2} & =\left(D_{1} M D_{2} M\right)^{n} D_{2} M \\
& =\left(D_{1} D_{2}^{-1}\right)^{n} D_{2} M .
\end{aligned}
$$

Hence $\left(D_{1} D_{2}^{-1}\right)^{n} D_{2}$ is a pseudo-involution. On the other hand if we let $J_{1}=M D_{1}$ and $J_{2}=M D_{2}$, then

$$
\begin{aligned}
J_{1}\left(J_{1} J_{2}\right)^{n} & =M D_{1}\left(M D_{1} M D_{2}\right)^{n} \\
& =M D_{1}\left(D_{1}^{-1} D_{2}\right)^{n} .
\end{aligned}
$$

Since $J_{1}\left(J_{1} J_{2}\right)^{n}$ is an involution, $D_{1}\left(D_{1}^{-1} D_{2}\right)^{n}$ is also a pseudo-involution.
The following result was first proved [4] using induction on n but it follows more quickly from the proposition we just proved.
Corollary 5. Let $D=(g(z), f(z))$ be a pseudo involution. Then so is D^{n}, for all $n \in \mathbb{Z}$.
Proof. Let $D_{1}=D$ and $D_{2}=(1, z)$. Then D_{1} and D_{2} are pseudo-involutions and thus Proposition 4 applies.

3 Relationship with B-sequences

Let $A(z)$ be the generating function of the A sequence of a Riordan array $(g(z), f(z))$. We can write $f(z)$ in terms of A as follows

$$
f(z)=z A(f(z)) .
$$

Replace z by $\bar{f}(z)$ to get $z=\bar{f}(z) A(z)$. So $A(z)=\frac{z}{\bar{f}(z)}$.
In case of pseudo-involutions, we have $\bar{f}(z)=-f(-z)$. Thus we also have

Lemma 6. Let $A(z)$ be the generating function of the A-sequence of the pseudo-involution Riordan array $(g(z), f(z))$. Then

$$
A(z)=\frac{-z}{f(-z)}=\frac{z}{-f(-z)} .
$$

The following concept was discussed by Cheon et al. [4]. There the term " Δ-sequence" was used instead of B-sequence.

Definition 7. For a Riordan array $D=\left(d_{n, k}\right)_{n, k \geq 0}$, a sequence $\left(b_{0}, b_{1}, b_{2}, \ldots\right)$ is said to be a B-sequence if and only if

$$
d_{n+1, k}=d_{n, k-1}+\sum_{j \geq 0} b_{j} \cdot d_{n-j, k+j} .
$$

Note that $d_{n, k}=0$ for all $n<k$. So the sum on the right side is finite. In other words, we must have $n-j \geq k+j$. That is $2 j \leq n-k$.

In the following theorem we link the A-sequence with the B-sequence. It also follows from a notion of A-matrix [11].

Theorem 8. Let $B(z)=b_{0}+b_{1} z+b_{2} z^{2}+\cdots=\sum_{k \geq 0} b_{k} z^{k}$ be the B-sequence of a pseudo involution $D=(g(z), f(z))$. Then the A-sequence of D is given by

$$
A(z)=1+z B(-z f(-z))=1+z B\left(\frac{z^{2}}{A(z)}\right)
$$

Proof. Since $A(z)=\frac{-z}{f(-z)}=\frac{z}{\bar{f}(z)}$, we have $\bar{f}(z)=-f(-z)$. We also have $f(z)=z+$ $z f(z) B(z f(z))=z A(f(z))$. So $A(f(z))=1+f(z) B(z f(z))$. Therefore $A(f(z))=1+$ $f(z)\left[b_{0}+b_{1} z f(z)+b_{2} z^{2}(f(z))^{2}+\cdots\right]$. Replace z by $\bar{f}(z)$. Then

$$
\begin{aligned}
A(z) & =1+z \sum_{k \geq 0} b_{k}(z \bar{f}(z))^{k} \\
& =1+z \sum_{k \geq 0} b_{k}(-z f(-z))^{k} \\
& =1+z B\left(\frac{z^{2}}{A(z)}\right) .
\end{aligned}
$$

Corollary 9. If $(g(z), f(z))$ is in the Bell subgroup, then

$$
A(z)=1+\sum_{k \geq 0} b_{k} z^{2 k+1}(g(-z))^{k} .
$$

Proof. We have $f(z)=z g(z)$. So $f(-z)=-z g(-z)$. Therefore

$$
A(z)=1+z \sum_{k \geq 0} b_{k}\left(z^{2} g(-z)\right)^{k}=1+\sum_{k \geq 0} b_{k} z^{2 k+1}(g(-z))^{k}
$$

In Corollary 5, we showed that any power of a pseudo-involution is a pseudo-involution. But we do not know how to easily combine the various B-sequences. The question remains open even in the case of the same pseudo-involution. More precisely,

Question 10. Let $D=(g(z), f(z))$ be a pseudo-involution with the B-sequence $b_{0}, b_{1}, b_{2}, \ldots$. what is the B-sequence for D^{2} ?

We present a list of some of the examples in the following tables. All these examples are in the Bell subgroup where $f(z)=z g(z)$. One can apply Theorem 11 to construct many examples which are not in the Bell subgroup. Six out of these 24 examples can also be found [4]. We cluster them in families of B-sequences. One can use Theorem 8 to compute the A-sequence in each case. In these examples m, C, T, and r represent the Motzkin, Catalan, ternary, and large Schröder generating functions respectively.

Geometric B-sequences: One can compute the unique $f(z)$ such that $(g(z), f(z))$ is a pseudo-involution with the B-sequence $b, b k, b k^{2}, \ldots$ as follows

$$
f(z)= \begin{cases}\frac{z}{1-b z}, & \text { if } k=0 \\ \frac{1-b z+k z^{2}-\sqrt{\left(1-b z+k z^{2}\right)^{2}-4 k z^{2}}}{2 k z}, & \text { if } k \neq 0\end{cases}
$$

We include some examples in the following table.

	g	B-sequence	Comments
1	$1,1,1,1,1,1,1,1, \ldots$	$1,0,0, \ldots$	Pascal
2	$1,1,1,2,4,8,17,37,82,185, \ldots$	$1,1,1, \ldots$	RNA (A004148)
3	$1,2,4,10,28,82,248,770, \ldots$	$2,2,2, \ldots$	$\underline{\text { A187256 }}$
4	$1,4,16,68,304,1412,6752, \ldots$	$4,4,4, \ldots$	r^{2}

Table 2: Examples with geometric B-sequences

Linear B-sequences: If the B-sequence is $a, b, 0,0,0, \ldots$, then the unique $f(z)$ is

$$
f(z)=\frac{1-a z-\sqrt{(1-a z)^{2}-4 b z^{3}}}{2 b z^{2}} .
$$

Others:

	g	B-sequence	Comments
5	$1,1,1,2,4,7,13,26,52,104,212, \ldots$	$1,1,0, \ldots$	$\underline{\text { A023431 }}$
6	$1,1,1,3,7,13,29,71, \ldots$	$1,2,0, \ldots$	$\underline{\text { A091565 }}$
7	$1,1,1,4,10,19,49,136,334,850, \ldots$	$1,3,0, \ldots$	
8	$1,2,4,9,22,56,146,388,1048, \ldots$	$2,1,0, \ldots$	A091561
9	$1,2,4,10,28,80,232,688,2080, \ldots$	$2,2,0, \ldots$	
10	$1,3,9,28,90,297,1001,3432, \ldots$	$3,1,0, \ldots$	$C^{3}(\underline{A 000245})$
11	$1,1,1,5,13,25,73,221,565,1553, \ldots$	$1,4,0, \ldots$	
12	$1,4,16,65,268,1120,4738,20264, \ldots$	$4,1,0, \ldots$	

Table 3: Examples with linear B-sequences

	g	B-sequence	Comments
13	$1,1,1,2,4,9,21,50,122, \ldots$	$1,1,2,4,9,21,51,127, \ldots$	
14	$1,1,1,2,4,9,21,51,127, \ldots$	$1,1,2,5,14,42,132,429, \ldots$	$1+z m$
15	$1,1,1,2,4,10,28,85, \ldots$	$1,3,9,28,90,297,1001, \ldots$	
16	$1,2,4,9,22,57,154,429, \ldots$	$2,1,1,1,1,1, \ldots$	$\underline{\text { A105633 }}$
17	$1,4,16,68,304,1409, \ldots$	$4,4,1,0,0, \ldots$	
18	$1,5,25,130,700,3876, \ldots$	$5,5,1,0,0, \ldots$	Ternary(A102893)
19	$1,2,4,12,40,129,424, \ldots$	$2,4,1,0,0 \ldots$	
20	$1,7,49,357,2695, \ldots$	$7,14,7,1, \ldots$	Quaternary(A233658)
21	$1,4,16,64,256,1024, \ldots$	$4,0,0, \ldots$	$\left(B, z B^{2}\right)$
22	$1,0,0,2,0,0,5,0,0,14, \ldots$	$0,1,0,0, \ldots$	$\left(C\left(z^{3}\right), z C\left(z^{3}\right)\right)$
23	$1,0,0,0,0,3,0,0,0,0,12, \ldots$	$0,0,1,0,0, \ldots$	$\left(T\left(z^{5}\right), z T\left(z^{5}\right)\right)$
24	$1,1,1,2,4,9,21,50,122, \ldots$	$1,1,2,4,8, \ldots$	

Table 4: Examples with other B-sequences

For each generating function $g(z)$ and for each B-sequence, there exists a generating function $f(z)$ such that the Riordan array $(g(z), f(z))$ is a pseudo-involution. In fact we see from Eq. 8 that for every B-sequence there exists a unique function $f(z)$ such that $(g(z), f(z))$ is a pseudo-involution. Furthermore in the Bell subgroup such an array is unique because $g(z)=\frac{f(z)}{z}$. But the function $g(z)$ is far from being unique. The following result shows that there are infinitely many functions $g(z)$ for given $f(z)$ such that the array $(g(z), f(z))$ is pseudo-involution with same B-sequence.

Theorem 11. Let $(g(z), f(z))$ be a pseudo-involution Riordan array and let $B(z)=b_{0}+$ $b_{1} z+b_{2} z^{2}+\cdots$ be the generating function of its B-sequence. Then $\left((g(z))^{n}, f(z)\right)$ is also a pseudo-involution with the same B-sequence, for all $n \in \mathbb{N}$.

Proof. Let $(g(z), f(z))$ be a pseudo-involution. Then

$$
((g(z), f(z))(1,-z))^{2}=(g(z),-f(z))^{2}=(1, z)
$$

That is $(g(z) g(-f(z)),-f(-f(z)))=(1, z)$, so $g(z) g(-f(z))=1$ and $-f(-f(z))=z$. Thus for any n,

$$
\begin{aligned}
\left(\left((g(z))^{n}, f(z)\right)(1,-z)\right)^{2} & =\left((g(z))^{n},-f(z)\right)^{2} \\
& =\left(g(z) g(-f(z))^{n},-f(-f(z))\right) \\
& =(1, z)
\end{aligned}
$$

Also if B_{1} and B_{2} are the B-sequences of $(g(z), f(z))$ and $\left((g(z))^{n}, f(z)\right)$ respectively, then $f(z)=z+z f(z) B_{1}(z f(z))=z+z f(z) B_{2}(z f(z))$. Hence $B_{1}=B_{2}$.

Now we present a relationship among some of the pseudo-involutions presented in Section 1. The matrices $(P, z P),(C, z C),(T, z T)$, and $(Q, z Q)$ are linked with the g function for one being the A-sequence for the next. For instance using the Catalan numbers as A sequence one can produce the ternary Bell matrix. See [3] for more detail.

If we look at the B-sequences of the pseudo-involutions $(P, z P),\left(C, z C^{3}\right),\left(T, z T^{5}\right)$ and $\left(Q, z Q^{7}\right)$ (see Examples 1 in Table 2, 10 in Table 3, and 18 and 20 in Table 4) we obtain the following matrix

$$
\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & \cdots \\
3 & 1 & 0 & 0 & \cdots \\
5 & 5 & 1 & 0 & \cdots \\
7 & 14 & 7 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

This is a Riordan array $\left(\frac{1+z}{(1-z)^{2}}, \frac{z}{(1-z)^{2}}\right)$. Each row of this array is the B-sequence of a pseudo-involution in this family.

We also have the following results of independent interest.

Lemma 12.

$$
\left(\begin{array}{ccccc}
1 & & & & \\
-3 x & 1 & & & \\
5 x^{2} & -5 x & 1 & & \\
-7 x^{3} & 14 x^{2} & -7 x & 1 & \\
9 x^{4} & -30 x^{3} & 27 x^{2} & -9 x & 1
\end{array}\right) \cdot\left(\begin{array}{c}
1+x \\
(1+x)^{3} \\
(1+x)^{5} \\
(1+x)^{7}
\end{array}\right)=\left(\begin{array}{c}
1+x \\
1+x^{3} \\
1+x^{5} \\
1+x^{7}
\end{array}\right)
$$

Proof. We apply the Fundamental Theorem of Riordan Arrays which states that if

$$
(g(z), f(z))\left[\begin{array}{c}
\alpha_{0} \\
\alpha_{1} \\
\alpha_{2} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\beta_{2} \\
\vdots
\end{array}\right]
$$

then $\beta(z)=g(z) \alpha(f(z))$, where $\alpha(z)=\sum \alpha_{n} z^{n}$ and $\beta(z)=\sum \beta_{n} z^{n}$. We have

$$
\begin{aligned}
& g(z)=\frac{1-x z}{(1+x z)^{2}}, \\
& f(z)=\frac{z}{(1+x z)^{2}}, \text { and } \\
& \alpha(z)=\frac{1+x}{1-(1+x)^{2} z}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
g(z) \alpha(f(z)) & =\frac{1-x z}{(1+x z)^{2}} \cdot \frac{1+x}{1-(1+x)^{2} f(z)} \\
& =\frac{1-x z}{(1+x z)^{2}} \cdot \frac{1+x}{1-(1+x)^{2} \frac{z}{(1+x z)^{2}}} \\
& =\frac{(1-x z)(1+x)}{(1+x z)^{2}-(1+x)^{2} z} \\
& =\frac{1+x-x z-x^{2} z}{1+2 x z+x^{2} z^{2}-z-2 x z-x^{2} z} \\
& =\frac{1-x^{2} z+x-x z}{1+x^{2} z^{2}-z-x^{2} z} \\
& =\frac{1-x^{2} z+x-x z}{(1-z)\left(1-x^{2} z\right)} \\
& =\frac{1}{1-z}+\frac{x}{1-x^{2} z} .
\end{aligned}
$$

An analogous result for the even powers of $1+x$ is as follows.

Lemma 13.

$$
\left(\begin{array}{ccccc}
1 & & & & \\
-2 x & 1 & & & \\
2 x^{2} & -4 x & 1 & & \\
-2 x^{3} & 9 x^{2} & -6 x & 1 & \\
2 x^{4} & -16 x^{3} & 20 x^{2} & -8 x & 1
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
(1+x)^{2} \\
(1+x)^{4} \\
(1+x)^{6}
\end{array}\right)=\left(\begin{array}{c}
1 \\
1+x^{2} \\
1+x^{4} \\
1+x^{6}
\end{array}\right)
$$

That is $\left(\frac{1-x z}{1+x z}, \frac{z}{(1+x z)^{2}}\right) \cdot \frac{1}{1-(1+x)^{2} z}=\frac{1}{1-z}+\frac{x^{2} z}{1-x^{2} z}$.

4 Applications

In this section we present an interpretation for each entry in the first column of the Bell array $\left(\frac{f(z)}{z}, f(z)\right)$ with a given B-sequence $b_{0}, b_{1}, b_{2}, \ldots$ For that we define a $P I$ (pseudo-involution) tree. A PI tree is built from subtrees which if nontrivial, consist of a root and $2 n+1$ edges, $n+1$ of which are active and n of which are sterile with no descendants. The weight b_{i} is assigned to the building block subtree with $2 i+1$ edges. We draw these where the sterile edges are drawn as dotted lines and alternate with the active edges. Some examples are as follows.

For instance if $b_{0}=1, b_{1}=2$, and $b_{k}=0, k \geq 2$, we have the building blocks in which the term $2 z^{3}$ could represent one red and one green block.

$$
\left\{\begin{array}{ccc}
& 9 & \begin{array}{l}
i \\
\vdots
\end{array} \\
\times & \vdots & 2 z^{3}
\end{array}\right\}
$$

This refers to Example 6 in Table 3. In this case we have the following PI trees with edges $n \geq 0$.

Table 5: PI trees corresponding to the B-sequence $1,2,0,0, \ldots$

For $n=5$ edges we get 7 trees with root degree 1 and 6 trees with root degree 3 . So the total number of such trees with 5 edges is 13 .

This sequence also counts Dyck paths where all maximal U and D runs are of length 1 or 3 and each U^{3} run has weight 2 . We illustrate this with the following table.

In the following theorem we present an interpretation for each entry in the first column of the pseudo-involution Bell array $\left(\frac{f(z)}{z}, f(z)\right)$ with B-sequence $b_{0}, b_{1}, b_{2}, \ldots$. Another interpretation in terms Dyck paths can also be proved in the similar fashion.

Dyck paths	\times	\wedge	\sim		
No. of Dyck paths	1	1	1	$1+2=3$	$1+2 \cdot 3=7$
No. of $U D$'s	0	1	2	3	4

Table 6: Dyck paths corresponding to the B-sequence $1,2,0,0, \ldots$

Theorem 14. Let $\left(\frac{f(z)}{z}, f(z)\right)$ be a pseudo involution Bell array with B-sequence $\left(b_{0}, b_{1}, \ldots\right)$, where each b_{i} is a nonnegative integer. Then the function $\frac{f(z)}{z}$ counts the number of PI trees with the following building blocks.

Proof. Since $\left(\frac{f(z)}{z}, f(z)\right)$ is a pseudo involution with B-sequence $b_{0}, b_{1}, b_{2}, \ldots$, we can write

$$
f(z)=z+z f(z) B(z f(z)) .
$$

That is

$$
\frac{f(z)}{z}=1+f(z) B(z f(z))
$$

Let $\frac{f(z)}{z}=g(z)$. Then $g(z)=1+z g(z) B\left(z^{2} g(z)\right)$. In expanded form $g(z)$ can be written as

$$
\begin{aligned}
g(z) & =1+z g(z)\left(b_{0}+b_{1} z^{2} g(z)+b_{2} z^{4}(g(z))^{2}+\cdots\right) \\
& =1+b_{0} z g(z)+b_{1} z^{3}(g(z))^{2}+b_{2} z^{5}(g(z))^{3}+\cdots
\end{aligned}
$$

If the tree is nontrivial the root degree is $2 n+1$ with $n+1$ active nodes and the attached weight is b_{n}. This gives the term $b_{n} z^{2 n+1}(g(z))^{n+1}$ and summing yields the generating function $g(z)$.

This shows that the generating function $g(z)=\frac{f(z)}{z}$ counts the PI trees with the given building blocks.

5 Acknowledgments

We thank the referee for thoughtful and helpful comments.

References

[1] N. T. Cameron and A. Nkwanta, On some (pseudo) involutions in the Riordan group, J. Integer Sequences 8 (2005), Article 06.2.3.
[2] G.-S. Cheon and H. Kim, Simple proofs of open problems about the structure of involutions in the Riordan group, Linear Algebra Appl. 428 (2008), 930-940.
[3] G.-S. Cheon, S.-T. Jin, and L. W. Shapiro, An equivalence relation for formal power series, Linear Algebra Appl. 491 (2016), 123-137.
[4] G.-S. Cheon, S.-T. Jin, H. Kim, and L. W. Shapiro, Riordan group involutions and the Δ-sequence, Discrete Appl. Math. 157 (2009), 1696-1701.
[5] G.-S. Cheon, H. Kim, and L. W. Shapiro, An algebraic structure for Faber polynomials, Linear Algebra Appl. 433 (2010), 1170-1179.
[6] G.-S. Cheon, H. Kim, and L. W. Shapiro, Riordan group involutions, Linear Algebra Appl. 428 (2007), 941-952.
[7] T.-X. He and L. Shapiro, Row sums and alternating sums of Riordan arrays, Linear Algebra Appl. 507 (2016), 77-95.
[8] T.-X. He and R. Sprugnoli, Sequence characterization of Riordan arrays, Discrete Math. 309 (2009), 3962-3974.
[9] V. Hoggatt and M. Bicknell-Johnson, Sequences of matrix inverses from Pascal, Catalan, and related convolution arrays, Fibonacci Quart. 14 (1976), 224-232.
[10] D. Merlini and R. Sprugnoli, Algebraic aspects of some Riordan arrays related to binary words avoiding a pattern, Theoret. Comput. Sci. 412 (2011), 2988-3001.
[11] D. Merlini, D. G. Rogers, R. Sprugnoli, and M. C. Verri, On some alternative characterizations of Riordan arrays, Canad. J. Math. 49 (1997), 301-320.
[12] RiMA-SKKU, Riordan Generators, http://riordan.skku.edu/Lab.
[13] L. W. Shapiro, S. Getu, W.-J. Woan, and L. Woodson, The Riordan group, Discrete Appl. Math. 34 (1991), 229-239.
[14] R. Sprugnoli, Riordan arrays and combinatorial sums, Discrete Math. 132 (1994), 267290.
[15] R. P. Stanley, Enumerative Combinatorics, Vol. I, 2nd edition, Cambridge University Press, 2011.

2010 Mathematics Subject Classification: Primary 05A15.
Keywords: pseudo-involution, Riordan group, B-sequence, PI tree.
(Concerned with sequences A000245, $\underline{\text { A004148, }} \underline{\underline{A 023431}, ~} \underline{A 091561}, \underline{A 091565}, \underline{A 102893}, \underline{A 105633}$, A187256, and A233658.)

Received November 11 2016; revised versions received February 2 2017; February 122017. Published in Journal of Integer Sequences, February 182017.

Return to Journal of Integer Sequences home page.

