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Abstract

In this paper, we study the arithmetic partial differential equations x
′

p = ax
n and

x
′

p = a. We solve a conjecture of Haukkanen, Merikoski, and Tossavainen (HMT,
in short) about the number of solutions (conjectured to be finite) of the equation
x
′

p = ax
n and improve a theorem of HMT about finding the solutions of the same

equation. Furthermore, we also improve another theorem of HMT about the solutions
of the equation x

′

p = a and discuss one more conjecture of HMT about the number of
solutions of x′p = a.

1 Introduction

Let the symbols Z, Q, and R have their usual meaning. We follow the notation used by
Haukkanen, Merikoski, and Tossavainen [1] (HMT, in short), except for N, which here denotes
the set of positive integers {1, 2, . . .}. We use P = {2, 3, 5, 7, . . .} for the set of all prime
numbers. Let a ∈ Q \ {0}. Then there are unique L ∈ Z and M ∈ Q \ {0} such that
a = MpL and p ∤ M . The arithmetic partial derivative of a ∈ Q \ {0}, denoted by a′p, is
defined by HMT [1] as follows:

a′p = MLpL−1.
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A comprehensive list of references is given in [1] for the readers about the history of the
arithmetic derivatives and their several generalizations.

In this paper, we study the arithmetic partial differential equations x′

p = axn, and x′

p = a.
In Section 2, we resolve Conjecture 29 of HMT [1] about the finiteness of the number of
solutions of the equation x′

p = axn, and give an efficient algorithm (Theorem 2) to find
the solutions of the same equation in Section 3. In Section 4, we improve [1, Theorem 1]
concerning the solutions of the equation x′

p = a, and give some necessary and sufficient
conditions for certain nontrivial solutions in Theorems 3 and 4, respectively. Further, we
discuss HMT’s Conjecture 27 about the number of solutions of x′

p = a and, based on our
findings, we hypothesize that this conjecture is false.

2 Number of solutions of x′p = axn

Theorem 1. The solution set of the equation x′

p = axn, a ∈ Q \ {0}, p ∈ P, n ∈ Z \ {0, 1},
is finite.

Proof. If we look at the equation, we observe that an obvious solution to the equation is
at x = 0, provided n > 0, for each prime number p. We ignore this solution as a trivial
solution and consider only non-zero solutions for the equation. Express x as x = βpα, p ∤ β,
α ∈ Z \ {0}, p being a prime number. Then x′

p = βαpα−1. As we have x′

p = axn, we get
βαpα−1 = aβnpnα, which implies

(

βn−1a

α

)

(p(n−1)α+1) = 1.

Write a = MpL, M ∈ Q \ {0}, p ∤ M , L ∈ Z, and α = α0p
R, α0 ∈ Z, R ∈ N, p ∤ α0. Then,

we get
(

MpLβn−1

α0pR

)

(

p(n−1)α+1
)

= 1

or
(

Mβn−1

α0

)

(

p(n−1)α+1+L−R
)

= 1.

Since p ∤
(

Mβn−1

α0

)

, we have

(n− 1)α + 1 + L−R = 0, (1)

and

Mβn−1

α0

= 1. (2)

Substituting α = α0p
R in (1), we get

(n− 1)α0p
R + 1 + L−R = 0. (3)

2



Equation (2) plays an important role in determining the solution set and proving its
finiteness. We first concentrate on the term α = α0p

R in the solution x = βpα, and prove
that only a finite number of values of R are possible for which α forms the solution x of the
equation. Then, through equation (2), we conclude that the number of corresponding values
of β is also finite, as M is a constant. We consider two separate cases for R = 0, and for
R 6= 0.

Case 1: (R = 0). From (3) we have that (n− 1)α0 + 1 + L = 0, which implies

α0 = −

(

1 + L

n− 1

)

.

As α0 is an integer, we get (n − 1)|(1 + L). We remark here that if (n − 1) ∤ (1 + L), then
we do not get any solution in this case.

Case 2: (R 6= 0). We rewrite equation (3) as

(n− 1)α0 =
R− 1− L

pR
. (4)

Since n, α0 ∈ Z, we have (n− 1)α0 ∈ Z . Moreover, as R 6= 0, so R ∈ N . We further divide
this case into the following two subcases.

Case 2.1: (R = 1+L). From equation (4), we get (n− 1)α0 = 0. Since n 6= 1, hence α0 = 0
implies that α = 0. Thus, the only possible value of α is 0.

Case 2.2: (R 6= 1+L). Clearly, if R is not bounded, then there exists an R0 ∈ N such that
the right-hand side expression of (4) becomes a fraction for R ≥ R0, which is not possible.
Hence, R can attain only a finite number of values. So, a necessary condition on R for a

solution is (n− 1)|
(

R−1−L
pR

)

.

We get a value of α0 = R−1−L
(n−1)pR

corresponding to every value of R, which satisfies the

above condition. We thus obtain finite number of pairs (α0, R) giving finite number of
values of α = α0p

R at which the solution is possible.
So far, we have analyzed all possible values of R and have come to the conclusion that

only finite number of values of R are possible which may form the solution x = βpα with
α = α0p

R. Now, we need to prove that the corresponding values of β also form a finite set.

Clearly, by (2), we can write β =
(

α0

M

)
1

n−1 . Hence, we conclude that for a given value of

α0, at most two values of β are possible. As β ∈ Q, the quantity
(

α0

M

)
1

n−1 must be a rational
number of the form

(

E
F

)

, F 6= 0, E,F ∈ Z. So this acts as a filtering condition on α0 to
further qualify for the solution set. So, we get a final condition on α to be satisfied so that
α0 and the corresponding value of R can give us a solution of the equation. This proves that
there exist only a finite number of values of β corresponding to every value of α0 or α, which
themselves have finite possible values for the solution set. Hence, x = βpα has only finitely
many solutions.
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3 Solutions of x′p = axn

In this section, we find all solutions of the equation x′

p = axn, a ∈ Q\{0}, p ∈ P, n ∈ Z\{0, 1}.
The derivation of the solutions following the notation of Section 2 is given below.

Let us recall equation (3) and consider again two separate cases for R = 0, and R 6= 0.

Case 1: (R = 0). We get a solution if (n− 1) | (1 + L), by the argument used in Theorem
1.

Case 2: (R 6= 0). The basic approach for the derivation is to consider the cases for the
values of α0 such that either (n − 1)α0 > 0 or (n − 1)α0 < 0 or (n − 1)α0 = 0, where n
is a constant and the sign of α0 depends upon the sign of (n − 1). The upper and lower
bounds for the possible values of R have been derived in all the cases through which we can
get corresponding β and can form the solution. The necessary condition to be satisfied by
R is that on substituting it in equation (3), α0 must come out to be an integer. If not, then
that value is ignored and we proceed to a next value in the range. This condition acts as a
filtering condition for the values of R.

From equation (3), it is clear that 1 + L − R ≡ 0 (mod p). Since 1 + L is a constant,
we have 1 + L ≡ 0 (mod p) implies that R ≡ 0 (mod p), and 1 + L 6≡ 0 (mod p) implies
that R 6≡ 0 (mod p). We can further reduce the solution ranges derived for each cases by
examining the above two cases. So, we discuss below each subcase one by one.

Case 2.1: ((n− 1)α0 > 0). Clearly, (n− 1)α0p
R > 0 for all R and p. We have pR > R for

all R ∈ N. Clearly, (n− 1)α0 ∈ Z. So, (n− 1)α0p
R −R > 0 for all R. By (3),

(n− 1)α0p
R −R = −1− L. (5)

We get −1−L > 0 or L < −1. At L ≥ −1, this case does not give any solution. Now, there
are two possibilities.

Case 2.1.1: ((n − 1)α0 = 1). Clearly, (n − 1)α0 = 1 implies that n = 2, and α0 = 1, as
n ∈ Z \ {0, 1}. Introducing a new variable K = −1− L and combining it with the equation
(5), we get R +K = pR, which implies

R = logp(R +K). (6)

This equation gives us a relation, which also gives a filtering condition on R that

R +K ≡ 0 (mod p). (7)

We can rewrite equation (6) in the following two ways:

R = logp R + logp(1 +K/R). (8)
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R = logp K + logp(1 +R/K). (9)

Now, we consider three cases for the values of R and examine in each case the possibility
and range for the solution.

Case 2.1.1.1: (R > K). R > K implies that logp(1+K/R) < 1. So, R = logp R+ logp(1+
K/R) ⇒ R < logp R + 1, which implies that pR−1 < R. Clearly, this does not hold for any
values of p and R. So, we cannot get any solution in this case.

Case 2.1.1.2: (R = K). Substituting R = K in (8) or in (9), we get R = logp K + logp 2 or
R = logp(2R), which implies pR = 2R. This relation is possible only for p = 2 and R = 1.
So, for R = K, we can expect a solution only if p = 2 and R = 1. In this case, K + R ≡ 0
(mod p) is always satisfied. So, this case may yield a solution when p = 2.

Case 2.1.1.3: (R < K). Clearly, R < K implies that logp(1 + R/K) < 1. So, R =
logp K + logp(1 + R/K) ⇒ R < logp K + 1, which gives R ∈ {1, 2, . . . , ⌈logp K⌉}. So, the
feasible values of R at which we may get the solution must lie in the set {1, 2, . . . , ⌈logp K⌉}.
Further, R + K ≡ 0 (mod p) must be satisfied. So, we take only those values of R which
are in the set {1, 2, . . . , ⌈logp K⌉} and satisfy R +K ≡ 0 (mod p).

Case 2.1.2: ((n − 1)α0 6= 1). Rewrite equation (5) as (n − 1)α0p
R = R + K. Clearly,

(n− 1)α0> 1 implies that R +K > pR, which implies R < logp(R +K).
We can rewrite the above inequality in the following two ways:

R < logp R + logp(1 +K/R), (10)

R < logp K + logp(1 +R/K). (11)

Again proceeding in the same way as in the last case, we take the following three cases:

Case 2.1.2.1: (R > K). Clearly, R > K implies that logp(1 + K/R) < 1. So, R <
logp R + logp(1 + K/R) ⇒ R < logp R + 1, which implies that pR−1 < R, which is not
possible. So, we do not get any solution in this case.

Case 2.1.2.2: (R < K). Clearly, R < K implies that logp(1 + R/K) < 1. So, R <
logp K + logp(1 + R/K) ⇒ R < logp K + 1. That is, R ∈ {1, 2, . . . , ⌈logp K⌉}. Further,
R +K ≡ 0 (mod p) must be satisfied. So, we only take those values of R which are in the
set {1, 2, . . . , ⌈logp K⌉} and satisfy R +K ≡ 0 (mod p).

Case 2.1.2.3: (R = K). Substituting R = K in (10) or in (11), we get R < logp K + logp 2
or R < logp(2R), which implies pR < 2R. This inequality cannot be satisfied for any values
of R and p in their respective domains.

Thus, we see that if (n − 1)α0 > 0, then we get solutions only for R < K and R = K
(provided p = 2, and R = 1).
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Case 2.2: ((n− 1)α0 < 0). Rewrite equation (5) as

(n− 1)α0p
R = R +K. (12)

Then R − (n − 1)α0p
R > 0, because (n − 1)α0< 0. This implies K < 0 or L > −1. As

(n− 1)α0< 0, we have (n− 1)α0p
R < 0. So, we get R +K < 0 or L > R− 1. Thus, we get

two conditions: L > −1, and R < 1 + L for the feasibility of this case.
By introducing two new variables F and W , both of them are positive and such that

(n− 1)α0= −F , and K = −W , we rewrite equation (12) as

R + FpR = W, (13)

where all of W,F , and R are greater than zero.
Clearly, since W > FpR, we have W > pR or R < logp W or R < logp(−K) or equiva-

lently, R < logp(1 + L).
Thus we get an upper bound for the possible values of R, in the given case R ∈

{1, 2, . . . , ⌈logp K⌉}. Further, R + K ≡ 0 (mod p) must be satisfied. So, we take only
those values of R which are in the set {1, 2, . . . , ⌈logp K⌉} and satisfy R +K ≡ 0 (mod p).

Case 2.3: ((n− 1)α0 = 0). Clearly, we have α0= 0 as n 6= 1. So α = 0 in this case.
Now that we have the final ranges for the values of R in each case, so, we can find the

possible values of α = α0p
R. First, we find the value of α0 corresponding to each R. We

accept only those values of R which are inside the range and giving an integral value of α0,
otherwise, reject it. This way, we get the possible values of α0 and R, which are then used
to find corresponding α. Then, substituting the value of α0 in equation (2), we can find the
corresponding value of β. If β comes out to be rational, this means solution exists for the
given α0 and x = βpα is the solution of the equation x′

p = axn. Otherwise, we test the next
value of α0. This is how the algorithm works.

We summarize above discussion in the following:

Theorem 2. The equation x′

p = axn, where p ∈ P, a ∈ Q\{0} with a = MpL, M ∈ Q\{0},
p ∤ M , L ∈ Z has a nontrivial solution (0 6=)x = βpα, p ∤ β, α ∈ Z \ {0} with α = α0p

R,
α0 ∈ Z, R ∈ N, p ∤ α0 if and only if any one of the following conditions hold

1. (n− 1) | (1 + L), α = −1+L
n−1

, and β = ( α
M
)

1

n−1 ∈ Q.

2. (−2 6=)L < −1, R ∈ {1, 2, . . . , ⌈logp(−1− L)⌉} with R− 1− L ≡ 0 (mod p) such that

α0 =
R−1−L
(n−1)pR

∈ Z, and β = ( α
M
)

1

n−1 ∈ Q.

3. L = −2, p = 2, R = 1, α0(n− 1) = 1, β = ( α
M
)

1

n−1 ∈ Q.

4. L > −1, R ∈ {1, 2, . . . , ⌈logp(1 + L)⌉} with R − 1 − L ≡ 0 (mod p) such that α0 =
R−1−L
(n−1)pR

∈ Z, and β = ( α
M
)

1

n−1 ∈ Q.

Furthermore, all solutions are found in this way.
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4 Solutions of x′p = a

In this section, we discuss the solutions of x′

p = a. Let us express a in the form MpL with
p ∤ M , M ∈ Q, L ∈ Z. We improve Theorem 1 of [1] and give a better bound for the solution
range. An “alternate step” approach has been introduced to reach the solution even faster.

Let y = x/M , so that y′p = pL. Following Theorem 1 of [1], we start with the sets I0 and
I exactly same as in Theorem 1 of [1] depending on whether L > 0, L < 0 or L = 0. We then
improve the set I0 and hence improve the set I, which is the candidate for the solutions.

Case 1: (L > 0). Let I0 = {0, 1, 2, . . . , L − 1}, and I = {i ∈ I0 : pi+1||(L − i)}. Then

Theorem 1 of [1] implies that y = pL+1

L−i
is a solution of the equation y′p = pL for each i ∈ I.

Besides this, there is one more possibility of a solution at when p ∤ (L+ 1), giving y = pL+1

L+1

as a solution. We concentrate only on positive values of i in I0. We can test separately for
the possibilities at i = 0 and at when p ∤ (L+ 1).

We first derive a necessary condition for the existence of at least one solution of the
equation for the positive values of i. Suppose that there exists a solution at i and pi+1||(L−i).
Let us write L− i = Cpi+1, where p ∤ C, C ∈ N. Then

i+ Cpi+1 = L. (14)

Since C ≥ 1, and i > 0, we have L > Cpi+1 > pi+1. This implies that i + 1 < logp L or
i < logp L− 1.

So, we get a new upper limit for the value of i in I0, which is ⌈logp L⌉ − 2. So, now
we replace I0 by a much smaller set {1, 2, . . . , ⌈logp L⌉ − 2}. The new upper bound is of
logarithmic order of L and thus it will be much easier to work with. Also a necessary
condition for the existence of a solution for given p and L is

L ≥ 1 + p2,

which follows from equation (14). If L < 1 + p2, then we do not get any solution for i > 0.
So, we can have at most two solutions for the given equation: one for i = 0, and another in
the case p ∤ (L+ 1).

Beginning with i = 1, we start testing whether it is included in the set I. Let i = i0
be some value of i that satisfies the condition for inclusion in the set I. Now, we derive
the condition for the possibility of getting an alternate solution for a value of i, higher than
that of i0 and the step size from the initial value i0 at which we can get another i, so that
we do not have to traverse each and every value of i ∈ I till ⌈logp L⌉ − 2. Sometimes, even
logp L may be large. In such cases, the step size method described below helps in reducing
the work greatly.

Since we get a solution at i = i0, we have

i0 + C0p
i0+1 = L, (15)
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where p ∤ C0. Let the alternate solution exist at i = i1. So, we have

i1 + C1p
i1+1 = L, (16)

where p ∤ C1, i1 > i0. From equation (15), we have

C0 <
L

pi0+1
. (17)

From equations (15) and (16), we get

i0 + C0p
i0+1 = i1 + C1p

i1+1

⇒ i1 = i0 + pi0+1(C0 − C1p
i1−i0). (18)

We have p | C1p
i1−i0 , p ∤ C0. Hence, p ∤ (C0 − C1p

i1−i0). Let K = C0 − C1p
i1−i0 . Then

i1 = i0 +Kpi0+1, p ∤ K. (19)

So, we conclude that the candidate of i ∈ I for the alternate solution is in the form of (19).
The step size is Kpi0+1, where K > 0 and not divisible by p.

From equation (19), i1 − i0 = Kpi0+1. Now, since i1 > i0, i1 − i0 > 0, we have K > 0 or
C0 − C1p

i1−i0 > 0 . This gives C1 <
C0

pi1−i0
. Hence, C1 ≥ 1 ⇒ C0

pi1−i0
> 1, which implies

i1 − i0 < logp C0. (20)

Combining (17), (19), and (20), we get

K <
1

pi0+1
logp

(

L

pi0+1

)

. (21)

We get an upper bound for the number of steps in terms of Kpi0+1, within which we can
expect an alternate solution of the equation, once we get an initial solution. Starting from
K = 1, we traverse till the upper bound in (21). As p ∤ K, we also exclude all those values
which are divisible by p. Here, we introduce a new set called Alternate Step Range Set or

ASR, in short, containing the possible values of K for a given i0. Let U = 1
pi0+1 logp

(

L

pi0+1

)

.

Then
ASR = {1, 2, . . . , ⌊U⌋} \ {p, 2p, . . .}.

By iterating through the ASR set, we can get the alternate solution of the equation within
very few steps. Once we reach the alternate solution, say at i = i1, we repeat the same steps
and form the ASR range using i = i1, which will then be used to get next higher value of i.
We stop this process when we do not get an alternate solution. Under computational limits,
this method is highly efficient in reaching all the solutions.

We now derive a necessary condition for the existence of an alternate solution, given that
a solution exists at i = i0. If an alternate solution exists, the minimum value of K must be
1. So, we get
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1 < 1
pi0+1 logp

(

L

pi0+1

)

.

From the above relation we get a necessary condition for the existence of an alternate solution
for i greater than the given initial value i0 as

L > p(p
i0+1+i0+1). (22)

Thus, we get a new condition for the existence of the alternate solution for i0 ∈ N. If
inequality (22) is not satisfied, this means that there exists no solution for i > i0. Moreover,
i0 ≥ 1, so putting i0 in (22), we conclude that if L ≤ p(p

2+2), then we cannot have more
than one solution for the positive values of i. In such a situation, we can get at most three
solutions of the partial differential equation, one in this range and the other two for i = 0,
and for p ∤ (L+ 1).

Case 2: (L < 0). Let I0 = N ∪ {0}, and I is same as in Case 1. One can test separately
at i = 0, and for p ∤ (L + 1). So, we take only the positive values of i. Let L = −Q. Then
pi+1||(L− i) or pi+1||(Q+ i). Write

Q+ i = Cpi+1, p ∤ C, C > 0. (23)

We now derive the condition for the existence of a solution for this range. Rewrite equation
(23) as

Q

pi+1
+

i

pi+1
= C. (24)

Since 0 < i
pi+1 < 1, we have Q

pi+1 > C − 1. This implies that Q

C−1
> pi+1.

Here, (C− 1) is in the denominator, so, one can test separately at C = 1 and for the rest
of the cases, we assume C > 1. At C > 1, Q

C−1
< Q. So, we get pi+1 < Q, which gives

i < logp Q− 1. (25)

Thus, we get an upper bound on the value of i, which is ⌈logp Q⌉ − 2. So, the infinite set
I0 has now been reduced to I0 = {1, 2, . . . , ⌈logp Q⌉ − 2}. Also, Q > (C − 1)pi+1, so for the
existence of a solution at C > 1, Q > pi+1. The minimum value of i may be 1, so a necessary
condition for the existence of a solution is Q > p2 or L < −p2.

Now, we examine the range where an alternate solution is possible and also derive the
possibility of an alternate solution.

Let there exists a solution at i = i1. Here, we consider i1 to be the highest value of i
at which solution is possible and consider the alternate solution at some smaller value of i,
unlike the previous case, where we considered alternate solution for the higher value of i and
started with a smaller value of i. So, let an alternate solution exist at i = i2. Hence, we
have the following two equations.

Q+ i1 = C1p
i1+1, p ∤ C1,
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and

Q+ i2 = C2p
i2+1, p ∤ C2.

Hence,

i1 − i2 = pi2+1(pi1−i2C1 − C2).

PutK = pi1−i2C1−C2 withK ≥ 1. We get i1−i2 = Kpi2+1, p ∤ K, which impliesKpi2+1 < i1,
K ≥ 1. Hence,

i2 < logp i1 − 1. (26)

So, we get a relation that for a given i1, which forms the solution, an alternate solution
to it exists somewhere between 0 and the upper bound logp i1 − 1, which depends on the
value of i1 itself. Thus, this reduces the search for the alternate solution. We repeat the
same algorithm for getting the next alternate solution and so on, till the range of i permits.

We also derive a necessary condition for the existence of an alternate solution once we
have a solution at i = i1, for C > 1. Considering the inequality (26), we put i2 = 1, as this
would be the minimum value of i2, in case it exists. So, we get 1 < logp i1 − 1 or i1 > p2.

So if i ≤ p2, we terminate the process as there will not be any alternate solution at a
smaller value of i.

Now, we derive a necessary condition for the existence of at least two solutions for C > 1.
Considering inequality (26), we put i2 = 1, as this would be the minimum value of i2, in case
it exists, and for i1, we substitute i1 < logp Q− 1. We get

1 < logp i1 − 1 ⇒ 2 < logp(logp Q− 1) ⇒p2 + 1 < logp Q ⇒ Q > p(p
2+1).

This gives a necessary condition to have at least two solutions for C > 1.

Case 3: (L = 0). Clearly, y′p = 1 ⇒ y = p is the only solution.
Now, we have the values of i for which we have the solution for yp = pL. We can get the

corresponding solution of the equation x′

p = a, by multiplying M to the solution obtained
through the above methods, since y = x

M
⇒ x = My, we have x′

p = My′p.
Now we restate the improved version of [1, Theorem 1] and give another theorem (using

the notation used in the discussion) about the nature of solutions of x′

p = pL, which is the
outcome of the above discussion.

Theorem 3. Let p ∈ P and L ∈ Z. Further, let I0 = {1, 2, . . . , ⌈logp L⌉ − 2} for L > 0,
I0 = {1, 2, . . . , ⌈logp(−L)⌉ − 2} for L < 0, and I0 = ∅ for L = 0. Let also I = {i ∈ I0 :

pi+1||(L− i)}. Then x = pL+1

L−i
is a solution of x′

p = pL for each i ∈ I. If p ∤ (L+1), then also

x = pL+1

L+1
is a solution. All solutions are obtained in this way. The only solution of x′

p = 1 is
x = p. The equation x′

p = 0 holds if and only if p ∤ x.
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Theorem 4. 1. Let L > 0.

(i) A necessary and sufficient condition for the existence of a solution of x′

p = pL in
the case i > 0, where i ∈ I, is L ≥ 1 + p2.

(ii) A necessary and sufficient condition for the existence of at least two solutions of
x′

p = pL in the case i > 0, where i ∈ I, is L > pp
i0+1+i0+1 provided the first

solution is obtained at i0 ∈ I.

2. Let L < 0.

(i) A necessary and sufficient condition for the existence of a solution of x′

p = pL in
the case i > 0, where i ∈ I, is −L > p2.

(ii) A necessary and sufficient condition for the existence of at least two solutions of
x′

p = pL in the case i > 0, where i ∈ I, is −L > pp
2+1.

In the remark given below, we discuss about the possibilities of the number of solutions
of x′

p = a. Through this discussion, we have a strong belief that Conjecture 27 of [1] is false.

Remark 5. The maximum number of possible solutions may be greater than four, as is
evident from the algorithm that on increasing the value of L, we have a higher range with
more number of testing steps in the alternating sequence range. Two solutions are possible
at i = 0, and when p ∤ (L + 1). Then, for the positive values of i, we have derived the
minimum positive value or maximum negative value for L, so as to have at least one solution
and an alternate solution. The possibility of two solutions exists for any value of L, except
at L = 0, where only one solution is possible. At negative values of L, we have one more
case, namely, C = 1. So, for negative L, we already get a possibility of existence of three
solutions. We concentrate on the positive values of i for further possibilities.

For p = 2, the minimum value of L must be 5 in order for of three or more solutions to
exist. If, L is negative, its maximum value must be −5, in order for three or more solutions to
exist. Further, L > 2(2

2+2) = 64, for the possible existence of at least one alternate solution,
given that L > 0, which will also form the fourth solution. New solutions are possible, if we
further increase the value of L.

Similarly, for p > 2, we can easily test for first three solutions, but for the alternate
solution, the minimum value of L is 311 for p = 3, and 526 for p = 5, and so on. Due to such
a high value, it is difficult to investigate for further solutions at p > 2, but it is quite possible
to get more than three solutions if we increase the limit drastically beyond the given values.
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