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Abstract

We consider the arithmetical function p(β)(n) := pmax(1,⌊βk⌋) for a given fixed num-
ber β ∈ (0, 1), where p1 < p2 < · · · < pk are the prime factors of n. We provide
an estimate for the sum of the reciprocals of p(β)(n) for n ≤ x, which improves and
generalizes an earlier result of De Koninck and Luca.

1 Introduction

Given an integer n ≥ 2, let P (n) denote its largest prime factor and let P (1) = 1. At the
end of the 1970’s and early 1980’s, many papers focused on estimating the global behavior of
the sum of the reciprocals of P (n) for n ≤ x. For the highlights, see the papers of Erdős and
Ivić [7] and [8]. The best estimate was obtained in 1986 by Erdős, Ivić, and Pomerance [5,
Thm. 1], as they proved that

∑

n≤x

1

P (n)
= x

∫ x

2

ρ

(

log x

log t

)

t−2dt

(

1 +O

(
√

log2 x

log x

))

(x → ∞) ,

where ρ (u) is the Dickman function and logk x denotes the k-th iterate of log evaluated at
x. Here and in what follows, we shall assume that the input x in such an expression is
sufficiently large so that the iterated logarithms are real and positive. For any integer k ≥ 2,
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letting Pk(n) stand for the k-th largest prime factor with multiplicity of the integer n, De
Koninck [2, Thm. 2] proved that there exists a constant ck such that

∑

n≤x
Ω(n)≥k

1

Pk(n)
= ck

x (log2 x)
k−2

log x

(

1 +O

(

1

log2 x

))

(x → ∞) ,

where Ω(n) stands for the number of prime factors of n counting multiplicities.
During the 1984 Oberwolfach Conference on Analytic Number Theory, Erdős asked De

Koninck if he had thought of estimating the sum of the reciprocals of the middle prime factors
of the positive integers n ≤ x. Given an integer n ≥ 2, write it as n = pa11 pa22 · · · pakk , where
p1 < p2 < · · · < pk are its distinct prime factors, and the ai are positive integers. Denote the
number of distinct prime factors of n by ω(n), so that ω (n) = k, and let p(m)(n) := p⌊ω(n)+1

2 ⌋
denote its middle prime factor. De Koninck and Luca [4] proved that, as x → ∞,

∑

1<n≤x

1

p(m)(n)
=

x

log x
exp

((√
2 + o(1)

)

√

log2 x log3 x
)

. (1)

Expanding the main ideas of the proof of the upper bound given by De Koninck and
Luca [4], our goal here is to improve and generalize equation (1). For an integer n ≥ 2 and
a fixed real number β ∈ (0, 1), we denote by p(β)(n) = pmax(1,⌊βk⌋) the β-positioned prime
factor of n, where p1 < p2 < · · · < pk are its prime factors. As De Koninck and Luca did
with the middle prime factor, we obtain an estimate for the sum of the reciprocals of the
β-positioned prime factors of the integers n ≤ x.

Theorem 1. There exist four constants α1, α2, α3, and α4 such that, as x → ∞,

∑

1<n≤x

1

p(β)(n)
=

x

log x
exp

(

(log2 x)
1−β (log3 x)

β

ββ (1− β)1−2β

(

G (x, β) +O

(

1

log23 x

))

)

, (2)

where G (x, β) = 1 + α1
log4 x
log3 x

+ α2
1

log3 x
+ α3

log24 x

log23 x
+ α4

log4 x

log23 x
. In particular,

α1 =
−β (2− β)

1− β
, α3 =

2− β

2
α1,

α2 = β

(

log β − 3− 2β

1− β
log (1− β)− 1

1− β

)

, α4 = (2− β)α2 − α1 +
β

1− β
.

By setting β = 1/2, the following corollary shows that (2) is an improvement over
equation (1).
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Corollary 2. As x → ∞,

∑

1<n≤x

1

p(m)(n)
=

x

log x
exp

(

√

2 log2 x log3 x

(

1 + c1
log4 x

log3 x
+

c2
log3 x

+ c3
log24 x

log23 x
+ c4

log4 x

log23 x

))

× exp

(

O

(√

log2 x

log33 x

))

,

where c1 =
−3
2
, c2 =

3
2
log 2− 1, c3 =

−9
8
, and c4 = 1 + 9

4
log 2.

2 Preliminary results

Throughout this paper, p and q always stand for prime numbers, β ∈ (0, 1) is a fixed real
number, and x is a large number. Our goal is to estimate

∑

1<n≤x

1

p(β)(n)
=
∑

p≤x

1

p
#
{

n ≤ x : p(β)(n) = p
}

=
∑

p≤x

1

p

∑

k≥1

#Np,k(x), (3)

where Np,k(x) :=
{

n ≤ x : p(β)(n) = p, ω(n) = k
}

. Note that, given any x, the sum over k is

finite since the integer k must satisfy k ≤
⌊

log x
log 2

⌋

. Moreover, it is possible that #Np,k(x) = 0

for some primes p and integers k. Hence, the integers k and prime numbers p are dependent.
We shall see that the main contribution to equation (3) is reached when the prime numbers
p and the integers k are in particular sets. Let

N1(x) := {n ≤ x : Ω(n) > 10 log2 x} ;
N2(x) := {n ≤ x : pβ(n) > log x} ;
N3(x) := {n ≤ x : ω(n) ∈ {1, 2, . . . ,M}} ;
N4(x) := {n ≤ x} \ (N1(x) ∪ N2(x) ∪N3(x)) ,

where M :=
⌈

max
(

2
β
, 2
1−β

)⌉

. We first show that

∑

n∈Ni(x)

1

p(β)(n)
≪ x (log2 x)

M−1

log x
for i = 1, 2, 3. (4)

By [9, Lemma 13], it follows that

∑

n∈N1(x)

1

p(β)(n)
≪ #N1(x) =

∑

n≤x
Ω(n)>10 log2 x

1 ≪ x log x
10 log2 x

210 log2 x
≪ x

(log x)5
. (5)
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For the integers n ∈ N2(x), we have

∑

n∈N2(x)

1

p(β)(n)
≤
∑

n≤x

1

log x
≤ x

log x
. (6)

Finally,
∑

n∈N3(x)

1

p(β)(n)
≪ #N3(x) ≪

x (log2 x)
M−1

log x
, (7)

by the Hardy-Ramanujan inequality (see Lemma 4). Hence, combining the bounds (5), (6)
and (7), the upper bound (4) follows.

For each integer n ∈ Np,k(x) ∩ N4(x), we write ω(n) = k = 1
β
k0 + δ, where k0 = ⌊βk⌋,

so that δ ∈
[

0, 1
β

)

is fixed. Note that k ∈ [M + 1, 10 log2 x] and that p ∈ [2, log x]. Let us

write n = apαb, where a ≥ 2, P (a) < p, ω(a) = k0 − 1, 1 ≤ α ≤ 10 log2 x, p(b) > p, and

ω(b) =
(

1
β
− 1
)

k0+ δ, where P (n) and p(n) denote respectively the largest and the smallest

prime factors of n. It follows from the bounds (5) and (7) that

∑

n∈N4(x)

1

p(β)(n)
=

∑

p∈[3,log x]

1

p

∑

k∈[M+1,10 log2 x]

#(Np,k(x) ∩N4(x)) +O

(

x (log2 x)
M−1

log x

)

, (8)

where p ≥ 3 comes from the fact that a ≥ 2. Note that the β-positioned prime factors of
some integers n that are in the sets Ni(x) for i = 1, 2, 3 are counted multiple times on the
right-hand side of (8), but that their contribution is taken into consideration by the error
term of equation (8). The objective is now to estimate the main term of equation (8). For
this, three preliminary results will be useful.

Lemma 3 (Alladi [1], Theorem 6). Given a positive integer λ, let

ωλ(x, y) := # {n ≤ x : p(n) ≥ y, ω(n) = λ}

and

g (s, y, z) :=
∏

p

(

1 +
z

ps − 1

)(

1− 1

ps

)z
∏

p<y

(

1 +
z

ps − 1

)−1

for each z ∈ C. Then, for any r > 0, in the range 2 ≤ y ≤ exp
(

(log x)2/5
)

, ℜ(s) > 1
2
and

λ ≤ r log2 x, we have

ωλ (x, y) =
x

log x

g (1, y, µ)

Γ (1 + µ)

(log2 x)
λ−1

(λ− 1)!
+O

(

x (log2 x)
λ−1 (log y)−µ (log2 y)

2 λ

(λ− 1)! log x (log2 x)
2

)

(x → ∞) ,

where µ := λ−1
log2 x

.
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Lemma 3 and the following lemmas are used to estimate the sum over b for the integers
n = apαb.

Lemma 4 (Hardy-Ramanujan inequality). For any integer λ ≥ 1, define

Πλ(x) = # {n ≤ x : ω(n) = λ} .

There exist positive constants c and x0 such that, uniformly for 1 ≤ λ ≤ 10 log2 x,

Πλ(x) ≤ c
x

log x

(log2 x)
λ−1

(λ− 1)!

for all x > x0.

The next lemma follows from the proof of Theorem 1 in Erdős and Tenenbaum [6]. It
will be used to obtain an estimate for the sum over a of the integers n = apαb ≤ x.

Lemma 5 (Erdős and Tenenbaum). Let ǫ > 0. For every prime number p ≥ 5, define the
function ρ = ρ (k0 − 1, p) as the unique solution to

∑

q<p

ρ
q−1+ρ

= k0−1 for 1 ≤ k0−1 ≤ π(p)−2,

and define the functions

w(t) =

{

Γ (t+ 1) t−tet, if t > 0;

1, if t = 0;

and

F (z, p) =
∏

q<p

(

1 +
z

q − 1

)

for z ∈ C. Moreover, let G := {a ∈ N : ω(a) = k0 − 1, P (a) < p}. Then, uniformly for
1 ≤ k0 ≤ p1−ǫ, we have

∑

a∈G

1

a
=

F (ρ, p)

ρk0−1w (k0 − 1)

(

1 +O
(

R−1
))

,

where R = log
(

log p
log(k0+1)

)

(

1 + log+
(

k0

log
(

log p

log(k0+1)

)

))

and log+ x := max (0, log x).

In the following lemmas, we study three functions that are used to estimate the main
term of the right-hand side of equation (8).

Lemma 6. Let B > 1 and define the function f : (0,∞) → (0,∞) by f(t) =
(

eB
t

)t
. The

function f is concave and reaches its maximum when t = B.

Definition 7. For x > −1
e
, we define the Lambert-W function as the inverse of the real-

valued function h(y) = yey, which is defined for y > −1, so that W (x)eW (x) = x.
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In particular, one can easily show that the Lambert-W function goes to ∞ as x → ∞,
that it is strictly increasing and that it goes to 0 as x → 0. Using these facts, the following
lemmas can be proved.

Lemma 8. As x → ∞,

W (x) = log x− log2 x+
log2 x

log x
+O

(

(

log2 x

log x

)2
)

.

Lemma 9. As x → 0,
W (x) = x+O

(

x2
)

.

The third function will be useful in the evaluation of some sums.

Lemma 10. Let D > 0 and C ∈ R, and define the function g :
(

eC ,∞
)

→ (0,∞) by

g(t) = exp
(

D
β
(log t− C)β − t

)

. The function g is concave and reaches its maximum when

log t = log t0 := (1− β)W

(

D
1

1−β

1− β
exp

( −C

1− β

)

)

+ C,

where W stands for the Lambert-W function.

Proof. Clearly,

g′(t) = 0 ⇐⇒ D

t (log t− C)1−β
− 1 = 0 ⇐⇒ D = t (log t− C)1−β

⇐⇒ D
1

1−β = t
1

1−β (log t− C) ⇐⇒ D
1

1−β = exp

(

log t

1− β

)

(log t− C)

⇐⇒
D

1
1−β exp

(

−C
1−β

)

1− β
= exp

(

log t− C

1− β

)(

log t− C

1− β

)

.

Hence, by the definition of the Lambert-W function, it follows that this last equation is

equivalent to log t−C
1−β

= W

(

D
1

1−β

1−β
exp

(

−C
1−β

)

)

. Since t > eC , this equation always has a

unique solution.

3 Estimation of the main term

We will now consider the primes p belonging to the interval

I :=



exp





(

log2 x

(log3 x)
4

1−β log4 x

)1−β


 , exp
(

(log2 x)
1−β log3 x

)



 (9)
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and the positive integers k belonging to the interval

J :=

[

1

4

(log2 x)
1−β (log3 x)

β

ββ (1− β)1−3β
, 2e

(log2 x)
1−β (log3 x)

β

ββ (1− β)1−β

]

. (10)

We will show that the main contribution to the right-hand side of equation (8) comes from
the primes p ∈ I and integers k ∈ J . Note that #Np,k(x) 6= 0 for any prime number p ∈ I
and integer k ∈ J . Let

A = A (k, p) := {a ∈ N : ω(a) = k0 − 1, P (a) < p and Ω(a) ≤ 10 log2 x} (11)

and

B = B (k, p) :=

{

b ∈ N : ω(b) =

(

1

β
− 1

)

k0 + δ and p(b) > p

}

, (12)

so that n = apαb ∈ N4(x) for a ∈ A and b ∈ B. Hence, for p ∈ I and k ∈ J , we have from
the upper bound (5) that

# (Np,k(x) ∩ N4(x)) =
∑

a≤x
a∈A

⌊10 log2 x⌋
∑

α=1

∑

b≤ x
apα

b∈B

1 +O

(

x

(log x)5

)

. (13)

Thus, it follows from equation (8) that

∑

n∈N4(x)

p(β)(n)∈I
ω(n)∈J

1

p(β)(n)
=
∑

p∈I

1

p

∑

k∈J

∑

a≤x
a∈A

⌊10 log2 x⌋
∑

α=1

∑

b≤ x
apα

b∈B

1 +O

(

x (log2 x)
M−1

log x

)

. (14)

It remains to estimate the sums in the right-hand side of (14). Let

#N ′
p,k(x) :=

∑

a≤x
a∈A

⌊10 log2 x⌋
∑

α=1

∑

b≤ x
apα

b∈B

1.

Since apα = xo(1), we obtain from Lemma 3 that

∑

b≤ x
apα

b∈B

1 = vλ

(

x

apα
, p+ 2

)

=
x

apα log x

(log2 x)
λ−1

(λ− 1)!
(1 + o(1)) (x → ∞) ,

where λ =
(

1
β
− 1
)

k0 + δ ≥ 2, because k ≥ M + 1. Hence, as x → ∞,

#N ′
p,k(x) ∼

x

p log x

(log2 x)
λ−1

(λ− 1)!

∑

a≤x
a∈A

1

a

⌊10 log2 x⌋
∑

α=1

1

pα−1
∼ x

p log x

(log2 x)
λ−1

(λ− 1)!

∑

a∈A

1

a
, (15)
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because a = xo(1) for all a ∈ A. Moreover, we have
∑

a∈A

1
a
∼ ∑

a∈G

1
a
as x → ∞, where the set

G is defined as in Lemma 5. Indeed, we have

∑

a∈G

1

a
=
∑

a∈A

1

a
+

∑

a∈G
Ω(a)>10 log2 x

1

a
,

and Rankin’s method (see, for example, [4, Chap. 9]) shows that
∑

n>x
P (n)<y

1
n
≪ e−u/2 log y for

any x ≥ y ≥ 2, where u = log x
log y

. Hence, it follows that

∑

a∈G
Ω(a)>10 log2 x

1

a
≤

∑

a>210 log2 x

P (a)<p

1

a
≪ exp

(

−5 log2 x log 2

log p

)

log p.

We get from equation (15) that

#N ′
p,k(x) ∼

x

p log x

(log2 x)
λ−1

(λ− 1)!

∑

a∈G

1

a

as x → ∞. By an explicit evaluation of
∑

a∈G

1
a
using Lemma 5, we obtain

#N ′
p,k(x) =

x

p log x

(log2 x)
λ−1

(λ− 1)!

(

eA

k0

)k0

R, (16)

where A = A(x, p) = log2 p− log4 x− log (1− β) + log4 x
log3 x

and

R = R(x) = exp

(

O

(

(log2 x)
1−β

(log3 x)
2−β

))

.

Indeed, following the proof of Erdős and Tenenbaum [6, Lemma 1], for any prime number
p ∈ I and integer k ∈ J , we have

1

ρ
=

log2 p− log2 k0 +
log3 p
log k0

k0
+O

(

1

k0 log k0

)

=
log2 p− log4 x− log (1− β) + log4 x

log3 x

k0
+O

(

1

k0 log k0

)

, (17)

and, by Erdős and Tenenbaum [6, Lemma 2], we obtain F (ρ, p) = exp
(

k0 +O
(

ρ
log ρ

))

.
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Using the Stirling’s formula to estimate (λ− 1)!, it follows from equation (16) and the
definition of λ in terms of k0 that

#N ′
p,k(x) =

x

p log x





e (log2 x)
1−β Aβ

(

1
β
− 1
)

k0





k0
β

R,

and, since k0
β
= k +O(1), we obtain

#N ′
p,k(x) =

x

p log x

(

eB

k

)k

R, (18)

where B = B(x, p) = (log2 x)
1−βAβ

β( 1
β
−1)

1−β . Hence, combining equations (14) and (18), we have

∑

n∈N4(x)

p(β)(n)∈I
ω(n)∈J

1

p(β)(n)
=

x

log x
R
∑

p∈I

1

p2

∑

k∈J

(

eB

k

)k

+O

(

x log2 x log3 x

log x

)

.

We can conclude from Lemma 6 that

∑

n∈N4(x)

p(β)(n)∈I
ω(n)∈J

1

p(β)(n)
=

x

log x
R
∑

p∈I

1

p2
exp (B) +O

(

x log2 x log3 x

log x

)

. (19)

To estimate the sum over p, we note that

∑

p∈I

1

p2
exp (B) =

∑

p∈I

1

p
exp (B − log p) =

∑

p∈I

1

p
g (log p) ,

where g is the same function as the one defined in Lemma 10, C = log4 x+log (1− β)− log4 x
log3 x

and D =
(

β log2 x
1−β

)1−β

. Moreover, from this same lemma, we have

∑

p∈I

1

p
g (log p) ≤ g (t0)

∑

p∈I

1

p
≪ g (t0) log4 x, (20)

where, in particular,

t0 =

(

β

(1− β)2
log2 x

log3 x

)1−β (

1 + (2− β)
log4 x

log3 x
+O

(

1

log3 x

))

. (21)
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Lemma 10 also provides a lower bound for the sum over p. Indeed, let p0 be the largest
prime number in I such that log p0 ≤ t0. In particular, by Bertrand’s postulate, one can
conclude that the prime number p0 satisfies p0 ∈

(

1
2
et0 , et0

]

. Thus, for every prime number

p ∈
(

1
log2 x

p0, p0 log2 x
]

⊂ I, there exist positive constants c1, c2, and c3 such that

g (log p) ≥ g (log p0 − c1 (log3 x)) ≥ g (t0 − c2 (log3 x)) ≥ g (t0) exp
(

−c3

(

(log3 x)
2−β
))

for every x > ee
e

, so that

∑

p∈I

1

p
g (log p) ≥ g (t0) exp

(

−c3 (log3 x)
2−β
)

∑

p∈
[

p0
log2 x

,p0 log2 x
]

1

p

≫ g (t0) exp
(

−c3 (log3 x)
2−β
)

(

log3 x

log2 x

)1−β

≥ g (t0) exp
(

(log3 x)
2−β
)

. (22)

Hence, from equation (19), the upper bound (20), and the lower bound (22), we have

∑

n∈N4(x)

p(β)(n)∈I
ω(n)∈J

1

p(β)(n)
=

x

log x
g (t0)R. (23)

Estimates (4), (8), and (23) allow us to write

∑

n≤x

1

p(β)(n)
=

x

log x
g (t0)R+ E(x), (24)

where the error term E(x) is defined by

E(x) =
∑

n∈N4(x)

p(β)(n) 6∈I or ω(n) 6∈J

1

p(β)(n)
.

In particular, an explicit evaluation of g (t0) using equation (21) yields the main term on the
right-hand side of (2). What is left to do is to obtain an upper bound for the error term.

4 Estimation of the error term

In this section, we show that the error term E(x) satisfies E(x) = o
(

x
log x

g (t0)
)

as x → ∞.

We can proceed as in the proof of the upper bound given by De Koninck and Luca [4]. First,
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we have from upper bound (4) and equation (8) that

∑

n≤x

1

p(β)(n)
=

∑

n∈N4(x)

1

p(β)(n)
+O

(

x (log2 x)
M−1

log x

)

=
∑

p∈[3,log x]

1

p

∑

k∈[M+1,10 log2 x]

#(Np,k(x) ∩ N4(x)) +O

(

x (log2 x)
M−1

log x

)

.

(25)

Moreover, by equation (13), we have

# (Np,k(x) ∩ N4(x)) ≤
∑

a≤x
a∈A

⌊10 log2 x⌋
∑

α=1

∑

b≤ x
apα

b∈B

1.

Hence, we get from Lemma 4 that

# (Np,k(x) ∩ N4(x)) ≪
x

log x

(log2 x)
λ−1

(λ− 1)!

∑

a≤x
a∈A

1

a

⌊10 log2 x⌋
∑

α=1

1

pα
≪ x

p log x

(log2 x)
λ−1

(λ− 1)!

∑

a∈A

1

a
. (26)

In light of the definition of the set G, upper bound (26) yields

# (Np,k(x) ∩ N4(x)) ≪
x

p log x

(log2 x)
λ−1

(λ− 1)!

∑

a∈G

1

a
. (27)

On the other hand, observe that
∑

a∈G

1
a
= 0 if p < pk0 and that for p ≥ pk0 , we have

∑

a∈G

1

a
≪

∑

p1<p2<···<pk0−1<p
αi≥1

1

pα1
1 · · · pαk0−1

k0−1

=
∑

p1<p
α1≥1

1

pα1
1

∑

p1<p2<p
α2≥1

1

pα2
2

· · ·
∑

pk0−2<pk0−1<p
αk0−1≥1

1

p
αk0−1

k0−1

≪
∑

p1<p

1

p1 − 1

∑

p1<p2<p

1

p2 − 1
· · ·

∑

pk0−2<pk0−1≤p

1

pk0−1 − 1

≤ 1

(k0 − 1)!

(

∑

q≤p

1

q − 1

)k0−1

≪ 1

(k0 − 1)!
(log2 p+ c)k0−1

for some positive constant c, where the inequality comes from Mertens’ estimate. Hence, it
follows from upper bound (27) that

# (Np,k(x) ∩ N4(x)) ≪
x

p log x

(log2 x)
λ−1

(λ− 1)!

((1 + o(1)) log2 p)
k0−1

(k0 − 1)!
. (28)

11



Using bound (28) in equation (25) yields

∑

n∈N4(x)

1

p(β)(n)
≪ x

log x

∑

p∈[3,log x]

1

p2

∑

k∈[M+1,10 log2 x]

(log2 x)
λ−1

(λ− 1)!

(log2 p+ c)k0−1

(k0 − 1)!
+

x (log2 x)
M−1

log x
.

(29)
Observe that we can assume that k ≥ log3 x. Indeed, it follows from upper bound (29) that

∑

n∈N4(x)
ω(n)<log3 x

1

pβ(n)
≪ x

log x
(log2 x)

log3 x ((1 + o(1)) log2 x)
log3 x . (30)

Hence, combining estimates (29) and (30), we obtain

∑

n∈N4(x)

1

p(β)(n)
≪ x

log x

∑

p∈[3,log x]

1

p2

∑

k∈[log3 x,10 log2 x]

(log2 x)
λ−1

(λ− 1)!

(log2 p+ c)k0−1

(k0 − 1)!

+
x

log x
exp

(

2 (log3 x)
2 + o (log3 x)

)

.

By applying Stirling’s formula to (λ− 1)!, we then have

∑

n∈N4(x)

1

p(β)(n)
≪ x

log x

∑

p∈[3,log x]

1

p2

∑

k∈[log3 x,10 log2 x]

1

k

(

e log2 x

λ

)λ−1(
e (log2 p+ c)

k0

)k0−1

+
x

log x
exp

(

2 (log3 x)
2 + o (log3 x)

)

≪ x

log x

∑

p∈[3,log x]

1

p2

∑

k∈[log3 x,10 log2 x]

(

e log2 x

λ

)λ(
e (log2 p+ c)

k0

)k0

+
x

log x
exp

(

2 (log3 x)
2 + o (log3 x)

)

.

Expressing λ and k0 in terms of k, we get from this upper bound that

∑

n∈N4(x)

1

p(β)(n)
≪x log2 x

log x

∑

p∈[3,log x]

1

p2

∑

k∈[log3 x,10 log2 x]

(

e (log2 x)
1−β (log2 p+ c)β

ββ (1− β)1−β k

)k

+
x

log x
exp

(

2 (log3 x)
2 + o (log3 x)

)

.

(31)

Let K1 and K2 be the smallest and largest integers in the interval J respectively. Then, from
Lemma 6, since

K1 =
(1− β)β

4

(log2 x)
1−β (log3 x)

β

ββ (1− β)1−2β
+O(1)

12



is smaller than the maximum of the function
(

e(log2 x)
1−β(log3 x+c)β

ββ(1−β)1−βt

)t

, we obtain that

∑

k∈[log3 x,K1]

(

e (log2 x)
1−β (log2 p+ c)β

ββ (1− β)1−β k

)k

≪K1

(

e (log2 x)
1−β (log3 x+ c)β

ββ (1− β)1−β K1

)K1

≪ (log2 x)
1−β (log3 x)

β

(

4e

(1− β)2β

)K1

exp (o (K1)) .

Since (log2 x)
1−β (log3 x)

β ≪ exp (o (K1)), it follows that

∑

k∈[log3 x,K1]

(

e (log2 x)
1−β (log2 p+ c)β

ββ (1− β)1−β k

)k

≪ exp (K1 (1 + log 4− 2β log (1− β) + o(1)))

≪ exp

(

(

3

5
+ o(1)

)

(log2 x)
1−β (log3 x)

β

ββ (1− β)1−2β

)

, (32)

where the last inequality comes from the fact that

K1 (1 + log 4− 2β log (1− β))=
1 + log 4− 2β log (1− β)

4 (1− β)−β

(log2 x)
1−β (log3 x)

β

ββ (1− β)1−2β
+O(1),

where the first fraction is strictly smaller than 3/5. Indeed, the function F (β) defined for
β ∈ [0, 1) by

F (β) =
1 + log 4− 2β log (1− β)

4 (1− β)−β

is strictly decreasing and F (0) = 1+log 4
4

< 3
5
. Hence, from upper bounds (31) and (32), we

have that

∑

n∈N4(x)

1

p(β)(n)
≪x log2 x

log x

∑

p∈[3,log x]

1

p2

∑

k∈[K1,10 log2 x]

(

e (log2 x)
1−β (log2 p+ c)β

ββ (1− β)1−β k

)k

+
x

log x
exp

(

(

3

5
+ o(1)

)

(log2 x)
1−β (log3 x)

β

ββ (1− β)1−2β

)

.

(33)

Similarly, from Lemma 6, since

K2 =
2e (log2 x)

1−β (log3 x)
β

ββ (1− β)1−β
+O(1)

13



is larger than the maximum of the function
(

e(log2 x)
1−β(log3 x+c)β

ββ(1−β)1−βt

)t

, we obtain

∑

k∈[K2,10 log2 x]

(

e (log2 x)
1−β (log2 p+ c)β

ββ (1− β)1−β k

)k

≪
∑

k∈[K2,10 log2 x]

(

e (log2 x)
1−β (log3 x+ c)β

ββ (1− β)1−β k

)k

≪ log2 x

(

e (log2 x)
1−β (log3 x)

β (1 + o(1))

ββ (1− β)1−β K2

)K2

≪ log2 x

(

1

2
+ o(1)

)K2

≪ log2 x. (34)

It follows from estimates (33) and (34) that

∑

n∈N4(x)

1

p(β)(n)
≪x log2 x

log x

∑

p∈[3,log x]

1

p2

∑

k∈J

(

e (log2 x)
1−β (log2 p+ c)β

ββ (1− β)1−β k

)k

+
x

log x
exp

(

(

3

5
+ o(1)

)

(log2 x)
1−β (log3 x)

β

ββ (1− β)1−2β

)

.

(35)

Hence, from Lemma 6, we can conclude that

∑

n∈N4(x)

1

p(β)(n)
≪ x log2 x

log x

∑

p∈[3,log x]

1

p2
exp

(

(log2 x)
1−β (log2 p+ c)β

ββ (1− β)1−β

)

+
x

log x
exp

(

(

3

5
+ o(1)

)

(log2 x)
1−β (log3 x)

β

ββ (1− β)1−2β

)

.

Let q1 and q2 be the smallest and largest prime numbers in the interval I respectively. Then,
for p ≤ q1, we have

log2 p ≤ log2 q1 = (1− β)

(

log3 x− 4

1− β
log4 x− log5 x (1 + o(1))

)

=: (1− β) C(x),

so that

x log2 x

log x

∑

p∈[3,q1]

1

p2
exp

(

(log2 x)
1−β (log2 p+ c)β

ββ (1− β)1−β

)

≪ x

log x
exp

(

(log2 x)
1−β (C(x))β

ββ (1− β)1−2β

)

. (36)

Combining upper bounds (35) and (36), we obtain

∑

n∈N4(x)

1

p(β)(n)
≪x log2 x

log x

∑

p∈[q1,log x]

1

p2

∑

k∈J

(

e (log2 x)
1−β (log2 p+ c)β

ββ (1− β)1−β k

)k

+
x

log x
exp







(log2 x)
1−β
(

log3 x− 4
1−β

log4 x+O (log5 x)
)β

ββ (1− β)1−2β






,

(37)
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since the second term in the right-hand side of estimate (35) is smaller than the one of the
bound (37). When the prime number p satisfies q2 ≤ p ≤ log x, we have that log2 p ≤ log3 x

and that
∑

p≥q2

1
p2

≪ 1
q2 log q2

, where q2 = exp
(

(log2 x)
1−β log3 x

)

+O(1). Hence, as x → ∞,

∑

p∈[q2,log x]

exp
(

(log2 x)
1−β(log2 p+c)β

ββ(1−β)1−β

)

p2
≪

exp
(

(log2 x)
1−β(log3 x)

β

ββ(1−β)1−β (1 + o(1))
)

exp
(

(log2 x)
1−β log3 x

) = o(1). (38)

It follows from estimates (37) and (38) that

∑

n∈N4(x)

1

p(β)(n)
≪x log2 x

log x

∑

p∈I

1

p2

∑

k∈J

(

e (log2 x)
1−β (log2 p+ c)β

ββ (1− β)1−β k

)k

+
x

log x
exp







(log2 x)
1−β
(

log3 x− 4
1−β

log4 x+O (log5 x)
)β

ββ (1− β)1−2β






.

(39)

Finally, in light of equation (24), since

g (t0) = exp







(log2 x)
1−β
(

log3 x− 2−β
1−β

log4 x+O(1)
)β

ββ (1− β)1−2β
+O

(

(

log2 x

log3 x

)1−β
)






,

it follows from upper bound (39) that

x

log x
exp







(log2 x)
1−β
(

log3 x− 4
1−β

log4 x− log5 x (1 + o(1))
)β

ββ (1− β)1−2β






= o

(

x

log x
g (t0)

)

.

Hence, we can conclude that E(x) = o
(

x
log x

g (t0)
)

, which completes the proof of Theorem 1.

5 Final remarks

The error term R in Theorem 1 seems difficult to improve if one wants to obtain an explicit
result, the reason being that our result comes directly from the estimation of ρ and F (ρ, p)
provided in Erdős and Tenenbaum [6]. In fact, estimate (17) is the same as the one given by
Erdős and Tenenbaum [6, Lemma 1], so that obtaining an explicit result better than the one
given in Theorem 1 would require improving the Erdős and Tenenbaum estimates. However,
it would still be interesting to obtain an estimate for #Np,k(x) in a range wider than the
one provided by the primes p ∈ I and integers k ∈ J .
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