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Abstract

We study the shifting property of a matrix R = [rn,k]n,k≥0 and a sequence (hn)n∈N,
i.e., the identity

n∑

k=0

rn,khk+1 =
n∑

k=0

rn+1,k+1hk ,

when R is a Riordan matrix, a Sheffer matrix (exponential Riordan matrix), or a con-

nection constants matrix (involving symmetric functions and continuants). Moreover,
we consider the shifting identity for several sequences of combinatorial interest, such as
the binomial coefficients, the polynomial coefficients, the Stirling numbers (and their
q-analogues), the Lah numbers, the De Morgan numbers, the generalized Fibonacci
numbers, the Bell numbers, the involutions numbers, the Chebyshev polynomials, the
Stirling polynomials, the Hermite polynomials, the Gaussian coefficients, and the q-
Fibonacci numbers.

∗The work is partially supported by MIUR (Ministero dell’Istruzione, dell’Università e della Ricerca).
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1 Introduction

We say that a matrix R = [rn,k]n,k≥0 and a sequence (hn)n∈N satisfy the shifting property

when they satisfy the shifting identity

n∑

k=0

rn,khk+1 =
n∑

k=0

rn+1,k+1hk (1)

for every n ∈ N. This relation turns out to be satisfied by several combinatorial sequences,
as already noted in the Abstract. In this paper, we will consider the following classes of
matrices.

• Riordan matrices [12] (see also [13, 14, 15, 16]): R = [rn,k]n,k≥0 = (g(t), f(t)) is an
infinite lower triangular matrix whose columns have generating series

rk(t) =
∑

n≥k

rn,k t
n = g(t)f(t)k ,

where g(t) and f(t) are ordinary formal series with g0 = 1, f0 = 0 and f1 6= 0.

• Sheffer matrices [9, 10, 16] (or exponential Riordan matrices): R = [rn,k]n,k≥0 =
(g(t), f(t)) is an infinite lower triangular matrix whose columns have exponential gen-
erating series

rk(t) =
∑

n≥k

rn,k
tn

n!
= g(t)

f(t)k

k!
,

where g(t) and f(t) are exponential formal series with g0 = 1, f0 = 0 and f1 6= 0.

• Connection constants matrices [4, 3]: R = C(ρ,σ) =
[
C

(ρ,σ)
n,k

]
n,k≥0

is an infinite lower

triangular matrix whose entries are the connection constants between the two persistent
sequences of polynomials (p

(ρ)
n (x))n≥0 and (p

(σ)
n (x))n≥0, i.e., are the coefficients for which

p(ρ)n (x) =
n∑

k=0

C
(ρ,σ)
n,k p

(σ)
k (x) , (2)

where ρ = (r1, r2, . . .) and σ = (s1, s2, . . .), and p
(ρ)
n (x) = (x− r1)(x− r2) · · · (x− rn).

Notice that, in the case of Riordan and Sheffer matrices, g(t) is invertible with respect
to the product of series and f(t) is invertible with respect to the composition of series. The

compositional inverse of the series f(t) is denoted by f̂(t). Moreover, Riordan and Sheffer
matrices form a group with respect to the matrix product. In particular, we have

(g(t), f(t)) (G(t), F (t)) = (g(t)G(f(t)), F (f(t))) and (g(t), f(t))−1 =

(
1

g(f̂(t))
, f̂(t)

)
.
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For the connection constants matrices, we have the closure property

C(ρ,σ)C(σ,τ) = C(ρ,τ) .

Moreover, all connection constants matrices are invertible, and the inverse matrices are given
by

(C(ρ,σ))−1 = C(σ,ρ) . (3)

2 General properties

Given a matrix R, we can have infinite sequences (hn)n∈N for which the shifting property
is satisfied. However, for a normalized sequence (hn)n∈N, i.e., a sequence with h0 = 1, we
have the following

Lemma 1. For every invertible infinite lower triangular matrix R = [rn,k]n,k≥0, there exists

a unique normalized sequence (hn)n∈N for which the shifting property holds.

Proof. Since R is invertible, all its diagonal entries are non-zero. So, by identity (1), we
obtain the recurrence

hn+1 =
1

rn,n

(
n∑

k=0

rn+1,k+1hk −
n−1∑

k=0

rn,khk+1

)
.

This recurrence, with the initial value h0 = 1, defines an unique sequence.

In particular, for n = 0 in identity (1), we have r0,0h1 = r1,1h0, So, if the sequence is
normalized and r0,0 = r1,1, then h1 = h0 = 1.

Lemma 2. Let R = [rn,k]n,k≥0 be an invertible infinite lower triangular matrix and let

(hn)n∈N be a normalized sequence satisfying the shifting property. If there exist a matrix

S = [sn,k]n,k≥0 such that

rn+1,k+1 =
n∑

i=k

rn,isi,k (4)

for every n, k ∈ N, then the elements of the sequence (hn)n∈N satisfy the recurrence

hn+1 =
n∑

k=0

sn,khk . (5)

In particular, if R′ = [rn+1,k+1]n,k≥0, then

S = R−1R′ . (6)
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Proof. Consider the normalized sequence defined by recurrence (5). This sequence and the
matrix R satisfy the shifting property (1). Indeed, by recurrences (4) and (5), we have

n∑

k=0

rn+1,k+1hk =
n∑

k=0

(
n∑

i=k

rn,isi,k

)
hk =

n∑

i=0

rn,i

(
i∑

k=0

si,khk

)
=

n∑

i=0

rn,ihi+1 .

Since by Lemma 1 there is only one normalized sequence satisfying the shifting property (1)
for a given invertible matrix R, the first part of the lemma follows. To obtain the second
part of the lemma, just note that identity (4) is equivalent to R′ = RS. Since R is invertible,
we have identity (6).

3 Shifting property for Riordan matrices

Recall that the incremental ratio is the linear operator R : R[[x]] → R[[x]] defined by

u(t) =
∑

n≥0

unt
n 7−→ Ru(t) =

u(t)− u0

t
=
∑

n≥0

un+1 t
n .

Moreover, the A-series of a Riordan matrix R = (g(t), f(t)) is the series

a(t) =
∑

n≥0

an tn =
t

f̂(t)
.

Theorem 3. A Riordan matrix R = (g(t), f(t)) and a normalized sequence (hn)n∈N, with
ordinary generating series h(t), satisfy the shifting property, if and only if

h(t) =
f̂(t)

f̂(t)− t2
, (7)

or, equivalently, if and only if

f̂(t) =
th(t)

Rh(t)
, (8)

or, equivalently, if and only if

hn+1 =
n∑

k=0

akhn−k (9)

where the numbers ak are the coefficients of the A-series of the matrix R. If the shifting

property holds, then the generating series for the shifting sums is

s(t) = g(t)Rh(f(t)) = g(t)
f(t)

t
h(f(t)) . (10)
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Proof. Let R = [rn,k]n,k≥0 = (g(t), f(t)) be a Riordan matrix. Then, for every formal series
u(t) =

∑
n≥0 unt

n, we have the identity

g(t)u(f(t)) =
∑

n≥0

[
n∑

k=0

rn,kuk

]
tn

and the Riordan matrix

R′ = [rn+1,k+1]n,k≥0 =

(
g(t)

f(t)

t
, f(t)

)
.

Hence, identity (1) is equivalent to the identity

g(t)Rh(f(t)) = g(t)
f(t)

t
h(f(t))

(and this gives series (10)). Since g(t) is invertible with respect to multiplication, we have
the equivalent identity

h(f(t))− 1

f(t)
=

f(t)

t
h(f(t)) .

Finally, since f(t) is invertible with respect to composition, we have the equivalent identity

h(t)− 1

t
=

t

f̂(t)
h(t) or Rh(t) = a(t)h(t)

from which we obtain (7), (8) and (9).

Theorem 4. A Riordan matrix R = (g(t), f(t)) and a normalized sequence (hn)n∈N, with
ordinary generating series h(t), satisfy the shifting property, if and only if they satisfy the

absorbing identity
n∑

k=0

rn,khk =
n∑

k=0

rn+k,2k . (11)

Proof. First, we have

∑

n≥0

(
n∑

k=0

rn+k,2k

)
tn =

∑

n≥0

1

tk

(
∑

n≥k

rn,2k t
n

)
=
∑

n≥0

g(t)
f(t)2k

tk
=

g(t)

1− f(t)2/t
.

So, identity holds if and only if

g(t)h(f(t)) =
tg(t)

t− f(t)2
.

Since f(t) is invertible with respect to composition and g(t) is invertible with respect to
multiplication, this relation is equivalent to

h(t) =
f̂(t)

f̂(t)− t2
,

and, by Theorem (3), this condition holds if and only if the shifting property holds.
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Next lemma will be useful to prove Theorem 6 and to obtain some examples.

Lemma 5. Let R = [rn,k]n,k≥0 = (g(t), f(t)) be a Riordan matrix.

1. For every a ∈ N, we have the Riordan matrix

R(a) =

(
g(t)

(
f(t)

t

)a
, f(t)

)
= [ra+n,a+k]n,k≥0. (12)

2. Let g(t) = 1. Then, for every a ∈ N, we have the Riordan matrix

R[a] =

(
f ′(t)

(
f(t)

t

)a
, f(t)

)
=

[
a+ n+ 1

a+ k + 1
ra+n+1,a+k+1

]

n,k≥0

. (13)

Proof. Since

[tn] g(t)

(
f(t)

t

)a
f(t)k = [ta+n] g(t)f(t)a+k = ra+n,a+k ,

we have identity (12). Moreover, if g(t) = 1, then

[tn]f ′(t)

(
f(t)

t

)a
f(t)k = [ta+n]f ′(t)f(t)a+k = [ta+n]

(
f(t)a+k+1

a+ k + 1

)′

=
a+ n+ 1

a+ k + 1
[ta+n+1]f(t)a+k+1 =

a+ n+ 1

a+ k + 1
ra+n+1,a+k+1 ,

and we also have identity (13).

By Theorem 3 (resp. Theorem 4), the shifting property (resp. absorbing property) for
a Riordan matrix R = (g(t), f(t)) depends only on the series f(t), but not on the series
g(t). So, for any sequence (hn)n∈N, there are infinite Riordan matrices satisfying the shifting
property (resp. absorbing property). In particular, we have

Theorem 6. If a Riordan matrix R = [rn,k]n,k≥0 = (g(t), f(t)) and a normalized sequence

(hn)n∈N satisfy the shifting property, then

n∑

k=0

ra+n,a+khk+1 =
n∑

k=0

ra+n+1,a+k+1hk (14)

n∑

k=0

ra+n,a+khk =
n∑

k=0

ra+n+k,a+2k (15)

for every a ∈ N. In this case, the generating series for the shifting sums is

s(t) = g(t)

(
f(t)

t

)a
Rh(f(t)) = g(t)

(
f(t)

t

)a+1

h(f(t)) (16)
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and

sn =
n∑

k=0

ra+n+k+1,a+2k+1 . (17)

Moreover, if g(t) = 1, then

n∑

k=0

a+ n+ 1

a+ k + 1
ra+n+1,a+k+1hk+1 =

n∑

k=0

a+ n+ 2

a+ k + 2
ra+n+2,a+k+2hk (18)

n∑

k=0

a+ n+ 1

a+ k + 1
ra+n+1,a+k+1hk =

n∑

k=0

a+ n+ k + 1

a+ 2k + 1
ra+n+k+1,a+2k+1 (19)

for every a ∈ N. In this case, the generating series for the shifting sums is

s(t) = f ′(t)

(
f(t)

t

)a
Rh(f(t)) = f ′(t)

(
f(t)

t

)a+1

h(f(t)) (20)

and

sn =
n∑

k=0

a+ n+ k + 2

a+ 2k + 2
ra+n+k+2,a+2k+2 . (21)

Proof. In the Riordan matrices (12) and (13) the second series is always f(t), for all a ∈ N.
So, both matrices (12) and (13), with the sequence (hn)n∈N, satisfy the shifting property
and the absorbing property, for all a ∈ N. Moreover, series (16) and (20) derive from
Riordan matrices (12) and (13) and identity (10). Finally, identities (17) and (21) are just
a reformulation of the absorbing property.

Examples

1. If hn is the generalized Fibonacci number 1 f
[m]
n , with m ∈ N, m ≥ 1, then, by Theorem

3, we have

h(t) =
∑

n≥0

f [m]
n tn =

1

1− t− t2 − · · · − tm
and f̂(t) =

t

1 + t+ t2 + · · ·+ tm−1
.

In particular, for m = 2, we have the Fibonacci numbers f
[2]
n = fn = Fn+1 and

h(t) =
1

1− t− t2
⇐⇒ f̂(t) =

t

1 + t
⇐⇒ f(t) =

t

1− t
.

1 For m = 2, 3, 4, 5, 6, 7, 8, we have the Fibonacci numbers f
[2]
n (A000045), the Tribonacci numbers

f
[3]
n (A000073), the Tetranacci numbers f

[4]
n (A000078), the Pentanacci numbers f

[5]
n (A001591), the Hex-

anacci numbers f
[6]
n (A001592), the Heptanacci numbers f

[7]
n (A122189,A066178), the Octanacci numbers

f
[8]
n (A079262), and so on. See [7].
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Moreover, for m = 3, we have

h(t) =
1

1− t− t2 − t3
⇐⇒ f̂(t) =

t

1 + t+ t2

⇐⇒ f(t) =
1− t−

√
1− 2t− 3t2

2t
.

Let us consider the Riordan matrix R = (1, f(t)). Since the polynomial coefficients2

[2] are defined by

(1 + x+ x2 + · · ·+ xm−1)n =

(m−1)n∑

k=0

(
n; m

k

)
xk ,

by the Lagrange inversion formula we have

rn,k = [tn]f(t)k =
k

n
[tn−k]

(
t

f̂(t)

)n

=
k

n
[tn−k](1 + t+ t2 + · · ·+ tm−1)n =

(
n; m

n− k

)
k

n

for every n, k ∈ N, n ≥ 1. So, identities (14) and (18) become

n∑

k=0

(
a+ n; m

n− k

)
a+ k

a+ n
f
[m]
k+1 =

n∑

k=0

(
a+ n+ 1; m

n− k

)
a+ k + 1

a+ n+ 1
f
[m]
k (22)

n∑

k=0

(
a+ n+ 1; m

n− k

)
f
[m]
k+1 =

n∑

k=0

(
a+ n+ 2; m

n− k

)
f
[m]
k . (23)

In particular, for m = 2, these two identities are equivalent and become

n∑

k=0

(
a+ n

a+ k

)
fk+1 =

n∑

k=0

(
a+ n+ 1

a+ k + 1

)
fk . (24)

Moreover, and for a = 0, we have the identity

n∑

k=0

(
n

k

)
fk+1 =

n∑

k=0

(
n+ 1

k + 1

)
fk . (25)

2For m = 2, 3, . . . , 10, we have the binomial coefficients A007318, the trinomial coefficients A027907,
the quadrinomial coefficients A008287, the pentanomial coefficients A035343, the hexanomial or sextino-

mial coefficients A063260, the heptanomial or septinomial coefficients A063265, the octonomial coefficients

A171890, the 9-nomial coefficients A213652, the 10-nomial coefficients A213651.
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Finally, by (17), we also have the identities

n∑

k=0

(
a+ n; m

n− k

)
a+ k

a+ n
f
[m]
k+1 =

n∑

k=0

(
a+ n+ k + 1; m

n− k

)
a+ 2k + 1

a+ n+ k + 1
(26)

n∑

k=0

(
a+ n+ 1; m

n− k

)
a+ k + 1

a+ n+ 1
f
[m]
k =

n∑

k=0

(
a+ n+ k + 1; m

n− k

)
a+ 2k + 1

a+ n+ k + 1
(27)

and by (21), we have the identities

n∑

k=0

(
a+ n+ 1; m

n− k

)
f
[m]
k+1 =

n∑

k=0

(
a+ n+ k + 2; m

n− k

)
(28)

n∑

k=0

(
a+ n+ 2; m

n− k

)
f
[m]
k =

n∑

k=0

(
a+ n+ k + 2; m

n− k

)
. (29)

2. If hn is the Catalan number Cn =
(
2n
n

)
1

n+1
(A000108), then, by Theorem 3, we have

h(t) =
1−

√
1− 4t

2t
and f̂(t) = t

1 +
√
1− 4t

2
.

Notice that h(t) = t/f̂(t) = a(t).

Consider the Riordan matrix R = (1, f(t)). By the Lagrange inversion formula, we
have

rn,k = [tn]f(t)k =
k

n
[tn−k]

(
t

f̂(t)

)n
=

k

n
[t2n−k]

(
1−

√
1− 4t

2

)n
=

(
3n− 2k

n− k

)
k

3n− 2k

for every n, k ∈ N, n ≥ 1. So, replacing a with a+ 1, identities (14) and (18) become

n∑

k=0

(
a+ 3n− 2k + 1

n− k

)
a+ k + 1

a+ 3n− 2k + 1
Ck+1 =

=
n∑

k=0

(
a+ 3n− 2k + 2

n− k

)
a+ k + 2

a+ 3n− 2k + 2
Ck

(30)

n∑

k=0

(
a+ 3n− 2k + 1

n− k

)
a+ n+ 1

a+ 3n− 2k + 1
Ck+1 =

=
n∑

k=0

(
a+ 3n− 2k + 2

n− k

)
a+ n+ 2

a+ 3n− 2k + 2
Ck .

(31)
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Moreover, by (17), we have the identities

n∑

k=0

(
a+ 3n− 2k + 1

n− k

)
a+ k + 1

a+ 3n− 2k + 1
Ck+1 =

=
n∑

k=0

(
a+ 3n− k + 2

n− k

)
a+ 2k + 2

a+ 3n− k + 2

(32)

n∑

k=0

(
a+ 3n− 2k + 2

n− k

)
a+ k + 2

a+ 3n− 2k + 2
Ck =

=
n∑

k=0

(
a+ 3n− k + 2

n− k

)
a+ 2k + 2

a+ 3n− k + 2

(33)

and by (21), we have the identities

n∑

k=0

(
a+ 3n− 2k + 1

n− k

)
a+ n+ 1

a+ 3n− 2k + 1
Ck+1 =

=
n∑

k=0

(
a+ 3n− k + 2

n− k

)
a+ n+ k + 2

a+ 3n− k + 2

(34)

n∑

k=0

(
a+ 3n− 2k + 2

n− k

)
a+ n+ 2

a+ 3n− 2k + 2
Ck =

=
n∑

k=0

(
a+ 3n− k + 2

n− k

)
a+ n+ k + 2

a+ 3n− k + 2
.

(35)

In this case, we obtain a closed form for the shifting identities. Indeed, since the
generating series for the sums (30) is given by (14), we have

[tn]

(
f(t)

t

)a+1

h(f(t)) = [tn]

(
f(t)

t

)a+1
f(t)

t
= [tn]

(
f(t)

t

)a+2

=

= [ta+n+2]f(t)a+2 =

(
a+ 3n+ 2

n

)
a+ 2

a+ 3n+ 2
=

(
a+ 3n+ 1

n

)
a+ 2

a+ 2n+ 2
.

So, we also have the identities

n∑

k=0

(
a+ 3n− 2k + 1

n− k

)
a+ k + 1

a+ 3n− 2k + 1
Ck+1 =

(
a+ 3n+ 2

n

)
a+ 3

a+ 2n+ 3
(36)

n∑

k=0

(
a+ 3n− 2k + 2

n− k

)
a+ k + 2

a+ 3n− 2k + 2
Ck =

(
a+ 3n+ 2

n

)
a+ 3

a+ 2n+ 3
(37)

n∑

k=0

(
a+ 3n− k + 2

n− k

)
a+ 2k + 2

a+ 3n− k + 2
=

(
a+ 3n+ 2

n

)
a+ 3

a+ 2n+ 3
. (38)
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For a = 0, 1, . . . , 7 we have sequences A001764, A006629, A102893, A006630, A102594,
A006631, A230547, A233657.

Similarly, since the generating series for the sums (31) is given by (18), we have

[tn]f ′(t)

(
f(t)

t

)a+1

h(f(t)) = [tn]f ′(t)

(
f(t)

t

)a+1
f(t)

t
= [tn]f ′(t)

(
f(t)

t

)a+2

=

= [ta+n+2]f ′(t)f(t)a+2 = [ta+n+2]

(
f(t)a+3

a+ 3

)′

=
a+ n+ 3

a+ 3
[ta+n+3]f(t)a+3

=

(
a+ 3n+ 3

n

)
a+ n+ 3

a+ 3n+ 3
=

(
a+ 3n+ 2

n

)
a+ n+ 3

a+ 2n+ 3
.

So, we also have the identities
n∑

k=0

(
a+ 3n− 2k + 1

n− k

)
a+ n+ 1

a+ 3n− 2k + 1
Ck+1 =

(
a+ 3n+ 2

n

)
a+ n+ 3

a+ 2n+ 3

n∑

k=0

(
a+ 3n− 2k + 2

n− k

)
a+ n+ 2

a+ 3n− 2k + 2
Ck =

(
a+ 3n+ 2

n

)
a+ n+ 3

a+ 2n+ 3

n∑

k=0

(
a+ 3n− k + 2

n− k

)
a+ n+ k + 2

a+ 3n− k + 2
=

(
a+ 3n+ 2

n

)
a+ n+ 3

a+ 2n+ 3
.

3. If hn is the central binomial coefficients
(
2n
n

)
(A000984), then, by Theorem 3, we have

h(t) =
1√

1− 4t
, f̂(t) = t

1 +
√
1− 4t

4
and

1√
1− 4f(t)

=
f(t)

4t− f(t)
.

So, the situation is very similar to the one we have already considered for the Catalan
numbers. In particular, for the Riordan matrix R = (1, f(t)), we have

rn,k =

(
3n− 2k

n− k

)
k

3n− 2k
2n (n, k ∈ N , n ≥ 1) .

So, after some simplifications of identities (14) and (18), we obtain

n∑

k=0

(
a+ 3n− 2k

n− k

)
a+ k

a+ 3n− 2k

(
2k + 1

k + 1

)
=

=
n∑

k=0

(
a+ 3n− 2k + 1

n− k

)
a+ n+ 1

a+ 3n− 2k + 1

(
2k

k

) (39)

n∑

k=0

(
a+ 3n− 2k + 1

n− k

)
a+ n+ 1

a+ 3n− 2k + 1

(
2k + 1

k + 1

)
=

=
n∑

k=0

(
a+ 3n− 2k + 2

n− k

)
a+ n+ 2

a+ 3n− 2k + 2

(
2k

k

)
.

(40)
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Again, by (17), we have the identities

n∑

k=0

(
a+ 3n− 2k

n− k

)
a+ k

a+ 3n− 2k

(
2k + 1

k + 1

)
=

=
n∑

k=0

(
a+ 3n− k + 2

n− k

)
a+ 2k + 2

a+ 3n− k + 2
2k

(41)

n∑

k=0

(
a+ 3n− 2k + 1

n− k

)
a+ n+ 1

a+ 3n− 2k + 1

(
2k

k

)
=

=
n∑

k=0

(
a+ 3n− k + 2

n− k

)
a+ 2k + 2

a+ 3n− k + 2
2k

(42)

and, by (21), we have the identities

n∑

k=0

(
a+ 3n− 2k + 1

n− k

)
a+ n+ 1

a+ 3n− 2k + 1

(
2k + 1

k + 1

)
=

=
n∑

k=0

(
a+ 3n− k + 2

n− k

)
a+ n+ k + 2

a+ 3n− k + 2
2k

(43)

n∑

k=0

(
a+ 3n− 2k + 2

n− k

)
a+ n+ 2

a+ 3n− 2k + 2

(
2k

k

)
=

=
n∑

k=0

(
a+ 3n− k + 2

n− k

)
a+ n+ k + 2

a+ 3n− k + 2
2k .

(44)

These last identities admit a closed form. Indeed, by (20), we have

s(t) = f ′(t)

(
f(t)

t

)a+1

h(f(t)) = f ′(t)

(
f(t)

t

)a+1
1√

1− 4f(t)

= f ′(t)

(
f(t)

t

)a+1
f(t)

4t− f(t)
.

Then, using the Cauchy integral formula, we have

sn = [ta+n+1]
f(t)a+2

4t− f(t)
f ′(t) =

1

2πi

∮
f(z)a+2

4z − f(z)
f ′(z)

dz

za+n+2
.

Setting w = f(z), we have z = f̂(w), dw = f ′(z) dz and

sn =
1

2πi

∮ (
w

f̂(w)

)a+n+2
w

4f̂(w)− w

dw

wn+1
= [tn]

(
t

f̂(t)

)a+n+2
t

4f̂(t)− t
=

= 2a+n+1 [ta+2n+1]
1√

1− 4t

(
1−

√
1− 4t

2

)a+n+2

=

(
a+ 3n+ 2

n

)
2a+n+1 .
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So, we have the identities

n∑

k=0

(
a+ 3n− 2k + 1

n− k

)
a+ n+ 1

a+ 3n− 2k + 1

(
2k + 1

k + 1

)
=

(
a+ 3n+ 2

n

)
(45)

n∑

k=0

(
a+ 3n− 2k + 2

n− k

)
a+ n+ 2

a+ 3n− 2k + 2

(
2k

k

)
=

(
a+ 3n+ 2

n

)
(46)

n∑

k=0

(
a+ 3n− k + 2

n− k

)
a+ n+ k + 2

a+ 3n− k + 2
2k =

(
a+ 3n+ 2

n

)
. (47)

For a = 0, 1, 2, 3, 4 we have the sequences A025174, A004319, A236194, A236194,
A236194.

4. If hn is the Chebyshev polynomial of the second kind Un(x), then we have

h(t) =
1

1− 2xt+ t2
⇐⇒ f(t) =

2xt

1 + t
.

So, if we consider the Riordan matrix

R =

(
1,

2xt

1 + t

)
=

[(
n− 1

n− k

)
(−1)n−k(2x)k

]

n,k≥0

,

then, replacing a with a+ 1 in identities (14) and (18), we obtain

n∑

k=0

(
a+ n

n− k

)
(−1)n−k(2x)kUk+1(x) =

n∑

k=0

(
a+ n+ 1

n− k

)
(−1)n−k(2x)k+1Uk(x) (48)

n∑

k=0

(
a+ n+ 1

n− k

)
a+ n+ 2

a+ k + 2
(−1)n−k(2x)kUk+1(x) =

=
n∑

k=0

(
a+ n+ 2

n− k

)
a+ n+ 3

a+ k + 3
(−1)n−k(2x)k+1Uk(x) .

(49)

Moreover, by (17), we have the identities

n∑

k=0

(
a+ n

n− k

)
(−1)n−k(2x)kUk+1(x) =

n∑

k=0

(
a+ n+ k + 1

n− k

)
(−1)n−k(2x)2k+1 (50)

n∑

k=0

(
a+ n+ 1

n− k

)
(−1)n−k(2x)k+1Uk(x) =

n∑

k=0

(
a+ n+ k + 1

n− k

)
(−1)n−k(2x)2k+1 (51)
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and, by (21), we have the identities

n∑

k=0

(
a+ n+ 1

n− k

)
a+ n+ 2

a+ k + 2
(−1)n−k(2x)kUk+1(x)

=
n∑

k=0

(
a+ n+ k + 2

n− k

)
a+ n+ k + 3

a+ 2k + 3
(−1)n−k(2x)2k+1

(52)

n∑

k=0

(
a+ n+ 2

n− k

)
a+ n+ 3

a+ k + 3
(−1)n−k(2x)k+1Uk(x)

=
n∑

k=0

(
a+ n+ k + 2

n− k

)
a+ n+ k + 3

a+ 2k + 3
(−1)n−k(2x)2k+1 .

(53)

Similarly, if hn is the Chebyshev polynomial of the first kind Tn(x), then we have

h(t) =
1− xt

1− 2xt+ t2
⇐⇒ f̂(t) =

t− xt2

x− t

⇐⇒ f(t) =
1 + t−

√
1 + 2(1− 2x)t+ t2

1 + t
.

Consider the Riordan matrix R = [Rn,k(x)]n,k≥0 = (f(t)/t, f(t)). Then, by the La-
grange inversion formula, we have

Rn,k(x) = [tn]
f(t)

t
f(t)k = [tn+1]f(t)k+1 =

=
k + 1

n+ 1
[tn−k]

(
t

f̂(t)

)n+1

=
k + 1

n+ 1
[tn−k]

(
x− t

1− xt

)n+1

and so

Rn,k(x) =
n−k∑

i=0

(
n

i

)(
2n− k − i

n

)
k + 1

n− i+ 1
(−1)ix2n−2i−k+1 .

For these polynomials, we have the shifting identities

n∑

k=0

Ra+n,a+k(x)Tk+1(x) =
n∑

k=0

Ra+n+1,a+k+1(x)Tk(x) (54)

n∑

k=0

a+ n+ 1

a+ k + 1
Ra+n,a+k(x)Tk+1(x) =

n∑

k=0

a+ n+ 2

a+ k + 2
Ra+n+1,a+k+1(x)Tk(x) . (55)
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Finally, as we did for (17) and (21), we can also obtain the identities

n∑

k=0

Ra+n,a+k(x)Tk+1(x) =
n∑

k=0

Ra+n+k+1,a+k+1(x) (56)

n∑

k=0

Ra+n+1,a+k+1(x)Tk(x) =
n∑

k=0

Ra+n+k+1,a+k+1(x) (57)

and

n∑

k=0

a+ n+ 1

a+ k + 1
Ra+n,a+k(x)Tk+1(x) =

n∑

k=0

a+ n+ k + 2

a+ 2k + 2
Ra+n+k+1,a+k+1(x) (58)

n∑

k=0

a+ n+ 2

a+ k + 2
Ra+n+1,a+k+1(x)Tk(x) =

n∑

k=0

a+ n+ k + 2

a+ 2k + 2
Ra+n+k+1,a+k+1(x) . (59)

4 Shifting property for Sheffer matrices

First, we consider the particular case of Sheffer matrices with g(t) = 1, and then we
consider the general case which is more complex.

Theorem 7. A Sheffer matrix R = (1, f(t)) and a normalized sequence (hn)n∈N, with expo-

nential generating series h(t), satisfy the shifting property, if and only if

h(t) = e
∫ t

0 f ′(f̂(u)) du , (60)

or, equivalently, if and only if

f̂(t) =

∫ t

0

h(u)

h′(u)
du . (61)

In particular, the numbers hn satisfy the recurrence

hn+1 =
n∑

k=0

sn,khk (62)

where

sn,k =
n!

k!
[tn−k]

1

f̂ ′(t)
. (63)

If the shifting property holds, then the exponential generating series for the shifting sums is

s(t) = f ′(t)e
∫ t

0 f ′(u)2du . (64)
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Proof. Let R = [rn,k]n,k≥0 = (g(t), f(t)) be a Sheffer matrix. Then, for every exponential
formal series u(t) =

∑
n≥0 un

tn

n!
, we have the identity

g(t) u(f(t)) =
∑

n≥0

[
n∑

k=0

rn,kuk

]
tn

n!

and (for g(t) = 1) the Sheffer matrix

R′ = [rn+1,k+1]n,k≥0 = (f ′(t), f(t)) .

Hence, if g(t) = 1, then identity (1) turns out to be equivalent to the identity

h′(f(t)) = f ′(t) h(f(t)) . (65)

Since f(t) is invertible with respect to composition, we have the equivalent identity

h′(t) = f ′(f̂(t)) h(t)

from which we obtain (60). Since f ′(f̂(t)) = 1/f̂ ′(t), we also have the identity

f̂ ′(t) =
h(t)

h′(t)

from which we have (61). Finally, recurrence (62) derives from recurrence (5), where, by
identity (6), the Sheffer matrix S = [sn,k]n,k≥0 is defined by

S = R−1R′ = (1, f̂(t))(f ′(t), f(t)) = (f ′(f̂(t)), t) =

(
1

f̂ ′(t)
, t

)
.

This also implies (63). Finally, by (65) and (60), we obtain the exponential generating series
for the shifting sums:

s(t) = f ′(t) h(f(t)) = f ′(t) e
∫ f(t)
0 f ′(f̂(v)) dv .

Setting u = f̂(v), we have v = f(u), dv = f ′(u) du and s(t) assumes the form in (64).

Examples

1. By Theorem 7, we have

f(t) = ln
1

1− t
⇐⇒ f̂(t) = 1− e−t ⇐⇒ h(t) = ee

t−1 .
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In this case, the numbers hn are the Bell numbers bn (A000110). Since f̂(t) = 1− e−t

and f̂ ′(t) = e−t, we have sn,k =
n!
k!
[tn−k]et =

(
n
k

)
, and recurrence (62) becomes the usual

recurrence for the Bell numbers:

bn+1 =
n∑

k=0

(
n

k

)
bk .

In particular, for the Sheffer matrix of the Stirling numbers of the first kind [5]
(A132393)

R =

[[
n

k

]]

n,k≥0

=

(
1, ln

t

1− t

)
,

we have the shifting identity

n∑

k=0

[
n

k

]
bk+1 =

n∑

k=0

[
n+ 1

k + 1

]
bk . (66)

By identity (64), we obtain the series

s(t) =
1

1− t
e

t
1−t

(which is the exponential generating series for sequence A002720). Since

e
t

1−t =
∑

n≥0

ℓn
tn

n!

is the exponential generating series of the cumulative Lah numbers (A000262), we also
have the identities

n∑

k=0

[
n

k

]
bk+1 =

n∑

k=0

[
n+ 1

k + 1

]
bk =

n∑

k=0

(
n

k

)
(n− k)!ℓk . (67)

2. By Theorem 7, we have

f(t) = et − 1 ⇐⇒ f̂(t) = ln(1 + t) ⇐⇒ h(t) = et+t2/2 .

In this case, the numbers hn are the involution numbers in (A000085). Since f̂(t) =

ln(1 + t) and f̂ ′(t) = 1
1+t

, we have

sn,k =
n!

k!
[tn−k](1 + t) =





1, if k = n;

n, if k = n− 1;

0, otherwise ,
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and recurrence (62) becomes the usual recurrence for the involution numbers: in+1 =
in + nin−1 (for n ≥ 1).

In particular, for the Sheffer matrix of the Stirling numbers of the second kind [5]
(A008277)

R =

[{
n

k

}]

n,k≥0

=
(
1, et − 1

)
,

we have the shifting identity

n∑

k=0

{
n

k

}
ik+1 =

n∑

k=0

{
n+ 1

k + 1

}
ik (68)

Finally, by identity (64), we obtain the series

s(t) = et+et sinh t

which is the exponential generating series for the Dowling numbers (A007405).

3. By Theorem 7, we have

f(t) =
t

1− t
⇐⇒ f̂(t) =

t

1 + t
⇐⇒ h(t) = et+t2+t3/3 .

In this case, the numbers hn form sequence A049425. Since f̂(t) = t
1+t

and f̂ ′(t) =
1

(1+t)2
, we have

sn,k =
n!

k!
[tn−k](1 + t)2 =





1, if k = n;

2n, if k = n− 1;

n(n− 1), if k = n− 2;

0, otherwise ,

and recurrence (62) becomes hn+1 = hn + 2nhn−1 + n(n− 1)hn−2 (for n ≥ 2).

In particular, for the Sheffer matrix of the Lah numbers (A105287)

R =

[∣∣∣∣
n

k

∣∣∣∣
]

n,k≥0

=

(
1,

t

1− t

)
,

we have the shifting identity

n∑

k=0

∣∣∣∣
n

k

∣∣∣∣hk+1 =
n∑

k=0

∣∣∣∣
n+ 1

k + 1

∣∣∣∣hk . (69)

Finally, by identity (64), we obtain the series

s(t) =
1

(1− t)2
e

3t−3t2+t3

3(1−t)3 .
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4. If hn is the Stirling polynomial Sn(x) =
∑n

k=0

{
n
k

}
xk, then, by identity (61), we have

h(t) = ex(e
t−1) ⇐⇒ f̂(t) =

1− e−t

x
⇐⇒ f(t) = ln

1

1− xt
.

So, if we consider the Sheffer matrix

R =

(
1, ln

1

1− xt

)
=

[[
n

k

]
xn

]

n,k≥0

,

then the shifting identity simplifies in

n∑

k=0

[
n

k

]
Sk(x) = x

n∑

k=0

[
n+ 1

k + 1

]
Sk+1(x) . (70)

By identity (64), we obtain the series

s(t) =
x

1− xt
e

x2t
1−xt .

Since

e
x2t
1−xt =

∑

n≥0

xnLn(x)
tn

n!

where the coefficients

Ln(x) =
n∑

k=0

∣∣∣∣
n

k

∣∣∣∣x
k

are the Lah polynomials, we also have the identities

n∑

k=0

[
n

k

]
Sk(x) = x

n∑

k=0

[
n+ 1

k + 1

]
Sk+1(x) =

n∑

k=0

(
n

k

)
(n− k)!Lk(x) . (71)

5. If hn is the Hermite polynomial Hn(x) [9], then, by identity (61), we have

h(t) = e2xt−t2 ⇐⇒ f̂(t) = −1

2
ln
(
1− x

t

)
⇐⇒ f(t) = −x(e−2t − 1) .

So, if we consider the Sheffer matrix

R = (1,−x(e−2t − 1)) =

[{
n

k

}
(−1)n−k2nxk

]

n,k≥0

,

then the shifting identity simplifies in

n∑

k=0

{
n

k

}
(−1)n−kxkHk(x) = 2

n∑

k=0

{
n+ 1

k + 1

}
(−1)n−kxk+1Hk+1(x) . (72)

By identity (64), we obtain the series

s(t) = 2xe−2t+x2(1−e−4t) .
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More in general, we have

Theorem 8. A Sheffer matrix R = (g(t), f(t)) and a normalized sequence (hn)n∈N, with

exponential generating series h(t), satisfy the shifting property, if and only if

h′(t) = f ′(f̂(t))h(t) +
g′(f̂(t))

g(f̂(t))

∫ t

0

h(u) du , (73)

Proof. First, denoting with D the derivative with respect to t, we have

∑

n≥k

rn+1,k+1
tn

n!
= D

∑

n≥k

rn,k+1
tn

n!
= D

[
g(t)

f(t)k+1

(k + 1)!

]
= g′(t)

f(t)k+1

(k + 1)!
+ g(t)f ′(t)

f(t)k

k!
.

So, we have

∑

n≥0

[
n∑

k=0

rn+1,k+1hn

]
tn

n!
=

∑

k≥0

hn

[
n∑

n≥k

rn+1,k+1
tn

n!

]

= g′(t)
∑

k≥0

hn
f(t)k+1

(k + 1)!
+ g(t)f ′(t)

∑

k≥0

hn
f(t)k

k!

= g′(t)
∑

k≥1

hn−1
f(t)k

k!
+ g(t)f ′(t)h(f(t))

= g′(t)

∫ f(t)

0

h(u) du+ g(t)f ′(t)h(f(t)) .

Consequently, identity (1) becomes

g(t)h′(f(t)) = g′(t)

∫ f(t)

0

h(u) du+ g(t)f ′(t)h(f(t)) .

Since g(t) is invertible with respect to multiplication and f(t) is invertible with respect to
composition, this identity is equivalent to identity (73).

Theorem 9. Let R = [rn,k]n,k≥0 = (1, f(t)) be a Sheffer matrix and let (hn)n∈N be a normal-

ized sequence with exponential generating series h(t). If R and (hn)n∈N satisfy the shifting

property, then the Sheffer matrix R′ = [rn+1,k+1]n,k≥0 = (f ′(t), f(t)) satisfies the shifting

property with respect to the normalized sequence (Hn)n∈N whose exponential generating se-

ries H(t) is given by

H(t) = 1 + h′(t)

∫ t

0

du

h(u)
, (74)

or, equivalently, by

H ′(t) =
h′′(t)

h′(t)
H(t)− h(t)h′′(t)− h′(t)2

h(t)h′(t)
. (75)
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Proof. The series H(t) is defined by identity (73), where g(t) = f ′(t). By identity (61), we
have

f̂ ′(t) =
h(t)

h′(t)
and f̂ ′′(t) =

h′(t)2 − h(t)h′′(t)

h′(t)2
.

Since

f ′(f̂(t)) =
1

f̂ ′(t)
and f ′′(f̂(t)) = − f̂ ′′(t)

f̂ ′(t)3
,

we have
g′(f̂(t))

g(f̂(t))
=

f ′′(f̂(t))

f ′(f̂(t))
= − f̂ ′′(t))

f̂ ′(t)2
= −h′(t)2 − h(t)h′′(t)

h(t)2
.

So, the series H(t) is defined by the equation

H ′(t) =
h′(t)

h(t)
H(t)− h′(t)2 − h(t)h′′(t)

h(t)2

∫ t

0

H(u) du .

Now, let w(t) =
∫ t

0
H(u) du. Then w′(t) = H(t), w′′(t) = H ′(t), and the above equation

becomes

w′′(t)− h′(t)

h(t)
w′(t) +

h′(t)2 − h(t)h′′(t)

h(t)2
w(t) = 0 .

It is easy to see that w(t) = h(t) is a particular solution of this equation. So, we can set
w(t) = h(t)z(t). Then, we have

w′(t) = h′(t)z(t) + h(t)z′(t)

w′′(t) = h′′(t)z(t) + 2h′(t)z′(t) + h(t)z′′(t)

and the previous equation becomes

h(t)z′′(t) + h′(t)z′(t) = 0

or, equivalently, (h(t)z′(t))′ = 0. Hence, we have h(t)z′(t) = K, with K constant. Since
h0 = 1 and z0 = 0, we have z1 = 1. So K = 1, and h(t)z′(t) = 1, that is

z′(t) =
1

h(t)
.

Since z0 = 0, by integrating, we have

z(t) =

∫ t

0

1

h(u)
du ,

that is

w(t) = h(t)

∫ t

0

1

h(u)
du or

∫ t

0

H(u) du = h(t)

∫ t

0

1

h(u)
du ,

By differentiating this last equation, we obtain identity (74). Finally, by differentiating (74),
we obtain identity (75).
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Examples

1. By (73), for the Sheffer matrix

R =

[[
n+ 1

k + 1

]]

n,k≥0

=

(
1

1− t
, ln

t

1− t

)
,

we have that the series h(t) satisfies the integro-differential equation

h′(t) = et
∫ t

0

h(u) du+ et h(t) .

By differentiating, we obtain the differential equation

h′′(t)− (1 + et)h′(t)− eth(t) = 0

from which we have that the numbers hn satisfy the recurrence

hn+2 = hn+1 +
n∑

k=0

(
n

k

)
hk+1 +

n∑

k=0

(
n

k

)
hk .

Let b(t) = ee
t−1 be the exponential generating series for the Bell numbers. Then, by

equation (74) and Example 1 on page 16, we have

h(t) = 1 + b′(t)

∫ t

0

du

b(u)
= 1 + ee

t+t−1

∫ t

0

e−(eu−1) du .

Since

ex(e
t−1) =

∑

n≥0

Sn(x)
tn

n!

is the generating series for the Stirling polynomials, we have the explicit expression

hn = δn,0 +
n∑

k=1

(
n

k

)
Sk(−1)bn−k+1 .

These numbers form sequence A040027. By equation (75), we also have

h′(t) = (1 + et)h(t)− 1 ,

from which we obtain the following other recurrence

hn+1 = hn +
n∑

k=0

(
n

k

)
hk − δn,0 .

Finally, we have the shifting property

n∑

k=0

[
n+ 1

k + 1

]
hk+1 =

n∑

k=0

[
n+ 2

k + 2

]
hk . (76)

These sums form sequence A002793.
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2. By (73), for the Sheffer matrix

R =

[{
n+ 1

k + 1

}]

n,k≥0

=
(
et, et − 1

)
,

we have that the series h(t) satisfies the integro-differential equation

h′(t) =

∫ t

0

h(u) du+ (1 + t)h(t) .

By differentiating, we obtain the differential equation

h′′(t)− (1 + t)h′(t)− 2h(t) = 0

from which we have that the numbers hn satisfy the recurrence

hn+2 = hn+1 + (n+ 2)hn

with the initial values h0 = h1 = 1. These numbers form sequence A000932. Moreover,
by equation (74) and Example 2 on page 17, we have

h(t) = 1 + (1 + t)et+t2/2

∫ t

0

e−(u+u2/2) du .

Finally, we have the shifting identity

n∑

k=0

{
n+ 1

k + 1

}
hk+1 =

n∑

k=0

{
n+ 2

k + 2

}
hk . (77)

3. By (73), for the Sheffer matrix

R =

[∣∣∣∣
n+ 1

k + 1

∣∣∣∣
]

n,k≥0

=

(
1

(1− t)2
,

1

1− t

)
,

we have that the series h(t) satisfies the integro-differential equation

h′(t) = 2(1 + t)

∫ t

0

h(u) du+ (1 + t)2h(t) .

By differentiating, we obtain the differential equation

(1 + t)h′′(t)− (2 + 3t+ 3t2 + t3)h′(t)− 3(1 + t)2h(t) = 0 .

From this equation, we have that the numbers hn satisfy the recurrence

hn+4 + nhn+3 − 3(n+ 3)hn+2 − 3(n+ 3)(n+ 2)hn+1 − (n+ 3)(n+ 2)(n+ 1)hn = 0
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with the initial values h0 = h1 = 1, h2 = 5, h3 = 17. The first few values of this
sequence are: 1, 1, 5, 17, 69, 339, 1677, 9321, 55137, 343659, 2285289, 15910857,
116120781. This sequence does not appear in [11]. Moreover, by equation (74) and
Example 3 on page 18, we have

h(t) = 1 + (1 + t)2et+t2+t3/3

∫ t

0

e−(u+u2+u3/3) du .

Finally, we have the shifting identity

n∑

k=0

∣∣∣∣
n+ 1

k + 1

∣∣∣∣hk+1 =
n∑

k=0

∣∣∣∣
n+ 2

k + 2

∣∣∣∣hk . (78)

4. By (73), for the Sheffer matrix

R =

[(
n

k

)
n!

k!

]

n,k≥0

=

(
1

1− t
,

1

1− t

)
,

we have that the series h(t) satisfies the integro-differential equation

h′(t) = (1 + t)2h(t) + (1 + t)

∫ t

0

h(u) du .

By differentiating, we obtain the differential equation

(1 + t)h′′(t)− (2 + 3t+ 3t2 + t3)h′(t)− 2(1 + t)2h(t) = 0 .

From this equation, we have that the numbers hn satisfy the recurrence

hn+4 + nhn+3 − (3n+ 8)hn+2 − (3n+ 7)(n+ 2)hn+1 − (n+ 2)2(n+ 1)hn = 0

with the initial conditions h0 = h1 = 1, h2 = 4, h3 = 13. The first few values are: 1,
1, 4, 13, 50, 231, 1106, 5909, 33818, 205055, 1326226, 9014181, 64329034, 480660103.
This sequence does not appear in [11]. In this case we have the shifting identity

n∑

k=0

(
n

k

)
n!

k!
hk+1 =

n∑

k=0

(
n+ 1

k + 1

)
(n+ 1)!

(k + 1)!
hk . (79)

5 Shifting property for connection constants matrices

The elementary and the homogeneous symmetric functions [6, 4] are respectively defined
by (

x1, x2, . . . , xn

k

)
= ek(x1, x2, . . . , xn) =

∑

1≤i1<···<ik≤n

xi1 · · · xik
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((x1, x2, . . . , xn

k

))
= hk(x1, x2, . . . , xn) =

∑

i1,...,in≥0
i1+···+in=k

xi1
1 · · · xin

n

and have generating series

∑

k≥0

(
x1, x2, . . . , xn

k

)
tk = (1 + x1t)(1 + x2t) · · · (1 + xnt)

∑

k≥0

((x1, x2, . . . , xn

k

))
tk =

1

(1− x1t)(1− x2t) · · · (1− xnt)
.

We proved [4] that every connection constant can be expressed in terms of these sym-
metric functions. More precisely, given the zero sequence 0 = (0, 0, . . .), we proved that

C
(ρ,0)
n,k =

(
r1, . . . , rn
n− k

)
(−1)n−k (80)

C
(0,σ)
n,k =

((
s1, . . . , sk+1

n− k

))
(81)

and that

C
(ρ,σ)
n,k =

n∑

j=k

(
r1, . . . , rn
n− j

)((
s1, . . . , sk+1

j − k

))
(−1)n−j . (82)

Let us consider, now, the following generalization of the connection constants C
(ρ,0)
n,k and

C
(0,σ)
n,k . Given two sequences σ = (s1, s2, . . .) and τ = (t1, t2, . . .), we define the coefficients

N
(σ,τ)
n,k =

(
s1, . . . , sn
n− k

)
1

t1 · · · tn
(tk 6= 0 , for every k ∈ N) (83)

M
(σ,τ)
n,k =

((
s1, . . . , sk+1

n− k

))
t1t2 · · · tk . (84)

The M
(σ,τ)
n,k are the generalized De Morgan numbers3. Since the homogeneous symmetric

functions satisfy the recurrence
((

x1, x2, . . . , xn+1

k + 1

))
=

((
x1, x2, . . . , xn

k + 1

))
+

((
x1, x2, . . . , xn+1

k

))
xn+1 , (85)

the generalized De Morgan numbers satisfy the recurrence

M
(σ,τ)
n+1,k+1 = tk+1M

(σ,τ)
n,k + sk+2M

(σ,τ)
n,k+1 . (86)

Finally, we define the generalized continuants K
(σ,τ)
n by the recurrence

K
(σ,τ)
n+2 = tn+2K

(σ,τ)
n+1 + sn+2K

(σ,τ)
n (87)

3Notice that this is a slight generalization of the De Morgan numbers considered in [4].
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with the initial conditions K
(σ,τ)
0 = 1 and K

(σ,τ)
1 = t1, [5]. For convenience, we also define

K
(σ,τ)
−1 = 0.
Then, we have

Theorem 10. The matrix R =
[
M

(σ,τ)
n,k

]
n,k≥0

and the sequence (K
(σ,τ)
n )n≥0 satisfy the shifting

property, that is
n∑

k=0

M
(σ,τ)
n,k K

(σ,τ)
k+1 =

n∑

k=0

M
(σ,τ)
n+1,k+1K

(σ,τ)
k . (88)

Proof. By the recurrences (86) and (87), we have

n∑

k=0

M
(σ,τ)
n+1,k+1K

(σ,τ)
k =

n∑

k=0

M
(σ,τ)
n,k tk+1K

(σ,τ)
k +

n−1∑

k=0

M
(σ,τ)
n,k+1sk+2K

(σ,τ)
k

=
n∑

k=0

M
(σ,τ)
n,k tk+1K

(σ,τ)
k +

n∑

k=1

M
(σ,τ)
n,k sk+1K

(σ,τ)
k−1

=
n∑

k=0

M
(σ,τ)
n,k (tk+1K

(σ,τ)
k + sk+1K

(σ,τ)
k−1 )

=
n∑

k=0

M
(σ,τ)
n,k K

(σ,τ)
k+1 .

Using recurrences (86) and (87), we obtain the following particular instances of the
sifting identity (88). In particular, we obtain the q-analogues of some identities obtained in
the previous sections. Recall that the q-numbers are defined as [n] := 1+ q+ q2+ · · ·+ qn−1,
and that the q-factorials are defined as [n]! = [n][n− 1] · · · [2][1].

Examples

1. For sn = n−1 and tn = n, we obtain the ordinary De Morgan numbers Mn,k (A131689)
defined by the recurrence

Mn+1,k+1 = (k + 1)Mn,k + (k + 1)Mn,k+1 .

Moreover, the numbers K
(σ,τ)
n = hn satisfy the recurrence

hn+2 = (n+ 2)hn+1 + (n+ 1)hn

with the initial conditions h0 = h1 = 1. They have exponential generating series

h(t) =
e−t

(1− t)2
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and form sequence A000255. Finally, we have the shifting identity

n∑

k=0

Mn,khk+1 =
n∑

k=0

Mn+1,k+1hk . (89)

2. For sn = qn−1 and tn = 1, we obtain the Gaussian coefficients

((
1, q, q2, . . . , qk

n− k

))
=

(
n

k

)

q

=
[n]!

[k]![n− k]!

satisfying the recurrence

(
n+ 1

k + 1

)

q

=

(
n

k

)

q

+ qk+1

(
n

k + 1

)

q

.

Moreover, we have the q-Fibonacci numbers K
(σ,τ)
n = fn(q), defined by the recurrence

fn+2(q) = fn+1(q) + qn+1fn(q) with the initial conditions f0(q) = f1(q) = 1, [1, 8]. So,
we have the shifting identity

n∑

k=0

(
n

k

)

q

fk+1(q) =
n∑

k=0

(
n+ 1

k + 1

)

q

fk(q) . (90)

Clearly, for q = 1, we reobtain identity (25).

3. For sn = [n− 1] and tn = 1, we have the q-Stirling numbers of the second kind [4]:

((
[0], [1], [2], . . . , [k]

n− k

))
=

((
[1], [2], . . . , [k]

n− k

))
=

{
n

k

}

q

satisfying the recurrence

{
n+ 1

k + 1

}

q

=

{
n

k

}

q

+ [k + 1]

{
n

k + 1

}

q

.

Moreover, we have the q-involution numbers K
(σ,τ)
n = in(q) satisfying the recurrence

in+2(q) = in+1(q) + [n + 1]in(q) with the initial conditions i0(q) = i1(q) = 1. So, we
have the shifting identity

n∑

k=0

{
n

k

}

q

ik+1(q) =
n∑

k=0

{
n+ 1

k + 1

}

q

ik(q) . (91)

Clearly, for sn = n− 1 (i.e., for q = 1), we reobtain identity (68).
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4. For sn = [n− 1] and tn = [n], we obtain the q-De Morgan numbers Mn,k(q) =
{
n
k

}
q
[k]!

satisfying the recurrence

Mn+1,k+1(q) = [k + 1]Mn,k(q) + [k + 1]Mn,k+1(q) .

Moreover, the numbers K
(σ,τ)
n = hn(q) satisfy the recurrence

hn+2(q) = [n+ 2]hn+1(q) + [n+ 1]hn(q)

with the initial conditions h0(q) = h1(q) = 1. Finally, we have the shifting identity

n∑

k=0

Mn,k(q)hk+1(q) =
n∑

k=0

Mn+1,k+1(q)hk(q) (92)

which is a q-analogue of identity (89).

Lemma 11. If tk 6= 0 for every k ∈ N, then the matrices

M (σ,τ) =
[
M

(σ,τ)
n,k

]
n,k≥0

and N (σ,τ) =
[
N

(σ,τ)
n,k

]
n,k≥0

are invertible, and their inverses are
[
M

(σ,τ)
n,k

]−1

n,k≥0
=
[
N

(σ,τ)
n,k (−1)n−k

]
n,k≥0[

N
(σ,τ)
n,k

]−1

n,k≥0
=
[
M

(σ,τ)
n,k (−1)n−k

]
n,k≥0

.

Proof. Both M (σ,τ) and N (σ,τ) are infinite lower triangular matrices with non-zero diagonal
entries. So, they are invertible. Moreover, by relations (80) and (81) and by property (3),
we have at once the identities

[((
s1, . . . , sk+1

n− k

))]−1

n,k≥0

=

[(
r1, . . . , rn
n− k

)
(−1)n−k

]

n,k≥0[(
r1, . . . , rn
n− k

)]−1

n,k≥0

=

[((
s1, . . . , sk+1

n− k

))
(−1)n−k

]

n,k≥0

which imply the assertion.

Theorem 12. The matrix R = [N
(σ,τ)
n,k ]n,k≥0 and the sequence (h

(σ,τ)
n )n,k≥0 defined by the

recurrence

h
(σ,τ)
n+1 =

n∑

k=0

s
(σ,τ)
n,k h

(σ,τ)
k

with h
(σ,τ)
0 = 1, where

s
(σ,τ)
n,k =

n∑

i=k

((
s1, . . . , si+1

n− i

))(
s1, . . . , si+1

i− k

)
(−1)n−i

ti+1

, (93)

satisfy the shifting property.
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Proof. For the matrix R = [N
(σ,τ)
n,k ]n,k≥0, we have

R′ =
[
N

(σ,τ)
n+1,k+1

]
n,k≥0

and R−1 =
[
M

(σ,τ)
n,k (−1)n−k

]
n,k≥0

.

Consequently, the entries of the matrix S = R−1R′ are

s
(σ,τ)
n,k =

n∑

i=k

M
(σ,τ)
n,i (−1)n−iN

(σ,τ)
i+1,k+1 ,

which simplify in (93). Now, the theorem follows from Lemma 2.

Examples

1. By Theorem 12, for sn = qn−1 and tn = 1, we have the q-coefficients

((
1, q, . . . , qk

n− k

))
=

(
n

k

)

q

and

(
1, q, . . . , qn−1

n− k

)
=

(
n

k

)

q

q(
n−k
2 ),

and

sn,k(q) =
n∑

i=k

(
n

i

)

q

(
i+ 1

k + 1

)

q

q(
i−k
2 )(−1)n−i .

For the q-Fibonacci numbers defined by the recurrence

Fn+1(q) =
n∑

k=0

sn,k(q)Fk(q)

with the initial condition F0(q) = 1, we have the shifting property

n∑

k=0

(
n

k

)

q

q(
n−k
2 )Fk+1(q) =

n∑

k=0

(
n+ 1

k + 1

)

q

q(
n−k
2 )Fk(q) (94)

which is another q-analogue of identity (25).

2. By Theorem 12, for sn = [n− 1] and tn = 1, we have the q-coefficients

((
[1], . . . , [k]

n− k

))
=

{
n

k

}

q

and

(
[1], . . . , [n]

n− k

)
=

[
n

k

]

q

,

and

sn,k(q) =
n∑

i=k

{
n

i

}

q

[
i+ 1

k + 1

]

q

(−1)n−i .
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For the q-Bell numbers defined by the recurrence

Bn+1(q) =
n∑

k=0

sn,k(q)Bk(q)

with the initial condition B0(q) = 1, we have the shifting property

n∑

k=0

[
n

k

]

q

Bk+1(q) =
n∑

k=0

[
n+ 1

k + 1

]

q

Bk(q) (95)

which is a q-analogue of identity (66). Clearly, identity (66) can also be reobtained for
sn = n− 1 and tn = 1.
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