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Abstract

We present a family of integer sequences characterizing the behavior of the quotients
σ/s for a given odd natural number H, where N = H · 2σ + 1 is a composite number
and h · 2s + 1 (h ≥ 1 odd, s, σ ∈ N) is a non-trivial divisor of N . As an application we
prove a generalization of the primality theorem of Proth.

1 Introduction

For every odd natural number N > 1 there exists an unique pair (H, σ) with H an odd
natural number, σ ∈ N and N = H · 2σ + 1. In this parametric notation, we call H the
multiplier of N and σ the exponent of N . Here and subsequently, the notation A · 2α + 1
always means that A is the multiplier and α the exponent of the represented odd natural
number. For a given natural number N > 1 we let D(N) denote the set of the non-trivial
divisors of N , i.e., the set of all natural numbers d fulfilling 1 < d < N and d|N . Obviously,
N is a prime number if and only if D(N) = ∅.

The aim of this paper is to introduce and study a family of integer sequences character-
izing the behavior of the quotient σ

s
for a given H, where N = H · 2σ + 1 is a composite

number and h · 2s + 1 ∈ D(N). These sequences can be used to give a generalization of the
well-known primality theorem of Proth.
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If the exponent s is large compared to σ, then there must exist a rather small real
number m > 0 with m ≥ σ

s
. All the values of σ fulfilling this inequality for a given odd

natural number H are elements of the following set:

Sm(H) :=
{

σ ∈ N | ∃d = h · 2s + 1 ∈ D(H · 2σ + 1) : m ≥ σ

s

}

. (1)

With this we define the integer sequence

σm(H) := sup (Sm(H)) .

As usual, we adopt the conventions that sup(∅) = 0 and sup(A) = ∞ if |A| = |N|. The
aforementioned definitions immediately imply Sk(H) ⊂ Sl(H) and hence σk(H) ≤ σl(H) if
k < l.

2 The σm-sequences

2.1 Diophantine equations

Definition (1) leads to a general Diophantine equation, which allows to determine the ele-
ments of Sm(H) for a given m ≥ 1. Suppose N = H · 2σ + 1 = AB to be composite with
two non-trivial divisors A = h · 2r + 1 and B = k · 2s + 1. Without loss of generality we can
denote A and B such that 1 ≤ r ≤ s. It follows that

AB = 2r
(

2shk + 2s−rk + h
)

+ 1 = 2σH + 1 = N.

This is equivalent to the Diophantine equation

2shk + 2s−rk + h = 2σ−rH. (2)

Note that r ≤ s ∈ N and that h and k are odd natural numbers. To reflect the condition
m ≥ σ

s
of the definition we may include a supplementary parameter n in order to write

⌊ms⌋−n = σ. In general, n can take any integer value between 0 and ⌊ms⌋−1. For practical
purposes it is useful to demand for further restrictions, which render the computations more
comfortable.

If m = 1 then we get r = σ < s. Therefore, (2) turns into

2shk + 2s−rk + h = H. (3)

It is easy to see that for H ∈ {1, 3} equation (3) has no solution (under the abovementioned
assumptions). Hence σ1(1) = σ1(3) = 0. For H > 3 the estimate σ < s ≤ log2(H) obviously
holds. This gives σ1(H) ≤ ⌊log2(H)⌋ − 1 for all H ≥ 3. In fact, this estimate is best
possible in the sense that there are infinitely many values of H for which we actually have
σ1(H) = ⌊log2(H)⌋ − 1. We will establish this in subsection 2.3.

It is immediate that by explicitly giving a solution (r, s, h, k,H) of (3), we get the lower
bound σ1(H) ≥ r.
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Example 1. Because 8 · 10n−1
9

+ 2 · 10n−1
9

+ 1 = 10n+1−1
9

, we have σ1

(

10n+1−1
9

)

≥ 2 for all

natural numbers n.

Remark 2. Since σ1(H) < ∞ for every odd natural number H it is obvious that σm(H) < ∞
for every 0 < m < 1. Because of Sm(H) ⊂ S1(H), the value of σm(H) can thus explicitly be
calculated by examining the elements of S1(H).

Note that form > 1 we already get r = s < σ in the Diophantine equation (2). Therefore,
the Diophantine equation to consider concerning σ2(H) reads

2shk + h+ k = 2σ−s ·H (4)

with the supplementary condition 2s ≥ σ, i.e., s ≥ σ− s. For computational reasons we will
deal with another Diophantine equation in this context:

2shk + h+ k = 2s−n ·H (5)

with h ≤ k odd and 0 ≤ n < s. Note that (5) follows from (4) by setting 2s = σ + n.
The solutions (n, s, h, k,H) of (5) yield the elements σ = 2s − n ∈ S2(H) \ S1(H). Some
simple but very useful results can be derived from this Diophantine equation. First, (5)
implies 2nhk < H, showing that σ2(H) < ∞ for every odd H. In subsection 2.4 we will give
a best possible upper bound of the values of σ2(H). Again, by explicitly giving a solution
(n, s, h, k,H) of (5), we get the lower bound σ2(H) ≥ 2s− n.

Example 3. Since 4(8 · 10w − 1)+ 8 · 10w = 4(10w+1 − 1), we see that σ2(10
w+1 − 1) ≥ 4 for

all natural numbers w.

Form = 3 there is also a condition for existence, limiting the value of n in the Diophantine
equation

2shk + h+ k = 22s−n ·H, (6)

where h ≤ k are odd natural numbers and 0 ≤ n < s. Note that (n, s, h, k,H) is a solution
of equation (6) if and only if the corresponding σ = 3s− n is an element of S3(H) \ S2(H).

Now consider such a solution (n, s, h, k,H). By equation (6) we get h+ k ≡ 0 (mod 2s),
i.e., h + k = 2s · d for an appropriate natural number d. Moreover, there exists a natural
number a with a + n = s, i.e., 2s − n = s + a. Then hk = 2aH − d ≤ 2aH − 1. This
implies h + k ≤ hk + 1 ≤ 2aH ≤ 2sH and hence 2s = h+k

2aH−hk
≤ 2aH. Finally, he have

2n = 2s−a ≤ H, yielding n ≤ log2(H).

Remark 4. This condition of existence already implies that σm(H) < ∞ for every odd H

and m ∈ (2, 3). To see this, suppose σ ∈ Sm(H) \ S2(H) ⊂ S3(H) \ S2(H) for a m ∈ (2, 3).
This means that the corresponding s leads to a solution in (6) and hence fulfils the inequality

s ≤ σ+log2(H)
3

. Consequently, σ satisfies σ
m

≤ σ+log2(H)
3

which is equivalent to

σ ≤ m log2(H)

3−m
. (7)

Since σ2(H) < ∞, we can conclude with inequality (7) that σm(H) is finite as well.
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2.2 Some elementary primality results

Proposition 5. Let m be a natural number and H ≥ 1 be an odd number such that σm(H) =
0. Then N := H · 2m + 1 is a prime number.

Proof. The number N = H · 2m +1 is either prime or it has a non-trivial divisor of the form
h · 2r + 1 with r ≥ 1 = σ

m
. The latter case would imply σm(H) ≥ m > 0.

Corollary 6. Let H ≥ 1 be an odd number. Let l be a nonnegative integer number and m be
a natural number with σm(H) = l < m. Then N := H · 2σ + 1 is a prime number for every
σ ∈ [l + 1,m] ∩ N.

Proof. For m = 1 this is exactly the claim of Proposition 5. For m > 1 we know that
r = s < σ if there are non-trivial divisors A := h · 2r + 1 and B := k · 2s + 1 of N such that
AB = N . But this leads to m > s ≥ 1 ≥ σ

m
and hence σm(H) ≥ σ > l.

Corollary 7. Let H be an odd natural number and let m ≥ 1 be a real number. If the natural
number σ ≤ m is not an element of Sm(H) then N = H · 2σ + 1 is a prime number.

Proof. Let N = H · 2σ + 1 = AB be a composite number with σ ≤ m. As usual, write
A = h · 2r + 1 and B = k · 2s + 1 with r ≤ s. Now suppose that σ is not an element of
Sm(H). Then we have s < σ

m
≤ 1, contradicting the condition 1 ≤ s.

2.3 Special values of σ1

Theorem 8. Let l and m ≥ l + 1 be natural numbers. Then σ1(2
m + 2l + 1) ≥ m− l.

Proof. Under the conditions of the theorem, (r, s, h, k,H) = (m− l,m, 1, 1, 2m + 2l + 1) is a
solution of (3).

Theorem 9. Let m ≥ 2 be a natural number. Then σ1(2
m + 3) = m− 1.

Proof. For every H > 1 we know that σ1(H) ≤ ⌊log2(H)⌋−1. Therefore, σ1(2
m+3) ≤ m−1

for all m ≥ 2. The claim follows with Theorem 8.

On the one hand, Theorem 9 shows that for every H = 2m +3 (m ≥ 2) the best possible
value σ1(H) = ⌊log2(H)⌋ − 1 is actually reached. On the other hand, we can conclude that
the arithmetical function σ1 : N \ 2N → N0 is surjective.

Theorem 10. Let m ≥ 3 be a natural number. Then σ1(2
m + 5) = m− 2.

Proof. Theorem 8 gives σ1(2
m + 5) ≥ m − 2 for all m ≥ 3. Moreover, σ1(2

m + 5) ≤
⌊log2(H)⌋ − 1 = m − 1 for all m ≥ 3. Suppose that there were a solution of (3) yielding
σ = m − 1. This solution would have to be of the form 2mhk + 2k + h = 2m + 5, since
s ≤ log2(H). But for h = k = 1 we have 2m + 2 + 1 < 2m + 5, whereas for max{h, k} > 1
there is 2m + 5 < 2mhk + 2k + h. Thus, such a solution does not exist.

Remark 11. The sequence (a(n))n≥0 with a(n) = σ1(2n + 1) is sequence A272894 of the
OEIS.
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2.4 Special values of σ2

Theorem 12. Let m be a natural number and let H be an odd natural number with H < 2m.
Then σ2(H) ≤ 2m− 1.

Proof. We already know that σ1(H) ≤ log2(H) < m, so we do not have to consider the
solutions of (3) here. Given the Diophantine equation (5), we see that h+k ≡ 0 (mod 2s−n),
i.e., there is a natural number d with h+ k = d · 2s−n. This implies 2nhk = H − d ≤ 2m − 2
or

hk ≤ 2m − 2

2n
. (8)

First, if n = 0 then (8) gives

h+ k ≤ hk + 1 ≤ 2m − 1 < 2m.

Consequently, a transformation of the Diophantine equation (5) leads to

2s =
h+ k

H − hk
< 2m,

since H − hk is a natural number. So, here we have s < m, i.e., s ≤ m − 1 and hence
σ ≤ 2m− 2.

Secondly, for n ≥ 1, again with (8), we get

h+ k ≤ hk + 1 ≤ 2m−n + 1− 1

2n−1
.

This means that the even natural number h+ k always fulfils h+ k ≤ 2m−n. In the present
case, the Diophantine equation (5) can be changed into

2s−n =
h+ k

H − 2nhk
≤ 2m−n

with a natural denominator H − 2nhk, giving the estimations s ≤ m and σ ≤ 2m− n. The
maximal value of the latter expression obviously is 2m− 1. Therefore, σ2(H) ≤ 2m− 1 for
every H < 2m.

Moreover, the arguments H leading to maximal values of σ2(H) can be specified.

Theorem 13. Let m ≥ 2 be a natural number and let H be an odd natural number with
H < 2m. Then σ2(H) = 2m− 1 if and only if H = 2m − 1.

Proof.
(1) IfH = 2m−1 withm ≥ 2 then the Diophantine equation (5) has the solution (n, s, h, k) =
(1,m, 1, 2m−1 − 1) and consequently σ2(H) = 2m− 1.

(2) Suppose that σ2(H) = 2m− 1 for a H < 2m. The Diophantine equation h+ k = hk + 1
(under the assumption that 1 ≤ h ≤ k) implies h = 1. So, if 3 ≤ h ≤ k, then we have

5



h+ k < hk. Note that h+ k = hk is impossible for every odd k. Applying (8) we can assert
that

h+ k < hk ≤ 2m − 2

2n
< 2m−n

for 3 ≤ h ≤ k and H < 2m. Hence 2s−n < 2m−n. This leads to s ≤ m − 1 and σ ≤
2m− 2− n ≤ 2m− 2.

It follows that σ = 2m− 1 requires h = 1, n = 1 and s = m. Then (5) can be rewritten
as

2mk + k + 1 = 2m−1H,

or
k + 1 = 2m−1(H − 2k). (9)

As seen above, we have k + 1 = k + h ≤ 2m−n = 2m−1 and hence H − 2k = 1, or

k =
H − 1

2
. (10)

Substituting (10) in (9) yields H = 2m − 1.

Remark 14. Combining the Theorems 12 and 13 yields the inequality σ2(H) ≤ 2 log2(H) for
every odd natural number H.

Some other subsequences can be given in parametric form.

Theorem 15. Let m ≥ 3 be a natural number and let H be an odd natural number with
H < 2m. Then σ2(H) = 2m− 2 if and only if H = 2m − 3.

Proof.
(1) For H = 2m − 3 with m ≥ 3 there is the solution

(n, s, h, k) = (2,m, 1, 2m−2 − 1)

to the Diophantine equation (5), i.e., σ = 2m−2. Theorem 13 states that σ2(2
m−3) 6= 2m−1,

which is why σ2(2
m − 3) = 2m− 2.

(2) Suppose that for a H < 2m we have σ2(H) = 2m − 2. The only pairs (n, s) leading to
σ = 2s − n = 2m − 2 are (0,m − 1) or (2,m). Moreover, we know that 3 ≤ h ≤ k implies
s < m. Therefore, the second pair requires h = 1 and transforms (5) into 2mk+k+1 = 2m−2H

or
k + 1 = 2m−2(H − 4k). (11)

Because k + 1 ≤ 2m−2, we get H − 4k = 1, i.e., k = H−1
4

. Substituting k in (11) yields
H = 2m − 3.

Let us now turn our attention to the pair (0,m− 1). Suppose that there is a solution to
the Diophantine equation 2m−1hk + h+ k = 2m−1H with H < 2m. A simple transformation
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gives h + k = 2m−1(H − hk), yielding H − hk = 2 since h + k ≤ 2m and H − hk even. So,
h = 2m − k and h = H−2

k
. Combining these two equalities gives k2 − 2mk +H − 2 = 0, or

H = −k2 + 2mk + 2.

Note that the inequality −k2 + 2mk < 2m − 2 is fulfilled for no 1 ≤ k < 2m. This can
be verified, e.g., by basic analytic considerations of the polynomial function f(x) = −x2 +
2mx− 2m. Consequently, we obtain H > 2m. This contradiction proves the theorem.

Theorem 16. Let m > 3 be a natural number. Then σ2(2
m + 1) = 2m− 2.

Proof. Note that for all m > 3 there is σ1(2
m + 1) ≤ ⌊log2(2m + 1)⌋ − 1 = m − 1 ≤

2m− 2. Consider the equality 2m−1(2m − 1)+ 2m = 2m−1(2m +1) showing that (n, s, h, k) =
(0,m − 1, 1, 2m − 1) is a solution of the Diophantine equation (5). Therefore, we have
σ2(2

m + 1) ≥ 2m − 2 > σ1(2
m + 1). According to the Theorems 12, 13 and 15, the only

larger value that σ2(2
m + 1) could equal to for m ≥ 3 is 2m − 1. The latter value requires

(n, s) ∈ {(1,m), (3,m+ 1)}. The first of these pairs gives 2mhk + h+ k = 2m−1(2m + 1) or

h+ k = 2m−1(2m + 1− 2hk) ≤ 2m.

Since 2m + 1− 2hk is odd, this implies 2m + 1− 2hk = 1 which is impossible for odd h and
k when m > 3. The second pair yields 2m+1hk + h+ k = 2m−2(2m + 1) or

h+ k = 2m−2(2m + 1− 8hk) ≤ 2m−2.

This gives 2m+1− 8hk = 1, an equality that also cannot hold for odd h and k when m > 3.
Hence, σ2(2

m + 1) = 2m− 2 for all m > 3.

Theorem 17. Let m ≥ 3 be a natural number. Then σ2(2
m + 3) = 2m− 4.

Proof. Note that for all m ≥ 3 there is σ1(2
m + 3) ≤ ⌊log2(2m + 3)⌋ − 1 = m− 1 ≤ 2m− 4.

Consider the equality 2m−2(2m−1)+2m = 2m−2(2m+3). Thus (n, s, h, k) = (0,m−2, 1, 2m−1)
is a solution of the Diophantine equation (5) for all m ≥ 3 and hence σ2(2

m+3) ≥ 2m−4 ≥
σ1(2

m + 3). Because 2m + 3 < 2m+1 − 3 for all m ≥ 3, we know by the Theorems 12, 13 and
15 that σ2(2

m + 3) < 2(m + 1) − 2 = 2m. Therefore, other potential values for σ2(2
m + 3)

are 2m− 3, 2m− 2 or 2m− 1.
To obtain σ = 2m− 3 we need (n, s) ∈ {(1,m− 1), (3,m), (5,m+ 1)}.
The first pair gives 2m−1hk + h+ k = 2m−2(2m + 3) or

h+ k = 2m−2(2m + 3− 2hk). (12)

Since h+ k ≤ 2m, the odd natural number 2m + 3− 2hk can take the values 1 or 3.

(a) 2m + 3 − 2hk = 1 is equivalent to h = 2m−1+1
k

. Substituting h in (12) gives k2 −
2m−2k + 2m−1 + 1 = 0. The latter quadratic equation has integer solutions k only if ∆ =
22m−2 − 4(2m−1 + 1) = 4(22m−4 − 2m−1 − 1) is a perfect square. It is easy to see that ∆ is a
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perfect square if and only if ∆
4
is one as well. But for m ≥ 3 we have ∆

4
≡ 3 (mod 4), which

is impossible for a perfect square.

(b) 2m + 3− 2hk = 3 is equivalent to h = 2m−1

k
which is impossible for odd h and k.

The pair (3,m) yields 2mhk + h+ k = 2m−3(2m + 3) or

h+ k = 2m−3(2m + 3− 8hk).

Here, we have h+ k ≤ 2m−2 and so, the odd natural number 2m +3− 8hk can only take the
value 1. This gives h = 2m−1+1

4k
which is impossible.

With the pair (5,m+ 1) we get 2m+1hk + h+ k = 2m−4(2m + 3) or

h+ k = 2m−4(2m + 3− 32hk).

Here, we have h + k ≤ 2m−4 and hence 2m + 3 − 32hk = 1 or h = 2m−1+1
16k

which again is
impossible. We can conclude that σ2(2

m + 3) 6= 2m− 3.
The case σ = 2m−2 requires (n, s) ∈ {(0,m−1), (2,m), (4,m+1)}, while for σ = 2m−1

there ought to be (n, s) ∈ {(1,m), (3,m+ 1)}. In total analogy to the case σ = 2m− 3, one
can establish that none of these five pairs leads to a solution of the Diophantine equation (5).
The details of these computations are left to the reader. Consequently, σ2(2

m +3) = 2m− 4
for all m ≥ 3.

Remark 18.
(1) We know that σ2(1) = 0. Moreover, the Theorems 17 and 13 state that for every natural
number N ≥ 2 there exists an odd number H with σ2(H) = N . A question arising from
these observations is, whether the sequence σ2 is surjective on N0? The answer is “yes”,
since a straightforward computation yields σ2(27) = 1.

(2) The sequence (a(n))n≥0 with a(n) = σ2(2n+ 1) is sequence A272895 of the OEIS.

2.5 Some further observations about σ3

The Diophantine equation (6) is equivalent to

h+ k = 2s(2s−nH − hk). (13)

From the observations made at the end of subsection 2.1 we know that h + k ≤ 2s ·H. So,
there is an odd natural number α ≤ H with 2s−nH−hk = α, i.e., h = 2s−nH−α

k
. Substituting

h in (13) gives
k2 − 2sαk + 2s−nH − α = 0. (14)

The latter quadratic equation in the variable k is solvable in integers if and only if the number
τ := 22s−2α2 + α− 2s−nH is a perfect square.

We study two different cases. First, if α ≡ 3 (mod 4) then we have to consider the
following subcases. If s − n = 1 then τ has the form 22nα2 + α − 2H. So, for n = 0
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we get τ = α2 + α − 2H ≡ 2 (mod 4), which cannot be a perfect square. In the case
n ≥ 1 this yields τ ≡ 1 (mod 4) and hence a potential perfect square leading to a solution
of (14) of the form k = 2nα ±

√
2nα2 + α− 2H. The corresponding value of σ would be

σ = 3(n + 1) − n = 2n + 3. Note, that the condition 1 ≤ n ≤ log2(H) has to be fulfilled,
which is why only a finite number of solutions of the latter form can exist. If s−n ≥ 2 then
τ ≡ 3 (mod 4) and hence τ never is a perfect square.

Secondly, let α ≡ 1 (mod 4). Again consider the case s−n = 1, i.e., τ = 22nα2+α−2H.
For n = 0 we get τ ≡ 0 (mod 4) and therefore the potential solution k = α±

√
α2 + α− 2H

with a corresponding σ = 3. If n ≥ 1 then τ ≡ 3 (mod 4) cannot be a perfect square.
The case s − n ≥ 2 always gives τ ≡ 1 (mod p) and hence potential solutions of the form
k = 2s−1α±

√
22s−2α2 + α− 2s−nH with corresponding σ = 3s− n.

Note that the latter subcase is the only one that could possibly lead to an infinity of
solutions. More precisely, we can have σ3(H) = ∞ only if τ = 22s−2α2 + α − 2s−nH is a
perfect square for an infinity of tuples (s, n, α) fulfilling 0 ≤ n < s − 1, n ≤ log2(H) and
1 ≤ α ≤ H with α ≡ 1 (mod 4).

Proposition 19. Let H be an odd natural number. Then
1) σ = 3 ∈ S3(H) \ S2(H) if k = α ±

√
α2 + α− 2H and h = 2s−nH−α

k
are odd natural

numbers for a given α ≡ 1 (mod 4) with α ≤ H.
2) σ = 3s− n ∈ S3(H) \ S2(H) if k = 2s−1α±

√
22s−2α2 + α− 2s−nH and h = 2s−nH−α

k
are

odd natural numbers for 0 ≤ n < s− 1, n ≤ log2(H) and 1 ≤ α ≤ H with α ≡ 1 (mod 4).
3) σ = 2n + 3 ∈ S3(H) \ S2(H) if k = 2nα ±

√
2nα2 + α− 2H and h = 2s−nH−α

k
are odd

natural numbers for 1 ≤ n ≤ log2(H) and α ≤ H with α ≡ 3 (mod 4).
These three cases give all possible elements of the set S3(H) \ S2(H).

Example 20.

(1) For a given odd natural number t the tuples (s, 0, t2) yield the perfect squares 22s−2t4 +
t2 − 2st3 = (2s−1t2 − t)2 for all s ∈ N, leading to k = 2st2 − t and h = t. This means that
σ3(t

3) = ∞ for every odd natural number t.
(2) It is easy to verify that the expressions 22s−2 + 1− 2s−n · 3 are never perfect squares for
n ∈ {0, 1} and s ≥ n + 2. Thus, we obtain σ3(3) < ∞. A straightforward computation
actually yields σ3(3) = σ2(3) = 3.

3 Primality testing and generalized Fermat numbers

In 1877, Pépin [21] showed that for n > 1 the Fermat number Fn = 22
n

+1 is prime if and only

if 5
Fn−1

2 ≡ −1 (mod Fn). The so-called Pépin test has since been a popular method to check
Fermat numbers for primality. A structural equivalence of Pépin’s test for Fermat numbers
and the Lucas-Lehmer test for Mersenne numbers has been brought to light recently [11].

Some further results were inspired by Pépin’s theorem. First, Proth [22] found the
following generalization: Let N = H · 2σ + 1 be an odd number with 2σ > H. Let b be a
quadratic nonresidue modulo N . Then N is a prime number if and only if b

N−1
2 ≡ −1 (mod
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N). So called Proth primes, i.e., numbers that can be shown being prime using Proth’s
theorem, play an important role in finding factors of Fermat numbers.

Another question, arising from an observation by Lucas [16, p. 313], was brought up by
Aigner [1] in 1986: Are there other prime numbers suitable to be used as bases in Pépin’s
test? Aigner identified the basic property of any suitable prime number p to be that almost
all Fermat numbers are quadratic nonresidues modulo p. He found 14 such primes less than
35 ·106 and, because of their rareness, called them elite prime numbers. In recent years, elite
primes have been the subject of a number of research papers [5, 6, 14, 15, 17, 18, 19, 23, 24].

In this context, Reinhart and the author [18, 20] studied some fundamental properties
of the behavior of the so called Fermat periods of natural numbers. For a natural number b
consider the generalized Fermat numbers Fb,n = b2

n

+ 1. Because of the recurrence relation
Fb,n+1 = (Fb,n − 1)2 + 1 it is obvious that the congruence Fb,n (mod N) becomes periodic
for every natural number N , i.e., there exist minimal nonnegative integer numbers s and
L ≥ 1 such that Fb,s ≡ Fb,s+Lk (mod N) for all natural numbers k. We call the parameter
s =: sb(N) the start index and L =: Lb(N) the period length of the b-Fermat period of N .
Some applications of generalized Fermat numbers have been studied [4, 7, 9, 12]. For a survey
on Fermat numbers we refer the reader to the book of Kř́ıžek, Luca, and Somer [13]. Some
generalizations of Proth’s theorem dealing with other parametric forms of N = Kan+b have
been discussed by several authors [2, 8, 10]. In this section, we give another generalization
of Proth’s primality theorem lowering the requirements that the base b has to fulfil.

Theorem 21. Let H be an odd natural number and let m ≥ 1 be a real number such that
σm(H) < ∞. Let N = H · 2σ + 1 be an odd natural number with σ > σm(H). Then N is
a prime number if and only if there are two natural numbers b and k with gcd(N, b) = 1,
k ≥ σ

m
and b2

k−1H ≡ −1 (modN).

Remark 22.
(1) Taking into account the inequality σ1(H) ≤ log2(H), Proth’s theorem follows from
Theorem 21 when we use m = 1.

(2) In many cases, the condition σ > σm(H) is actually weaker than that demanded
by Proth. E.g., σ1(3) = 0, σ2(165) = 0, σ2(27) = σ2(45) = σ2(267) = 1, σ2(H) =
2 for H ∈ {11, 51, 85, 195, 201, 231, . . .}, σ2(H) = 3 for H ∈ {21, 37, 55, 87, 93, 123, 153,
181, 243, 245, . . .}, etc.
(3) Proth’s theorem needs the base b to be a quadratic nonresidue modulo N . In our result
this requirement falls aside for m > 1. E.g., because of σ2(1) = 0, the first four Fermat
Numbers Fn := 22

n

+1 (n ∈ {0, 1, 2, 3}) can be proved being prime numbers using Theorem
21 with b = 2, k := n+1 ≥ 2n−1 and 22

k−1 ≡ −1 (mod Fn). Unfortunately, for all n ≥ 4 the
base b = 2 is not suitable anymore and b = 3, i.e., Pépin’s Test, has to be applied for larger
Fermat Numbers.

The proof of Theorem 21 is based on elementary properties of b-Fermat periods and thus
points out another application of generalized Fermat numbers.

10



3.1 Fermat periods

Using the parametric form N = H · 2σ + 1 allows a characterization of the start index and
the length of the Fermat periods of N [20].

Theorem 23. Let N = H · 2σ + 1 and b be natural numbers with gcd(N, b) = 1. We let
t · 2s (t odd) denote the multiplicative order of b modulo N . Then we have sb(N) = s and
Lb(N) = ordt(2). If N is a prime number, then s ≤ σ and t divides H.

A result linking the period length of a composite N to the period lengths of coprime
factors is also known [20].

Theorem 24. Let A and B be two coprime natural numbers and b ∈ N. Then Lb(AB) =
lcm(Lb(A), Lb(B)).

A similar result can be shown for the start indices of composite numbers.

Proposition 25. Let A, B and b be natural numbers with gcd(A,B) = gcd(AB, b) = 1.
Then sb(AB) = max{sb(A), sb(B)}.

Proof. It is well-known that for natural numbers A, B and b with gcd(A,B) = gcd(AB, b) =
1 we have ordAB(b) = lcm(ordA(b), ordB(b)). With Theorem 23 this implies sb(AB) =
max{sb(A), sb(B)}.

The following proposition settles the problem of the start indices of non-squarefree num-
bers.

Proposition 26. Let p be an odd prime number. Let m and b be natural numbers with
gcd(p, b) = 1. Then sb(p

m) = sb(p).

Proof. We let α denote the multiplicative order of b modulo p, i.e., bα = pk+1 for a suitable
k ∈ Z. This leads to

bαp
m−1

= (pk + 1)p
m−1

=

pm−1
∑

ν=0

(

pm−1

ν

)

pνkν

≡ 1 (mod pm).

It follows that the multiplicative order of b modulo pm is a divisor of αpm−1. Now suppose
that there is a β < α fulfilling bβp

m−1 ≡ 1 (mod pm). Then Fermat’s little theorem implies
bβ ≡ 1 (mod p), contradicting the fact that α is the multiplicative order of b modulo p.

So, the multiplicative order of bmodulo pm has to be of the form αpd with d ∈ {0, 1, . . . ,m−
1}. By writing p = h · 2r + 1, Theorem 23 states that α = 2st with s ≤ r, t a divisor of h
and sb(p) = s. Again with Theorem 23, this time applied to pm, we obtain the start index
sb(p

m) = s since ordpm(b) = 2stpd and tpd is odd.

11



Corollary 27. Let N =
∏n

ν=1 p
αν

ν be the canonical prime factorization of an odd natural
number N . Then sb(N) = max1≤ν≤n{sb(pν)} for every base b ∈ N with gcd(N, b) = 1.

Proof. By induction over the number of prime factors, Proposition 25 can be generalized to
sb(N) = max1≤k≤n{sb(pαk

k )}. With Proposition 26 we then get sb(N) = max1≤k≤n{sb(pk)}.

Remark 28. All the results formulated so far for Fermat numbers remain correct if we consider
power sequences instead. So, for practical use, it does not matter whether we investigate the
congruential behavior of the numbers Fb,n or that of the numbers b2

n

.

3.2 A primality theorem using Fermat periods

Theorem 29. Let H be an odd natural number and let m ≥ 1 be a real number such that
σm(H) < ∞. Let N = H · 2σ + 1 be an odd natural number with σ > σm(H). Then N is a
prime number if and only if there is a natural number b with gcd(N, b) = 1 and sb(N) ≥ σ

m
.

Proof.
(1) Suppose N = H ·2σ+1 to be a prime number. Then there exists a primitive root bmodulo
N , i.e., gcd(N, b) = 1 and ordN(b) = 2σ ·H. With Theorem 23, this implies sb(N) = σ ≥ σ

m
.

(2) Let b be a natural number with gcd(N, b) = 1 and sb(N) ≥ σ
m
. Suppose that N =

H ·2σ+1 = AB is a composite number with the two factors A = h ·2r+1 and B = k ·2s+1.
Note that by definition there is 1 < A,B. Therefore, the numbers A and B represent every
possible combination of two nontrivial divisors of N that multiply to N .

Since σ > σm(H), we know that r = s < σ
m
. It follows that every prime factor p = q·2w+1

of N must fulfil w < σ
m
. Corollary 27 then implies sb(N) < σ

m
for every base b with

gcd(N, b) = 1. This contradiction proves the theorem.

3.3 Proof of Theorem 21

(1) LetN be a prime number. Then there is a primitive root bmoduloN fulfilling gcd(N, b) =
1 and, by Euler’s criterion, b2

σ−1H ≡ −1 (mod N).

(2) Let b and k be natural numbers with gcd(N, b) = 1, k ≥ σ
m

and

b2
k−1H ≡ −1 (modN).

Therefore, 2kH is a multiple of the multiplicative order of b modulo N , while 2k−1H is not.
Hence, there must be a divisor d of H such that ordN(b) = 2kd. Theorem 23 now gives
sb(N) = k ≥ σ

m
. Since σ > σm(H), we can apply Theorem 29 and we immediately obtain

the primality of N . �
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4 Discussion and open problems

(1) Are there more elegant criteria than those of Proposition 19 to decide whether σ3(H) <
∞? Are the multipliers H = t3 the only values giving σ3(H) = ∞?

(2) Are there conditions of existence for values m > 3 allowing to evaluate σm(H)?

(3) Another open problem is the question how to efficiently find a suitable base b in order
to use Theorem 21 for primality testing. The following heuristic argument suggests that it
might suffice to try b = 2 for m ≥ 2, H ≥ 3 with σm(H) < ∞ and large σ. We know that for
every prime number p = H · 2σ + 1 that is not a divisor of 2H − 1, there exists a generalized
Fermat number of the form (2H)2

k−1
+1 being a multiple of p. In such a case, the difference

σ− k := t indicates that 2H is a 2t-power residue but not a 2t+1-power residue modulo p [3].

Now suppose that k < σ
m
. This would imply t >

(m−1)σ
m

and thus 2H would have to be at

least a 2⌊
(m−1)σ

m
⌋+1-power residue modulo p. The probability that this is true actually equals

2−⌊
(m−1)σ

m
⌋−1. Therefore, for large values of σ it is quite improbable that our test fails with

b = 2.
Evidently, if N = H · 2σ +1 (not being a divisor of 2H − 1) does not divide a generalized

Fermat number of the form (2H)2
k

+ 1 for 1 ≤ k ≤ σ − 1, then N is composite. Therefore,
under the assumption that b = 2 is suitable, an algorithm based on Theorem 21 leads to a
primality or compositeness statement for a given N = H · 2σ + 1 with large σ after at most
σ − 1 squaring and congruence operations and hence runs in O(log(N)).

(4) Perhaps it is useful to consider restrictions of the sequences σm for m ≥ 3 in order to get
finite subsequences that allow us to use Theorem 21 for selected exponents σ even though
σm(H) = ∞.
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[22] F. Proth, Théorèmes sur les nombres premiers, C. R. Acad. Sci. Paris 87 (1878), 926.

14

https://cs.uwaterloo.ca/journals/JIS/VOL14/Krizek/krizek2.html
https://cs.uwaterloo.ca/journals/JIS/VOL11/Mueller/mueller445.html
https://cs.uwaterloo.ca/journals/JIS/VOL13/Mueller/mueller6.html


[23] A. Witno, On elite primes of period four, Int. J. Number Theory 6 (2010), 667–671.

[24] A. Witno, Primes modulo which almost all Fermat numbers are primitive roots, Note
Mat. 30 (2010), 133–140.

2010 Mathematics Subject Classification: Primary 11A41; Secondary 11A51, 11B83, 11D61,
11D72, 11Y11.
Keywords: exponent, non-trivial divisor, composite number, primality test, prime number,
Diophantine equation, generalized Fermat number, Fermat period.

(Concerned with sequences A000125, A102742, A128852, A272894, and A272895.)

Received May 12 2016; revised version received December 1 2016. Published in Journal of
Integer Sequences, December 27 2016.

Return to Journal of Integer Sequences home page.

15

http://oeis.org/A000125
http://oeis.org/A102742
http://oeis.org/A128852
http://oeis.org/A272894
http://oeis.org/A272895
http://www.cs.uwaterloo.ca/journals/JIS/

	Introduction
	The m-sequences
	Diophantine equations
	Some elementary primality results
	Special values of 1
	Special values of 2
	Some further observations about 3

	Primality testing and generalized Fermat numbers
	Fermat periods
	A primality theorem using Fermat periods
	Proof of Theorem 21

	Discussion and open problems

